应用题的题型总结和解题方法

2024-07-22

应用题的题型总结和解题方法

  小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。

  11 行船问题

  【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

  【数量关系】

  (顺水速度+逆水速度)÷2=船速

  (顺水速度-逆水速度)÷2=水速

  顺水速=船速×2-逆水速=逆水速+水速×2

  逆水速=船速×2-顺水速=顺水速-水速×2

  【解题思路和方法】

  大多数情况可以直接利用数量关系的公式。

  例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

  解 由条件知,顺水速=船速+水速=320÷8,而水速为每小时15千米,所以,船速为每小时 320÷8-15=25(千米)

  船的逆水速为 25-15=10(千米)

  船逆水行这段路程的时间为 320÷10=32(小时)

  答:这只船逆水行这段路程需用32小时。

  例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

  解由题意得 甲船速+水速=360÷10=36

  甲船速-水速=360÷18=20

  可见 (36-20)相当于水速的2倍,

  所以, 水速为每小时 (36-20)÷2=8(千米)

  又因为, 乙船速-水速=360÷15,

  所以, 乙船速为 360÷15+8=32(千米)

  乙船顺水速为 32+8=40(千米)

  所以, 乙船顺水航行360千米需要

  360÷40=9(小时)

  答:乙船返回原地需要9小时。

  例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?

  解 这道题可以按照流水问题来解答。

  (1)两城相距多少千米?

  (576-24)×3=1656(千米)

  (2)顺风飞回需要多少小时?

  1656÷(576+24)=2.76(小时)

  列成综合算式

  [(576-24)×3]÷(576+24)

  =2.76(小时)

  答:飞机顺风飞回需要2.76小时。

  12 列车问题

  【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

  【数量关系】

  火车过桥:过桥时间=(车长+桥长)÷车速

  火车追及: 追及时间=(甲车长+乙车长+距离)÷(甲车速-乙车速)

  火车相遇: 相遇时间=(甲车长+乙车长+距离)÷(甲车速+乙车速)

  【解题思路和方法】

  大多数情况可以直接利用数量关系的公式。

  例1 一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

  解 火车3分钟所行的路程,就是桥长与火车车身长度的和。

  (1)火车3分钟行多少米? 900×3=2700(米)

  (2)这列火车长多少米? 2700-2400=300(米)

  列成综合算式 900×3-2400=300(米)

  答:这列火车长300米。

  例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

  解 火车过桥所用的时间是2分5秒=125秒,所走的路程是(8×125)米,这段路程就是(200米+桥长),所以,桥长为

  8×125-200=800(米)

  答:大桥的长度是800米。

  例3 一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

  解 从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为

  (225+140)÷(22-17)=73(秒)

  答:需要73秒。

  例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

  解 如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。

  150÷(22+3)=6(秒)

  答:火车从工人身旁驶过需要6秒钟。

  例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥用了58秒。求这列火车的车速和车身长度各是多少?

  解 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(88-58)秒的时间内行驶了(2000-1250)米的路程,因此,火车的车速为每秒

  (2000-1250)÷(88-58)=25(米)

  进而可知,车长和桥长的和为(25×58)米,

  因此,车长为 25×58-1250=200(米)

  答:这列火车的车速是每秒25米,车身长200米。

  13 时钟问题

  【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。

  【数量关系】

  分针的速度是时针的12倍,

  二者的速度差为11/12。

  通常按追及问题来对待,也可以按差倍问题来计算。

  【解题思路和方法】

  变通为“追及问题”后可以直接利用公式。

  例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?

  解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。所以

  分针追上时针的时间为 20÷(1-1/12)≈ 22(分)

  答:再经过22分钟时针正好与分针重合。

  例2 四点和五点之间,时针和分针在什么时候成直角?

  解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(5×4) 格,如果分针在时针后与它成直角,那么分针就要比时针多走 (5×4-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5×4+15)格。再根据1分钟分针比时针多走(1-1/12)格就可以求出 二针成直角的时间。

  (5×4-15)÷(1-1/12)≈ 6(分)

  (5×4+15)÷(1-1/12)≈ 38(分)

  答:4点06分及4点38分时两针成直角。

  例3 六点与七点之间什么时候时针与分针重合?

  解 六点整的时候,分针在时针后(5×6)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。

  (5×6)÷(1-1/12)≈ 33(分)

  答:6点33分的时候分针与时针重合。

  14 盈亏问题

  【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。

  【数量关系】

  一般地说,在两次分配中,如果一次盈,一次亏,则有:

  参加分配总人数=(盈+亏)÷分配差

  如果两次都盈或都亏,则有:

  参加分配总人数=(大盈-小盈)÷分配差

  参加分配总人数=(大亏-小亏)÷分配差

  【解题思路和方法】

  大多数情况可以直接利用数量关系的公式。

  例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?

