椭圆知识点总结

2024-03-12 总结

  在平平淡淡的学习中,很多人都经常追着老师们要知识点吧,知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。掌握知识点有助于大家更好的学习。下面是小编收集整理的椭圆知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

  椭圆知识点总结 1

  ⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件。

  ⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用。

  ⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用。

  ⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用。

  ⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用。

  ⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用。

  ⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系。

  ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用。

  ⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用。

  ⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布。

  ⑿导数:导数的概念、求导、导数的应用。

  ⒀复数:复数的概念与运算。

  椭圆知识点总结 2

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角

  圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0

  抛物线标准方程y2=2pxy2=—2pxx2=2pyx2=—2py

  直棱柱侧面积S=c*h斜棱柱侧面积S=c*h

  正棱锥侧面积S=1/2c*h正棱台侧面积S=1/2(c+c)h

  圆台侧面积S=1/2(c+c)l=pi(R+r)l球的表面积S=4pi*r2

  圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l

  弧长公式l=a*ra是圆心角的弧度数r>0扇形面积公式s=1/2*l*r

  锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h

  斜棱柱体积V=SL注:其中,S是直截面面积,L是侧棱长

  柱体体积公式V=s*h圆柱体V=p*r2h

  乘法与因式分a2—b2=(a+b)(a—b)a3+b3=(a+b)(a2—ab+b2)a3—b3=(a—b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b||a—b|≤|a|+|b||a|≤b<=>—b≤a≤b

  |a—b|≥|a|—|b|—|a|≤a≤|a|

  一元二次方程的解—b+√(b2—4ac)/2a—b—√(b2—4ac)/2a

  根与系数的关系X1+X2=—b/aX1*X2=c/a注:韦达定理

  判别式

  b2—4ac=0注:方程有两个相等的实根

  b2—4ac>0注:方程有两个不等的实根

  b2—4ac<0注:方程没有实根,有共轭复数根

  椭圆知识点总结 3

  两角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A—B)=sinAcosB—sinBcosA

  cos(A+B)=cosAcosB—sinAsinBcos(A—B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1—tanAtanB)tan(A—B)=(tanA—tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB—1)/(ctgB+ctgA)ctg(A—B)=(ctgActgB+1)/(ctgB—ctgA)

  倍角公式

  tan2A=2tanA/(1—tan2A)ctg2A=(ctg2A—1)/2ctga

  cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a

  半角公式

  sin(A/2)=√((1—cosA)/2)sin(A/2)=—√((1—cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=—√((1+cosA)/2)

  tan(A/2)=√((1—cosA)/((1+cosA))tan(A/2)=—√((1—cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1—cosA))ctg(A/2)=—√((1+cosA)/((1—cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A—B)2cosAsinB=sin(A+B)—sin(A—B)

  2cosAcosB=cos(A+B)—sin(A—B)—2sinAsinB=cos(A+B)—cos(A—B)

  sinA+sinB=2sin((A+B)/2)cos((A—B)/2cosA+cosB=2cos((A+B)/2)sin((A—B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA—tanB=sin(A—B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB—ctgA+ctgBsin(A+B)/sinAsinB

  椭圆知识点总结 4

  椭圆知识点总结

  1.椭圆的概念

  在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.

  集合P={M||MF1|+|MF2|=2a}|F1F2|=2c,其中a>0,c>0,且a,c为常数:

  (1)若a>c,则集合P为椭圆;

  (2)若a=c,则集合P为线段;

  (3)若a

  2.椭圆的标准方程和几何性质

  一条规律

  椭圆焦点位置与x2,y2系数间的关系:

  两种方法

  (1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程.

  (2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程.

  三种技巧

  (1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.

  (2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0

  (3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:

  ①中心是否在原点;

  ②对称轴是否为坐标轴.

  椭圆方程的第一定义:

  ⑴①椭圆的标准方程:

  i. 中心在原点,焦点在x轴上:. ii. 中心在原点,焦点在轴上:.

  ②一般方程:.

  ③椭圆的标准参数方程:的参数方程为(一象限应是属于).

  ⑵①顶点:或.②轴:对称轴:x轴,轴;长轴长,短轴长.③焦点:或.④焦距:.⑤准线:或.⑥离心率:.⑦焦点半径:

  i. 设为椭圆上的一点,为左、右焦点,则

  由椭圆方程的第二定义可以推出.

  ii.设为椭圆上的一点,为上、下焦点,则

  由椭圆方程的第二定义可以推出.

  由椭圆第二定义可知:归结起来为“左加右减”.

  注意:椭圆参数方程的推导:得方程的轨迹为椭圆.

  ⑧通径:垂直于x轴且过焦点的弦叫做通经。坐标:和

  ⑶共离心率的椭圆系的方程:椭圆的离心率是,方程是大于0的参数,的离心率也是 我们称此方程为共离心率的椭圆系方程.

