高二数学知识点总结

2022-02-19 总结

  在年少学习的日子里,说到知识点,大家是不是都习惯性的重视?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。为了帮助大家掌握重要知识点,下面是小编整理的高二数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

  高二数学知识点总结 篇1

  排列组合

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法."排列"

  把5本书分给3个人,有几种分法"组合"

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.

  n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为

  n!/(n1!_2!_.._k!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).

  排列(Pnm(n为下标,m为上标))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________

  从N倒数r个,表达式应该为n_n-1)_n-2)..(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  高二数学知识点总结 篇2

  课内重视听讲,课后及时复习。

  新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  适当多做题,养成良好的解题习惯。

  要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  调整心态,正确对待考试。

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  高二数学知识点总结 篇3

  一、直线与方程

  (1)直线的倾斜角

  定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°

  (2)直线的斜率

  ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即 。斜率反映直线与轴的倾斜程度。

  当 时, ; 当 时, ; 当 时, 不存在。

  ②过两点的直线的斜率公式:

  注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

  (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

  (3)直线方程

  ①点斜式: 直线斜率k,且过点

  注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

  当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

  ②斜截式: ,直线斜率为k,直线在y轴上的截距为b

  ③两点式: ( )直线两点 ,

  ④截矩式:

  其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。

  ⑤一般式: (A,B不全为0)

  注意:各式的适用范围 特殊的方程如:

  平行于x轴的直线: (b为常数); 平行于y轴的直线: (a为常数);

  (5)直线系方程:即具有某一共同性质的直线

  (一)平行直线系

  平行于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (二)垂直直线系

  垂直于已知直线 ( 是不全为0的常数)的直线系: (C为常数)

  (三)过定点的直线系

  (ⅰ)斜率为k的直线系: ,直线过定点 ;

  (ⅱ)过两条直线 , 的交点的直线系方程为

  ( 为参数),其中直线 不在直线系中。

  (6)两直线平行与垂直

  当 , 时,;

  注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

  (7)两条直线的交点

  相交

  交点坐标即方程组 的一组解。

  方程组无解 ; 方程组有无数解 与 重合

  (8)两点间距离公式:设 是平面直角坐标系中的两个点,

  则

  (9)点到直线距离公式:一点 到直线 的距离

  (10)两平行直线距离公式

  在任一直线上任取一点,再转化为点到直线的距离进行求解。

  二、圆的方程

  1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

  2、圆的方程

  (1)标准方程 ,圆心 ,半径为r;

  (2)一般方程

  当 时,方程表示圆,此时圆心为 ,半径为

  当 时,表示一个点; 当 时,方程不表示任何图形。

  (3)求圆方程的方法:

  一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

  3、直线与圆的位置关系:

  直线与圆的位置关系有相离,相切,相交三种情况:

  (1)设直线 ,圆 ,圆心 到l的距离为 ,则有 ; ;

  (2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程

  (3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2

  4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  设圆 ,

  两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

  当 时两圆外离,此时有公切线四条;

  当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;

  当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;

  当 时,两圆内切,连心线经过切点,只有一条公切线;

  当 时,两圆内含; 当 时,为同心圆。

  注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线

  圆的辅助线一般为连圆心与切线或者连圆心与弦中点

  三、立体几何初步

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

  (3)棱台:

  几何特征:①上下底面是相似的平行多边形;②侧面是梯形;③侧棱交于原棱锥的顶点。

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

  2、空间几何体的三视图

  定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、

  俯视图(从上向下)

  注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和。

  (2)特殊几何体表面积公式(c为底面周长,h为高, 为斜高,l为母线)

  (3)柱体、锥体、台体的体积公式

  (4)球体的表面积和体积公式:V = ; S =

  4、空间点、直线、平面的位置关系

  公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  应用:判断直线是否在平面内

  用符号语言表示公理1:

  公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

  符号:平面α和β相交,交线是a,记作α∩β=a。

  符号语言:

  公理2的作用:

  ①它是判定两个平面相交的方法。

  ②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

  ③它可以判断点在直线上,即证若干个点共线的重要依据。

  公理3:经过不在同一条直线上的三点,有且只有一个平面。

  推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

  公理3及其推论作用:

  ①它是空间内确定平面的依据

  ②它是证明平面重合的依据

  公理4:平行于同一条直线的两条直线互相平行

  空间直线与直线之间的位置关系

  ①异面直线定义:不同在任何一个平面内的两条直线

  ②异面直线性质:既不平行,又不相交。

  ③异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线

  ④异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

  求异面直线所成角步骤:

  A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。

  B、证明作出的角即为所求角

  C、利用三角形来求角

  (7)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

  (8)空间直线与平面之间的位置关系

  直线在平面内——有无数个公共点.

