高中数学立体几何做题方法总结
方法总结
1.位置关系:
(1)两条异面直线相互垂直
证明方法:①证明两条异面直线所成角为90o;②证明线面垂直,得到线线垂直;③证明两条异面直线的方向量相互垂直。
(2)直线和平面相互平行
证明方法:①证明直线和这个平面内的一条直线相互平行;②证明这条直线的方向量和这个平面内的一个向量相互平行;③证明这条直线的方向量和这个平面的法向量相互垂直。
(3)直线和平面垂直
证明方法:①证明直线和平面内两条相交直线都垂直,②证明直线的方向量与这个平面内不共线的两个向量都垂直;③证明直线的方向量与这个平面的法向量相互平行。
(4)平面和平面相互垂直
证明方法:①证明这两个平面所成二面角的平面角为90o;②证明一个平面内的一条直线垂直于另外一个平面;③证明两个平面的法向量相互垂直。
2.求距离:
求距离的重点在点到平面的距离,直线到平面的距离和两个平面的距离可以转化成点到平面的距离,一个点到平面的距离也可以转化成另外一个点到这个平面的距离。
(1)两条异面直线的距离
求法:利用公式法。
(2)点到平面的距离
求法:①“一找二证三求”,三步都必须要清楚地写出来。②等体积法。③向量法。
3.求角
(1)两条异面直线所成的角
求法:①先通过其中一条直线或者两条直线的平移,找出这两条异面直线所成的角,然后通过解三角形去求得;②通过两条异面直线的方向量所成的角来求得,但是注意到异面直线所成角得范围是,向量所成的角范围是,如果求出的是钝角,要注意转化成相应的锐角。
(2)直线和平面所成的角
求法:①“一找二证三求”,三步都必须要清楚地写出来。②向量法,先求直线的方向量于平面的法向量所成的角α,那么所要求的角为或。
(3)平面与平面所成的角
求法:①“一找二证三求”,找出这个二面角的平面角,然后再来证明我们找出来的这个角是我们要求的二面角的平面角,最后就通过解三角形来求。②向量法,先求两个平面的法向量所成的角为α,那么这两个平面所成的二面角的平面角为α或π-α。
- 相关推荐
【高中数学立体几何做题方法总结】相关文章:
预防近视的方法总结08-02
脑瘫治疗的最佳方法总结03-20
关于小升初复习方法总结02-24
css的调试方法与经验总结03-20
教《学弈》的方法总结(精选11篇)04-10
最流行的平面设计方法总结11-22
细胞结构和功能的实验研究方法总结07-19
景天科多肉植物养护的方法总结03-20
口头报告方法11-30
教案制作方法01-31