  (4)若P是椭圆:上的点.为焦点,若,则的面积为(用余弦定理与可得). 若是双曲线,则面积为.

  椭圆知识点总结 5

  知识点一椭圆的定义

  平面内到两个定点的距离之和等于常数(大于)的点的集合叫做椭圆。两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

  根据椭圆的定义可知:椭圆上的点M满足集合,且都为常数。

  当即时,集合P为椭圆。

  当即时,集合P为线段。

  当即时,集合P为空集。

  知识点二椭圆的标准方程

  (1)、焦点在轴上时,焦点为,焦点。

  (2)、焦点在轴上时,焦点为,焦点。

  知识点三椭圆方程的一般式

  这种形式的方程在课本中虽然没有明确给出,但在应用中有时比较方便,在此提供出来,作为参考:

  (其中为同号且不为零的常数,),它包含焦点在轴或轴上两种情形。方程可变形为。

  当时,椭圆的焦点在轴上;当时,椭圆的焦点在轴上。

  一般式,通常也设为,应特别注意均大于0,标准方程为。

  知识点四椭圆标准方程的求法

  1.定义法

  椭圆标准方程可由定义直接求得,这是求椭圆方程中很重要的方法之一,当问题是以实际问题给出时,一定要注意使实际问题有意义,因此要恰当地表示椭圆的范围。

  例1、在△ABC中,A、B、C所对三边分别为,且B(-1,0)C(1,0),求满足,且成等差数列时,顶点A的曲线方程。

  变式练习1.在△ABC中,点B(-6,0)、C(0,8),且成等差数列。

  (1)求证:顶点A在一个椭圆上运动。

  (2)指出这个椭圆的焦点坐标以及焦距。

  2.待定系数法

  首先确定标准方程的类型,并将其用有关参数表示出来,然后结合问题的条件,建立参数满足的等式,求得的值,再代入所设方程,即一定性,二定量,最后写方程。

  例2、已知椭圆的中心在原点,且经过点P(3,0),=3b,求椭圆的标准方程。

  例3、已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程。

  变式练习2.求适合下列条件的椭圆的方程;

  (1)两个焦点分别是(-3,0),(3,0)且经过点(5,0).

  (2)两焦点在坐标轴上,两焦点的中点为坐标原点,焦距为8,椭圆上一点到两焦点的距离之和为12.

  3.已知椭圆经过点和点,求椭圆的标准方程。

  4.求中心在原点,焦点在坐标轴上,且经过两点的椭圆标准方程。

  知识点五共焦点的椭圆方程的求解

  一般地,与椭圆共焦点的椭圆可设其方程为。

  例4、过点(-3,2)且与有相同焦点的椭圆的方程为()

  A.B.C.D.

  变式练习5.求经过点(2,-3)且椭圆有共同焦点的椭圆方程。

  知识点六与椭圆有关的轨迹问题的求解方法

  与椭圆有关的轨迹方程的求解是一种很重要的题型,教材中的例题就是利用代入求球轨。迹,其基本思路是设出轨迹上一点和已知曲线上一点,建立其关系,再代入。

  例5、已知圆,从这个圆上任意一点向轴作垂线段,点在上,并且,求点的轨迹。

  知识点七与弦的中点有关问题的求解方法

  直线与椭圆相交于两点、,称线段为椭圆的相交弦。与这个弦中点有点的轨迹问题是一类综合性很强的题目,因此解此类问题必须选择一个合理的方法,如“设而不求”法,其主要特点是巧代线段的斜率。其方程具体是:设直线与椭圆相交于两点,坐标分别为、,线段的中点为,则有

  ①式-②式,得,即

  ∴

  通常将此方程用于求弦中点的轨迹方程。

  例6.已知:椭圆,求:

  (1)以P(2,-1)为中点的弦所在直线的方程;

  (2)斜率为2的相交弦中点的轨迹方程;

  (3)过Q(8,2)的直线被椭圆截得的弦中点的轨迹方程。

  第二部分:巩固练习

  1.设为椭圆的焦点,P为椭圆上一点,则的周长是()

  A.16B.8C.D.无法确定

  2.椭圆的两个焦点之间的距离为()

  A.12B.4C.3D.2

  3.椭圆的一个焦点是(0,2),那么等于()

  A.-1B.1C.D.-

  4.已知椭圆的焦点是,P是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是()

  A.圆B.椭圆C.双曲线的一支D.抛物线

  5.已知椭圆的焦点在轴上,则的取值范围是__________.

  6.椭圆的焦点坐标是___________.

  7.椭圆的焦距为2,则正数的值____________.

  • 相关推荐

【椭圆知识点总结】相关文章:

《椭圆》数学教学反思02-12

椭圆标准方程教案06-22

椭圆的第二定义05-14

椭圆形教案04-17

椭圆形教案04-17

椭圆形教案04-17

椭圆形教案04-17

椭圆形教案04-17

椭圆形教案04-17

椭圆形教案04-17