  三种位置关系的符号表示:a α a∩α=A a‖α

  (9)平面与平面之间的位置关系:平行——没有公共点;α‖β

  相交——有一条公共直线。α∩β=b

  5、空间中的平行问题

  (1)直线与平面平行的判定及其性质

  线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

  线线平行 线面平行

  线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。线面平行 线线平行

  (2)平面与平面平行的判定及其性质

  两个平面平行的判定定理

  (1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行

  (线面平行→面面平行),

  (2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

  (线线平行→面面平行),

  (3)垂直于同一条直线的两个平面平行,

  两个平面平行的性质定理

  (1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)

  (2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)

  7、空间中的垂直问题

  (1)线线、面面、线面垂直的定义

  ①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

  ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

  ③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

  (2)垂直关系的判定和性质定理

  ①线面垂直判定定理和性质定理

  判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

  性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  ②面面垂直的判定定理和性质定理

  判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

  性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

  9、空间角问题

  (1)直线与直线所成的角

  ①两平行直线所成的角:规定为 。

  ②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

  ③两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线 ,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

  (2)直线和平面所成的角

  ①平面的平行线与平面所成的角:规定为 。

  ②平面的垂线与平面所成的角:规定为 。

  ③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

  求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

  在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,

  在解题时,注意挖掘题设中两个主要信息:

  (1)斜线上一点到面的垂线;

  (2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

  (3)二面角和二面角的平面角

  ①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角

  ④求二面角的方法

  定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

  垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

  高二数学知识点总结 篇4

  一、直线与圆:

  1、直线的倾斜角的范围是

  在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向转到和直线重合时所转的最小正角记为,就叫做直线的倾斜角。当直线与轴重合或平行时,规定倾斜角为0;

  2、斜率:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.

  过两点(x1,y1),(x2,y2)的直线的斜率k=(y2-y1)/(x2-x1),另外切线的斜率用求导的方法。

  3、直线方程:⑴点斜式:直线过点斜率为,则直线方程为,

  ⑵斜截式:直线在轴上的截距为和斜率,则直线方程为

  4、直线与直线的位置关系:

  (1)平行A1/A2=B1/B2注意检验(2)垂直A1A2+B1B2=0

  5、点到直线的距离公式;

  两条平行线与的距离是

  6、圆的标准方程:.⑵圆的一般方程:

  注意能将标准方程化为一般方程

  7、过圆外一点作圆的切线,一定有两条,如果只求出了一条,那么另外一条就是与轴垂直的直线.

  8、直线与圆的位置关系,通常转化为圆心距与半径的关系,或者利用垂径定理,构造直角三角形解决弦长问题.①相离②相切③相交

  9、解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形)直线与圆相交所得弦长

  二、圆锥曲线方程:

  1、椭圆:①方程(a>b>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

  2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

  3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

  4、直线被圆锥曲线截得的弦长公式:

  5、注意解析几何与向量结合问题:1、,.(1);(2).

  2、数量积的定义:已知两个非零向量a和b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积,记作a·b,即

  3、模的计算:|a|=.算模可以先算向量的平方

  4、向量的运算过程中完全平方公式等照样适用:

  三、直线、平面、简单几何体:

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半.(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

  3、表(侧)面积与体积公式:

  ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

  ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

  ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:①表面积:S=;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

  ⑵直线与平面所成的角:直线与射影所成的`角

  高二数学知识点总结 篇5

  一、导数的应用

  1、用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

  学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2、生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益最大问题

  3)面积、体积最(大)问题

  二、推理与证明

  1、归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

  通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

  四、坐标平面上的直线

  1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。

  2、基本要求:掌握求直线的方法,熟练转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。熟练判断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直线的交点坐标及两直线的夹角大小。

  3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地研究点与直线、直线与直线的位置关系。根据两个独立条件求出直线方程。熟练运用待定系数法。

  五、圆锥曲线

  1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。

  2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法判断定点是否在曲线,上及求曲线的交点。掌握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。

  3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,掌握代数研究几何的方法,掌握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。

  高二数学知识点总结 篇6

  一、不等关系及不等式知识点

  1.不等式的定义

  在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

  2.比较两个实数的大小

  两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

  3.不等式的性质

  (1)对称性:ab

  (2)传递性:ab,ba

  (3)可加性:aa+cb+c,ab,ca+c

  (4)可乘性:ab,cacb0,c0bd;

  (5)可乘方:a0bn(nN,n

  (6)可开方:a0

  (nN,n2).

