在学习中,大家最熟悉的就是知识点吧?知识点也可以通俗的理解为重要的内容。还在苦恼没有知识点总结吗?下面是小编整理的数学初一知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
数学初一知识点总结 1
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的.这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
11.三角形外角的性质
(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;
(2)三角形的一个外角等于与它不相邻的两个内角和;
(3)三角形的一个外角大于与它不相邻的任一内角;
(4)三角形的外角和是360°。
12.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
13.多边形的内角:多边形相邻两边组成的角叫做它的内角。
14.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
15.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
16.多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
17.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
18.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
19.公式与性质
多边形内角和公式:n边形的内角和等于(n-2)·180°
20.多边形外角和定理:
(1)n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
21.多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有n(n-3)/2条对角线。
数学初一知识点总结 2
(一)有理数及其运算
一、有理数的基础知识
1、三个重要的定义:
(1)正数:像1、2.5、这样大于0的数叫做正数;
(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;
(3)0即不是正数也不是负数.
2、有理数的分类:
(1)按定义分类:
正整数整数0负整数有理数正分数分数负分数
(2)按性质符号分类:
正整数正有理数正分数有理数0
负整数负有理数负分数3、数轴
数轴有三要素:原点、正方向、单位长度.画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴.在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数.
4、相反数
如果两个数只有符号不同,那么其中一个数就叫另一个数的相反数.0的相反数是0,互为相反的两上数,在数轴上位于原点的两则,并且与原点的距离相等.
5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数,可用字母a表示如下:
(a0)aa0(a0)
a(a0)
(3)两个负数比较大小,绝对值大的反而小
二、有理数的运算
1、有理数的加法
(1)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;互为相反的两个数相加得0;一个数同0相加,仍得这个数.
(2)有理数加法的运算律:
加法的交换律:a+b=b+a;加法的结合律:(a+b)+c=a+(b+c)
用加法的运算律进行简便运算的基本思路是:先把互为相反数的数相加;把同分母的分数先相加;把符号相同的数先相加;把相加得整数的数先相加。
2、有理数的减法
(1)有理数减法法则:减去一个数等于加上这个数的相反数.
(2)有理数减法常见的错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯,不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数.
(3)有理数加减混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算;
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来.
4、有理数的除法
有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.
5、有理数的乘法
(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂.
(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数6、有理数的混合运算
(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序.比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算.
(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力.(2)整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.
n4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.
6.同类项:所含字母相同,并且相同字母的`指数也相同的单项式是同类项
7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列(3)一元一次方程
一、方程的有关概念
1、方程的概念:
(1)含有未知数的等式叫方程.
(2)在一个方程中,只含有一个未知数,并且未知数的指数是1,系数不为0,这样的方程叫一元一次方程.
2、等式的基本性质:
(1)等式两边同时加上(或减去)同一个代数式,所得结果仍是等式.若a=b,则a+c=b+c或ac=bc
(2)等式两边同时乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.若a=b,则ac=bc或
abcc
(3)对称性:等式的左右两边交换位置,结果仍是等式.若a=b,则b=a
(4)传递性:如果a=b,且b=c,那么a=c,这一性质叫等量代换
二、解方程
1、移项的有关概念:
把方程中的某一项改变符号后,从方程的一边移到另一边,叫做移项.这个法则是根据等式的性质1推出来的,是解方程的依据.要明白移项就是根据解方程变形的需要,把某一项从方程的左边移到右边或从右边移到左边,移动的项一定要变号.
2、解一元一次方程的步骤:(1)去分母等式的性质2
注意拿这个最小公倍数乘遍方程的每一项,切记不可漏乘某一项,分母是小数的,要先利用分数的性质,把分母化为整数,若分子是代数式,则必加括号.
(2)去括号去括号法则、乘法分配律
严格执行去括号的法则,若是数乘括号,切记不漏乘括号内的项,减号后去括号,括号内各项的符号一定要变号.