  解 按照“参加分配的总人数=(盈+亏)÷分配差”的数量关系:

  (1)有小朋友多少人?(11+1)÷(4-3)=12(人)

  (2)有多少个苹果? 3×12+11=47(个)

  答:有小朋友12人,有47个苹果。

  例2 修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?

  解 题中原定完成任务的天数,就相当于“参加分配的总人数”,按照“参加分配的总人数=(大亏-小亏)÷分配差”的数量关系,可以得知

  原定完成任务的天数为

  (260×8-300×4)÷(300-260)=22(天)

  这条路全长为 300×(22+4)=7800(米)

  答:这条路全长7800米。

  例3 学校组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?

  解 本题中的车辆数就相当于“参加分配的总人数”,于是就有

  (1)有多少车?(30-0)÷(45-40)=6(辆)

  (2)有多少人? 40×6+30=270(人)

  答:有6 辆车,有270人。

  15 工程问题

  【含义】 工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出“一项工程”、“一块土地”、“一条水渠”、“一件工作”等,在解题时,常常用单位“1”表示工作总量。

  【数量关系】

  解答工程问题的关键是把工作总量看作“1”,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

  工作量=工作效率×工作时间

  工作时间=工作量÷工作效率

  工作时间=总工作量÷(甲工作效率+乙工作效率)

  【解题思路和方法】

  变通后可以利用上述数量关系的公式。

  例1 一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

  解 题中的“一项工程”是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位“1”。由于甲队独做需10天完成,那么每天完成这项工程的 1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。

  由此可以列出算式: 1÷(1/10+1/15)=1÷1/6=6(天)

  答:两队合做需要6天完成。

  例2 一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

  解 设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要[1÷(1/6+1/8)]小时,这个时间内,甲比乙多做24个零件,所以

  (1)每小时甲比乙多做多少零件?

  24÷[1÷(1/6+1/8)]=7(个)

  (2)这批零件共有多少个?

  7÷(1/6-1/8)=168(个)

  答:这批零件共有168个。

  解二 上面这道题还可以用另一种方法计算:

  两人合做,完成任务时甲乙的工作量之比为 1/6∶1/8=4∶3

  由此可知,甲比乙多完成总工作量的 4-3 / 4+3 =1/7

  所以,这批零件共有 24÷1/7=168(个)

  例3 一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

  解 必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

  60÷12=5 60÷10=6 60÷15=4

  因此余下的工作量由乙丙合做还需要

  (60-5×2)÷(6+4)=5(小时)

  答:还需要5小时才能完成。

  例4 一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

  解 注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

  要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。

  我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(1×4×5),2个进水管15小时注水量为(1×2×15),从而可知

  每小时的排水量为 (1×2×15-1×4×5)÷(15-5)=1

  即一个排水管与每个进水管的工作效率相同。由此可知

  一池水的总工作量为 1×4×5-1×5=15

  又因为在2小时内,每个进水管的注水量为 1×2,

  所以,2小时内注满一池水

  至少需要多少个进水管? (15+1×2)÷(1×2)

  =8.5≈9(个)

  答:至少需要9个进水管。

  16 正反比例问题

  【含义】 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

  两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

  【数量关系】

  判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

  【解题思路和方法】

  解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

  正反比例问题与前面讲过的倍比问题基本类似。

  例1 修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

  解 由条件知,公路总长不变。

  原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

  现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

  比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为 300÷(4-3)×12=3600(米)

  答: 这条公路总长3600米。

  例2 张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

  解 做题效率一定,做题数量与做题时间成正比例关系

  设91分钟可以做X应用题 则有 28∶4=91∶X

  28X=91×4 X=91×4÷28 X=13

  答:91分钟可以做13道应用题。

  例3 孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

  解 书的页数一定,每天看的页数与需要的天数成反比例关系

  设X天可以看完,就有 24∶36=X∶15

  36X=24×15 X=10

  答:10天就可以看完。

  • 相关推荐

【应用题的题型总结和解题方法】相关文章:

细胞结构和功能的实验研究方法总结07-19

施工总进度计划的编制步骤和方法11-25

列方程解应用题的常用公式总结12-07

预防近视的方法总结08-02

脑瘫治疗的最佳方法总结03-20

关于小升初复习方法总结02-24

css的调试方法与经验总结03-20

总结的作用和概念03-21

谦辞和敬辞总结09-20

教《学弈》的方法总结(精选11篇)04-10