  注意:

  一个技巧

  作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

  一种方法

  待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

  高二数学知识点总结 篇7

  1、学会三视图的分析:

  2、斜二测画法应注意的地方:

  (1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴ox、oy、使∠xoy=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。

  3、表(侧)面积与体积公式:

  ⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

  ⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

  ⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

  ⑷球体:①表面积:S=;②体积:V=

  4、位置关系的证明(主要方法):注意立体几何证明的书写

  (1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

  (2)平面与平面平行:①线面平行面面平行。

  (3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

  5、求角:(步骤———————Ⅰ、找或作角;Ⅱ、求角)

  ⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

  ⑵直线与平面所成的角:直线与射影所成的角

  高二数学知识点总结 篇8

  第一章:解三角形。掌握正弦余弦公式及其变式和推论和三角面积公式即可。

  第二章:数列。考试必考。等差等比数列的通项公式、前n项和及一些性质。这一章属于学起来很容易,但做题却不会做的类型。考试题中,一般都是要求通项公式、前n项和,所以拿到题目之后要带有目的的去推导。

  第三章:不等式。这一章一般用线性规划的形式来考察。这种题一般是和实际问题联系的,所以要会读题,从题中找不等式,画出线性规划图。然后再根据实际问题的限制要求求最值。

  选修中的简单逻辑用语、圆锥曲线和导数:逻辑用语只要弄懂充分条件和必要条件到底指的是前者还是后者,四种命题的真假性关系,逻辑连接词,及否命题和命题的否定的区别,考试一般会用选择题考这一知识点,难度不大;圆锥曲线一般作为考试的压轴题出现。而且有多问,一般第一问较简单,是求曲线方程,只要记住圆锥曲线的表达式难度就不大。后面两到三问难打一般会很大,而且较费时间。所以不建议做。

  这一章属于学的比较难,考试也比较难,但是考试要求不高的内容;导数,导数公式、运算法则、用导数求极值和最值的方法。一般会考察用导数求最值,会用导数公式就难度不大。

  高二数学知识点总结 篇9

  (1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;

  (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;

  (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;

  (4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;

  (5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率;

  (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。

  高二数学知识点总结 篇10

  一、集合、简易逻辑(14课时,8个)

  1、集合;

  2、子集;

  3、补集;

  4、交集;

  5、并集;

  6、逻辑连结词;

  7、四种命题;

  8、充要条件。

  二、函数(30课时,12个)

  1、映射;

  2、函数;

  3、函数的单调性;

  4、反函数;

  5、互为反函数的函数图象间的关系;

  6、指数概念的扩充;

  7、有理指数幂的运算;

  8、指数函数;

  9、对数;

  10、对数的运算性质;

  11、对数函数。

  12、函数的应用举例。

  三、数列(12课时,5个)

  1、数列;

  2、等差数列及其通项公式;

  3、等差数列前n项和公式;

  4、等比数列及其通顶公式;

  5、等比数列前n项和公式。

  四、三角函数(46课时,17个)

  1、角的概念的推广;

  2、弧度制;

  3、任意角的三角函数;

  4、单位圆中的三角函数线;

  5、同角三角函数的基本关系式;

  6、正弦、余弦的诱导公式;

  7、两角和与差的正弦、余弦、正切;

  8、二倍角的正弦、余弦、正切;

  9、正弦函数、余弦函数的图象和性质;

  10、周期函数;

  11、函数的奇偶性;

  12、函数的图象;

  13、正切函数的图象和性质;

  14、已知三角函数值求角;

  15、正弦定理;

  16、余弦定理;

  17、斜三角形解法举例。

  五、平面向量(12课时,8个)

  1、向量;

  2、向量的加法与减法;

  3、实数与向量的积;

  4、平面向量的坐标表示;

  5、线段的定比分点;

  6、平面向量的数量积;

  7、平面两点间的距离;

  8、平移。

  六、不等式(22课时,5个)

  1、不等式;

  2、不等式的基本性质;

  3、不等式的证明;

  4、不等式的解法;

  5、含绝对值的不等式。

  七、直线和圆的方程(22课时,12个)

  1、直线的倾斜角和斜率;

  2、直线方程的点斜式和两点式;

  3、直线方程的一般式;

  4、两条直线平行与垂直的条件;

  5、两条直线的交角;

  6、点到直线的距离;

  7、用二元一次不等式表示平面区域;

  8、简单线性规划问题;

  9、曲线与方程的概念;

  10、由已知条件列出曲线方程;

  11、圆的标准方程和一般方程;

  12、圆的参数方程。

  高二数学知识点总结 篇11

  (1)总体和样本:

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本.其中个体的个数称为样本容量.