(3)移项等式的性质1
越过“=”的叫移项,属移项者必变号;未移项的项不变号,注意不遗漏,移项时把含未知数的项移在左边,已知数移在右边,书写时,先写不移动的项,把移动过来的项改变符号写在后面
(4)合并同类项合并同类项法则注意在合并时,仅将系数加到了一起,而字母及其指数均不改变
(5)系数化为1等式的性质2
两边同除以未知数的系数,记住未知数的系数永远是分母(除数),切不可分子、分母颠倒
(6)检验
二、列方程解应用题
1、列方程解应用题的一般步骤:
(1)将实际问题抽象成数学问题;
(2)分析问题中的已知量和未知量,找出等量关系;
(3)设未知数,列出方程;
(4)解方程;
(5)检验并作答.
2、一些实际问题中的规律和等量关系:
(1)日历上数字排列的规律是:横行每整行排列7个连续的数,竖列中,下面的数比上面的数大7.日历上的数字范围是在1到31之间,不能超出这个范围
(2)几种常用的面积公式:
长方形面积公式:S=ab,a为长,b为宽,S为面积;正方形面积公式:S=a2,a为边长,S为面积;
梯形面积公式:S=1(ab)h,a,b为上下底边长,h为梯形的高,S为梯形面积;22圆形的面积公式:Sr,r为圆的半径,S为圆的面积;三角形面积公式:S1ah,a为三角形的一边长,h为这一边上的高,S为三角形的2面积.
(3)几种常用的周长公式:长方形的周长:L=2(a+b),a,b为长方形的长和宽,L为周长.正方形的周长:L=4a,a为正方形的边长,L为周长.圆:L=2πr,r为半径,L为周长
(4)柱体的体积等于底面积乘以高,当体积不变时,底面越大,高度就越低.所以等积变化的相等关系一般为:变形前的体积=变形后的体积.
(5)打折销售这类题型的等量关系是:利润=售价成本.
(6)行程问题中关建的等量关系:路程=速度×时间,以及由此导出的其化关系.
(7)在一些复杂问题中,可以借助表格分析复杂问题中的数量关系,找出若干个较直接的等量关系,借此列出方程,列表可帮助我们分析各量之间的相互关系.
(8)在行程问题中,可将题目中的数字语言用“线段图”表达出来,分析问题中的数量关系,从而找出等量关系,列出方程
(9)关于储蓄中的一些概念:
本金:顾客存入银行的钱;利息:银行给顾客的酬金;本息:本金与利息的和;期数:存入的时间;利率:每个期数内利息与本金的比;利息=本金×利率×期数;本息=本金+利息.
(4)图形初步认识
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:三角形、四边形、圆等.主(正)视图从正面看
2、几何体的三视图侧(左、右)视图从左(右)边看
俯视图从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图
(2)能根据三视图描述基本几何体或实物原型
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型
4、点、线、面、体(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段
1、基本概念
图形直线射线线段端点个数表示法作法叙述无直线a直线AB(BA)作直线AB;作直线a一个射线AB作射线AB反向延长射线AB两个线段a线段AB(BA)作线段a;作线段AB;连接AB延长线段AB;反向延长线段BA延长叙述不能延长
2、直线的性质
经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线
3、画一条线段等于已知线段
(1)度量法
(2)用尺规作图法
4、线段的大小比较方法
(1)度量法
(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:
AMB
符号:若点M是线段AB的中点,则AM=BM=AB,AB=2AM=2BM.6、线段的性质
两点的所有连线中,线段最短.简单地:两点之间,线段最短
7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系
(1)点在直线上
(2)点在直线外
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类∠β范围锐角0<∠β<90°直角∠β=90°钝角90°
数学初一知识点总结 3
相反数
(1)相反数的概念:只有符号不同的两个数叫做互为相反数.
(2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.
(3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正.
(4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号.
2代数式求值
(1)代数式的:用数值代替代数式里的字母,计算后所得的.结果叫做代数式的值.
(2)代数式的求值:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
题型简单总结以下三种:
①已知条件不化简,所给代数式化简;
②已知条件化简,所给代数式不化简;
③已知条件和所给代数式都要化简.
3由三视图判断几何体
(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.
(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;
④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法
数学初一知识点总结 4
初一数学(上)应知应会的知识点代数初步知识
1.代数式:用运算符号“+-×÷”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用“”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.有理数1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);
(4)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|,.
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的.数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.
