反比例函数的图象与性质教学反思
一、数形结合的处理
1、反比例函数的图象和性质,是“数”与“形”的统一体,本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系,反思三:反比例函数的图象与性质教学反思。
2、借助直观图形,帮助学生思考相关的问题,即考虑“已经”形式化的“数”的本质“特征”,又使“数”、“形”之间达到统一。
3、在总结得出反比例函数的图象和性质之后,我为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程,教学反思《反思三:反比例函数的图象与性质教学反思》。
二、教学效果的达成
在教学中,通过“观察探究,形成新知”环节,学生能够在教师的引导下,说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,完成列表、描点、画出反比例函数图象的过程,也可以通过观察所画出的反比例函数的图象,得出其图象的“特征”和函数的“性质”。
然而,由于学生刚刚接触反比例函数的图象,图象的外在形式(双曲线)与一次函数的图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值的大小时,学生还不能有意识地从“自变量的正负”来考虑问题,这致使学生在“课堂检测”时,对部分问题的解决出现偏差。
此外,教学中,通过“类比”,在教学过程中,教师引导学生要“类比一次函数学习的方法”,最大限度地调动学生合情推理的能力,以对反比例函数“个性”的结论做出正确的判断和学习
但是,我们在运用“类比”的方法研究反比例函数的过程中,还应注意“趋同求异”,关注反比例函数与一次函数之间的“差异性”,如图形的“曲”与“直”、“间断”与“连续”等,这样的认识,在本课教学时,应加以强调,并传达给学生。
- 相关推荐
【反比例函数的图象与性质教学反思】相关文章:
《称象》教学反思03-19
分数的基本性质教学反思03-20
关于《等式的性质》教学反思(精选23篇)11-09
最后一头战象教学反思03-19
《减法性质、除法性质》教学设计02-23
数学《扇形统计图》教学反思(精选15篇)08-23
《学校生物分布图》教学反思(精选11篇)03-16
小学正反比例教学设计03-19