  (2)简单随机抽样,也叫纯随机抽样。

  就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

  高二数学知识点总结 篇12

  考点一:向量的概念、向量的基本定理

  【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。

  注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。

  考点二:向量的运算

  【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。

  【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。

  考点三:定比分点

  【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。

  【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。

  考点四:向量与三角函数的综合问题

  【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。

  【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。

  考点五:平面向量与函数问题的交汇

  【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。

  【命题规律】命题多以解答题为主,属中档题。

  考点六:平面向量在平面几何中的应用

  【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐标表示后,使向量之间的运算代数化,这样就可以将“形”和“数”紧密地结合在一起.因此,许多平面几何问题中较难解决的问题,都可以转化为大家熟悉的代数运算的论证.也就是把平面几何图形放到适当的坐标系中,赋予几何图形有关点与平面向量具体的坐标,这样将有关平面几何问题转化为相应的代数运算和向量运算,从而使问题得到解决.

  【命题规律】命题多以解答题为主,属中等偏难的试题。

  高二数学知识点总结 篇13

  平面向量

  戴氏航天学校老师总结加法与减法的代数运算:

  (1)若a=(x1,y1 ),b=(x2,y2 )则a b=(x1+x2,y1+y2 ).

  向量加法与减法的几何表示:平行四边形法则、三角形法则。

  戴氏航天学校老师总结向量加法有如下规律:+= +(交换律); +( +c)=( + )+c (结合律);

  两个向量共线的充要条件:

  (1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b= .

  (2)若=(),b=()则‖b .

  平面向量基本定理:

  若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只 有一对实数,使得= e1+ e2

  高二数学知识点总结 篇14

  一、理解集合中的有关概念

  (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。

  (2)集合与元素的关系用符号=表示。

  (3)常用数集的符号表示:自然数集 ;正整数集 ;整数集 ;有理数集 、实数集 。

  (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。

  (5)空集是指不含任何元素的集合。

  空集是任何集合的子集,是任何非空集合的真子集。

  二、函数

  一、映射与函数:

  (1)映射的概念: (2)一一映射:(3)函数的概念:

  二、函数的三要素:

  相同函数的判断方法:①对应法则 ;②定义域 (两点必须同时具备)

  (1)函数解析式的求法:

  ①定义法(拼凑):②换元法:③待定系数法:④赋值法:

  (2)函数定义域的求法:

  ①含参问题的定义域要分类讨论;

  ②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。

  (3)函数值域的求法:

  ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式;

  ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ;

  ④换元法:通过变量代换转化为能求值域的函数,化归思想;

  ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;

  ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域;

  ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

  ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

  三、函数的性质

  函数的单调性、奇偶性、周期性

  单调性:定义:注意定义是相对与某个具体的区间而言。

  判定方法有:定义法(作差比较和作商比较)

  导数法(适用于多项式函数)

  复合函数法和图像法。

  应用:比较大小,证明不等式,解不等式。

  奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;

  f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

  判别方法:定义法, 图像法 ,复合函数法

  应用:把函数值进行转化求解。

  周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

  其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.

  应用:求函数值和某个区间上的函数解析式。

  四、图形变换

  函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。

  常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)

  平移变换 y=f(x)→y=f(x+a),y=f(x)+b

  注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2x)经过 平移得到函数y=f(2x+4)的图象。

  (ⅱ)会结合向量的平移,理解按照向量 (m,n)平移的意义。

  对称变换 y=f(x)→y=f(-x),关于y轴对称

  y=f(x)→y=-f(x) ,关于x轴对称

  y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称

  y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)

  伸缩变换:y=f(x)→y=f(ωx),

  y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。

  一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;

  高二数学知识点总结 篇15

  一、 导数的应用

  1.用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2.生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益最大问题

  3)面积、体积最(大)问题

  二、推理与证明

  1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

  2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

  三、不等式

  对于含有参数的一元二次不等式解的讨论

  1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

  2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

【高二数学知识点总结】相关文章:

高二化学知识点总结01-14

高二物理知识点总结08-30

数学必修五知识点总结02-17

高考数学知识点总结09-03

高二生物知识点总结12-12

小学数学必备知识点总结整理02-14

高二地理知识点总结07-22

高二数学下学期总结大全02-18

初中实用数学知识点讲解总结02-09

高一数学知识点总结07-20

行政前台简洁工作总结 教学科研工作总结