19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.整式分类为:.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一次方程
1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程去分母去括号移项合并同类项系数化为1(检验方程的解).10.列一元一次方程解应用题:
(1)读题分析法:多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.
11.列方程解应用题的常用公式:
(1)行程问题:距离=速度时间;(2)工程问题:工作量=工效工时;(3)比率问题:部分=全体比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题:售价=定价折,利润=售价-成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.
数学初一知识点总结 5
初一数学:七年级数学公式总结
乘法与因式分解
a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式
|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解根与系数的关系-b+√(b2-4ac)/2a-b-√(b2-4ac)/2aX1+X2=-b/aX1*X2=c/a注:韦达定理判别式
b2-4ac=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不等的实根b2-4ac半角公式
sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
其他常用数学公式
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的.一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c"*h
正棱锥侧面积S=1/2c*h"
正棱台侧面积S=1/2(c+c")h"
圆台侧面积S=1/2(c+c")l=pi(R+r)l
球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h
圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*ra是圆心角的弧度数r>0
扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H
圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S"L注:其中,S"是直截面面积,L是侧棱
长柱体体积公式V=s*h
圆柱体V=pi*r2h
数学初一知识点总结 6
1、 我们把实物中抽象的各种图形统称为几何图形(geometric figure).
2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solidfigure).
3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(planefigure).
4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图(net).
5、几何体简称为体(solid).
6、包围着体的是面(surface),面有平的面和曲的面两种.
7、面与面相交的地方形成线(line),线和线相交的地方是点(point).
8、点动成面,面动成线,线动成体.
9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线(公理).
10、当两条不同的直线有一个公共点时,我们就称这两条直线相交(intersection),这个公共点叫做它们的交点(pointof intersection).
11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点(center).
12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.(公理)
13、连接两点间的线段的长度,叫做这两点的距离(distance).
14、角∠(angle)也是一种基本的几何图形.
15、把一个周角360等分,每一份就是1度(degree)的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的.角60等分,每一份叫做1秒的角,记作1″.
16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线(angular bisector).
17、如果两个角的和等于90°(直角),就是说这两个叫互为余角(complementaryangle),即其中的每一个角是另一个角的余角.
18、如果两个角的和等于180°(平角),就说这两个角互为补角(supplementaryangle),即其中一个角是另一个角的补角
19、等角的补角相等,等角的余角相等.
数学初一知识点总结 7
知识点1:正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。
知识点2:有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种:
注:有限小数和无限循环小数都可看作分数。
知识点3:数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。
知识点4:绝对值的概念:
(1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|;
(2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的`相反数;零的绝对值是零。
注:任何一个数的绝对值均大于或等于0(即非负数).
知识点5:相反数的概念:
(1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数;
(2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。
知识点6:有理数大小的比较:
有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。
数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。
用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。
知识点7:有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
知识点8:有理数加法运算律:
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
知识点9:有理数减法法则:减去一个数,等于加上这个数的相反数。
知识点10:有理数加减混合运算:根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。
数学初一知识点总结 8
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
等式的`性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1. 去分母(方程两边同乘各分母的最小公倍数)
2. 去括号(按去括号法则和分配律)
3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4. 合并(把方程化成ax = b (a≠0)形式)
5. 系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=a(b).
六、用方程思想解决实际问题的一般步骤
1. 审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2. 设:设未知数(可分直接设法,间接设法)
3. 列:根据题意列方程.
4. 解:解出所列方程.
5. 检:检验所求的解是否符合题意.
