集合与简易的教案
教材:
集合的概念
目的:
要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。
结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
常用数集及其记法:
1.非负整数集(即自然数集) 记作:N
2.正整数集 N*或 N+
3.整数集 Z
4.有理数集 Q
5.实数集 R
集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性
(例子 略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 aA ,相反,a不属于集A 记作 aA (或aA)
例: 见P4—5中例
四、练习 P5 略
五、集合的表示方法:列举法与描述法
1.列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}
2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例{不是直角三角形的三角形}再见P6例
②数学式子描述法:例 不等式x-3>2的解集是{xR| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见P6例
六、集合的分类
1.有限集 含有有限个元素的集合
2.无限集含有无限个元素的集合例题略
3.空集 不含任何元素的集合 F
七、用图形表示集合 P6略
八、练习 P6
小结:概念、符号、分类、表示法
九、作业 P7习题1.1
- 相关推荐
【 与简易的教案】相关文章:
《左传》教案10-24
存货教案02-28
爱莲说的经典教案03-20
《牧场上的家教案》经典教案设计03-20
《什么虫》教案01-08
关于《勇气》的教案03-20
飞天音乐教案10-31
《 西瓜船》教案11-17
人生多彩的教案09-04
激素调节教案02-02