《二元一次方程》导学教案设计

2024-10-26

《二元一次方程》导学教案设计

  【教学目标】

  知识目标: 1、通过观察,归纳二元一次方程的概念 ,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

  2、二元一次方程解的不定性和相关性,即二元一次方程的解有无数个,但又不是任意两个数是它的解。

  过程与方法:通过与一元一次方程的比较,加强学生的类比的思想方法。

  情感态度与价值观:通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点。

  【教学重点、难点】

  重点:二元一次方程的意义及二元一次方程的解的概念。

  难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  【教学过程】

  一、 复习引入:

  (1) 方程的概念;一元一次方程的概念;什么是方程的解?一元一次方程的解如何表示?

  (2) 合作学习:

  ①小红到邮局寄挂号信,需要邮资3元8角。小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?

  这个问题中有几个未知数,能列一元一次方程求解吗?

  如果设需要票额为6角的邮票x张,需要票额为8角的邮票y张,你能列出方程吗?

  ②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,你能列出方程吗?

  二、 新课教学

  这就是我们今天要学习的4、1二元一次方程(板书课题)

  (1) 观察上述两个方程,归纳特点

  (2) 讨论选择正确概念

  ① 含有两个未知数的方程叫二元一次方程。

  ② 含有两个未知数,且含有未知数的项的次数都是1次的方程叫二元一次方程。

  (3) 做一做P86——1,2

  (4) 例:已知方程3x+2y=10

  ① 用关于x的代数式表示y (分析:只要把方程3x+2y=10看作未知数是y的一元一次方程,解关于y的方程)

  ② 求当x=-2,0,3时,对应的y的值

  (提问:把x=-2,y=8代入方程3x+2y=10,能否使其左右两边相等?

  回忆方程解的概念,得出x=-2,y=8是二元一次方程3x+2y=10的一个解,记作 。

  同理试写出该方程的两个解(注意写法格式)

  思考:方程3x+2y=10的解有多少个?

  师归纳:二元一次方程解具不定性和相关性

  (5) 练习:P88——课内练习1,2

  (6) 补充练习:P89---作业题4(说明:方程的解须是正整数)

  已知 ,是方程2x+3y=5的一个解,那么由此可知道些什么?

  (说明:1.本例是根据教科书P89---B组第5题改编。原题要求a的值,但学

  生常常有困难,因此这里把原题改为开放式命题,看起来似乎比原

  题要求高了,其实有利于各类学生参与并寻求结论。

  三、 课堂小结:

  二元一次方程的意义及二元一次方程的解的概念(注意书写格式)

  二元一次方程解的不定性和相关性

  会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式

  四、 作业 :

  课堂作业本

  • 相关推荐

【《二元一次方程》导学教案设计】相关文章:

《物种起源》导学教案设计02-15

列夫托尔斯泰的导学教案(通用10篇)09-02

解一元一次方程教案设计(精选14篇)11-16

细胞通过分裂产生新细胞导学教案(通用11篇)05-28

《故乡》的导学案02-14

往事依依的导学案08-27

往事依依的导学案08-27

往事依依的导学案08-27

往事依依的导学案08-27

往事依依的导学案08-27