6. 答:写出答案(有单位要注明答案)
数学初一知识点总结 9
知识点、概念总结
1.不等式:用符号"<",">","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号">","<"连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x) (3)如果不等式F(x)0,那么不等式F(x) 7.不等式的性质: (1)如果x>y,那么yy;(对称性) (2)如果x>y,y>z;那么x>z;(传递性) (3)如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z (6)如果x>y,m>n,那么x+m>y+n(充分不必要条件) (7)如果x>y>0,m>n>0,那么xm>yn (8)如果x>y>0,那么x的n次幂>y的n次幂(n为正数) 8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 9.解一元一次不等式的一般顺序: (1)去分母(运用不等式性质2、3) (2)去括号 (3)移项(运用不等式性质1) (4)合并同类项 (5)将未知数的系数化为1(运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 10.一元一次不等式与一次函数的'综合运用: 一般先求出函数表达式,再化简不等式求解。 11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 12.解一元一次不等式组的步骤: (1)求出每个不等式的解集; (2)求出每个不等式的解集的公共部分;(一般利用数轴) (3)用代数符号语言来表示公共部分。(也可以说成是下结论) 13.解不等式的诀窍 (1)大于大于取大的(大大大); 例如:X>-1,X>2,不等式组的解集是X>2 (2)小于小于取小的(小小小); 例如:X<-4,X<-6,不等式组的解集是X<-6 (3)大于小于交叉取中间; (4)无公共部分分开无解了; 14.解不等式组的口诀 (1)同大取大 例如,x>2,x>3,不等式组的解集是X>3 (2)同小取小 例如,x<2,x<3,不等式组的解集是X<2 (3)大小小大中间找 例如,x<2,x>1,不等式组的解集是1 (4)大大小小不用找 例如,x<2,x>3,不等式组无解 15.应用不等式组解决实际问题的步骤 (1)审清题意 (2)设未知数,根据所设未知数列出不等式组 (3)解不等式组 (4)由不等式组的解确立实际问题的解 (5)作答 16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。 一、知识梳理 :正、负数的概念:我们把像3、2、+0.5、0.03%这样的数叫做正数,它们都是比0大的数;像-3、-2、-0.5、-0.03%这样数叫做负数。它们都是比0小的数。0既不是正数也不是负数。我们可以用正数与负数表示具有相反意义的量。 :有理数的概念和分类:整数和分数统称有理数。有理数的分类主要有两种: 注:有限小数和无限循环小数都可看作分数。 :数轴的概念:像下面这样规定了原点、正方向和单位长度的直线叫做数轴。:绝对值的概念: (1)几何意义:数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|; (2)代数意义:一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;零的绝对值是零。 注:任何一个数的绝对值均大于或等于0(即非负数). :相反数的概念: (1)几何意义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数; (2)代数意义:符号不同但绝对值相等的两个数叫做互为相反数。0的相反数是0。 :有理数大小的比较: 有理数大小比较的基本法则:正数都大于零,负数都小于零,正数大于负数。 数轴上有理数大小的比较:在数轴上表示的两个数,右边的数总比左边的大。 用绝对值进行有理数大小的比较:两个正数,绝对值大的正数大;两个负数,绝对值大的负数反而小。 :有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.:有理数加法运算律: 加法交换律:两个数相加,交换加数的位置,和不变。 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 :有理数减法法则:减去一个数,等于加上这个数的相反数。 :有理数加减混合运算:根据有理数减法的法则,一切加法和减法的.运算,都可以统一成加法运算,然后省略括号和加号,并运用加法法则、加法运算律进行计算。 (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ①整数②分数 (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a0 a是正数;a0 a是负数; a≥0 a是正数或0 a是非负数;a≤ 0 ? a是负数或0 a是非正数. 有理数比大小: (1)正数的绝对值越大,这个数越大; (2)正数永远比0大,负数永远比0小; (3)正数大于一切负数; (4)两个负数比大小,绝对值大的反而小; (5)数轴上的两个数,右边的数总比左边的数大; (6)大数-小数0,小数-大数0. 1、相反数 只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。 注意: ⑴相反数是成对出现的; ⑵相反数只有符号不同,若一个为正,则另一个为负; ⑶0的相反数是它本身;相反数为本身的数是0。 2、相反数的性质与判定 ⑴、何数都有相反数,且只有一个; ⑵0的.相反数是0; ⑶互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0 3、相反数的几何意义 在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,并且与原点的距离相等。0的相反数对应原点;原点表示0的相反数。说明:在数轴上,表示互为相反数的两个点关于原点对称。 4、相反数的求法 ⑴求一个数的相反数,只要在它的前面添上负号“—”即可求得(如:5的相反数是—5); ⑵求多个数的和或差的相反数时,要用括号括起来再添“—”,然后化简(如;5a+b的相反数是—(5a+b)。化简得—5a—b); ⑶求前面带“—”的单个数,也应先用括号括起来再添“—”,然后化简(如:—5的相反数是—(—5),化简得5) 5、相反数的表示方法 ⑴一般地,数a的相反数是—a,其中a是任意有理数,可以是正数、负数或0。 当a>0时,—a<0(正数的相反数是负数) 当a<0时,—a>0(负数的相反数是正数) 当a=0时,—a=0,(0的相反数是0) 有理数及其运算板块: 1、整数包含正整数和负整数,分数包含正分数和负分数。正整数和正分数通称为正数,负整数和负分数通称为负数。 2、正整数、0、负整数、正分数、负分数这样的数称为有理数。 3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。 整式板块: 1、单项式:由数与字母的乘积组成的式子叫做单项式。 2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 3、整式:单项式与多项式统称整式。 4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。 一元一次方程: 1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。 2、移项:把等式一边的某项变号后移到另一边,叫做移项等。 其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。 