最全求极限方法总结

2024-07-23

最全求极限方法总结

  摘要:假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

  为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。

  首先对极限的总结如下。极限的保号性很重要就是说在一定区间内函数的正负与极限一致

  1、极限分为一般极限,还有个数列极限(区别在于数列极限时发散的,是一般极限的一种)。

  2、解决极限的方法如下

  1)等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记。(x趋近无穷的时候还原成无穷小)

  2)洛必达法则(大题目有时候会有暗示要你使用这个方法)

  首先他的使用有严格的使用前提。必须是X趋近而不是N趋近。(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件。还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用无疑是死路一条)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

  洛必达法则分为三种情况

  1)0比0无穷比无穷时候直接用

  2)0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了

  3)0的0次方1的无穷次方无穷的0次方

  对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0当他的幂移下来趋近于无穷的时候LNX趋近于0)

  3、泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!)e的x展开sina展开cos展开ln1+x展开对题目简化有很好帮助

  4、面对无穷大比上无穷大形式的解决办法。取大头原则最大项除分子分母!看上去复杂处理很简单。

  5、无穷小于有界函数的处理办法

  面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!

  6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

  7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)

  8、各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数。

  9、求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化。

  10、两个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(第二个实际上是用于函数是1的无穷的形式)(当底数是1的时候要特别注意可能是用第二个重要极限)

  11、还有个方法,非常方便的方法。就是当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的。

  x的x次方快于x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢)。当x趋近无穷的时候他们的比值的极限一眼就能看出来了

  12、换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中

  13、假如要算的话四则运算法则也算一种方法,当然也是夹杂其中的

  14、还有对付数列极限的一种方法,就是当你面对题目实在是没有办法走投无路的时候可以考虑转化为定积分。一般是从0到1的形式。

  15、单调有界的性质。对付递推数列时候使用证明单调性。

  16、直接使用求导数的定义来求极限,(一般都是x趋近于0时候,在分子上f(x)加减某个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时候f(0)导数=0的时候就是暗示你一定要用导数定义!)

  

  • 相关推荐

【最全求极限方法总结】相关文章:

预防近视的方法总结08-02

脑瘫治疗的最佳方法总结03-20

关于小升初复习方法总结02-24

css的调试方法与经验总结03-20

教《学弈》的方法总结(精选11篇)04-10

最流行的平面设计方法总结11-22

细胞结构和功能的实验研究方法总结07-19

景天科多肉植物养护的方法总结03-20

口头报告方法11-30

教案制作方法01-31