大家平时要注意整理与积累。配合多加练习。一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。一个个知识点去通过。我相信只要做个有心人,就可以在数学考试中取得高分 三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ—sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ—cosα·sinβ·sinγ—sinα·cosβ·sinγ—sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ—tanα·tanβ·tanγ)/(1—tanα·tanβ—tanβ·tanγ—tanγ·tanα) 数轴的三要素: 原点、正方向、单位长度(三者缺一不可)。 任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数) 如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0) 在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。 数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。 绝对值的定义: 一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。 正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。 绝对值的`性质: 除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|0 比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小; ③根据两个负数,绝对值大的反而小做出正确的判断。 绝对值的性质: ①对任何有理数a,都有|a|0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b,则a=b ④对任何有理数a,都有|a|=|—a| 有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。 ②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。 ③一个数同0相加,仍得这个数。 加法的交换律、结合律在有理数运算中同样适用。 灵活运用运算律,使用运算简化,通常有下列规律: ①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加; ④几个数相加能得到整数,可以先相加。 有理数减法法则: 减去一个数,等于加上这个数的相反数。 有理数减法运算时注意两变: ①改变运算符号; ②改变减数的性质符号(变为相反数) 有理数减法运算时注意一个不变:被减数与减数的位置不能变换,也就是说,减法没有交换律。 有理数的加减法混合运算的步骤: ①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。 (注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。) 有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。 ②任何数与0相乘,积仍为0。 如果两个数互为倒数,则它们的乘积为1。 乘法的交换律、结合律、分配律在有理数运算中同样适用。 有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。 乘积为1的两个有理数互为倒数。注意: ①零没有倒数 ②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。 ③正数的倒数是正数,负数的倒数是负数。 有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。 ②0除以任何非0的数都得0.0不可作为除数,否则无意义。 有理数的乘方 注意: ①一个数可以看作是本身的一次方,如5=51; ②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。 乘方的运算性质: ①正数的任何次幂都是正数; ②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数; ④1的任何次幂都得1,0的任何次幂都得0; ⑤—1的偶次幂得1;—1的奇次幂得—1; ⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。 有理数混合运算法则:①先算乘方,再算乘除,最后算加减。 ②如果有括号,先算括号里面的。 第五章《相交线与平行线》 一、知识点 5.1相交线5.1.1相交线 有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。 5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 注意:⑴垂线是一条直线。 ⑵具有垂直关系的两条直线所成的4个角都是90。 ⑶垂直是相交的特殊情况。 ⑷垂直的记法:a⊥b,AB⊥CD。 画已知直线的垂线有无数条。 过一点有且只有一条直线与已知直线垂直。 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 5.2平行线5.2.1平行线 在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。在同一平面内两条直线的关系只有两种:相交或平行。 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2直线平行的条件 两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。 两条直线被第三条直线所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法: 方法1两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。 方法2两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。 方法3两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。 5.3平行线的性质 平行线具有性质: 性质1两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质2两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。 性质3两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4平移 ⑴把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。 ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。 图形的这种移动,叫做平移变换,简称平移。 第六章《平面直角坐标系》 一、知识点 6.1平面直角坐标系 6.1.1有序数对 有顺序的两个数a与b组成的数对,叫做有序数对。 6.1.2平面直角坐标系 平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。 平面上的任意一点都可以用一个有序数对来表示。 建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。 6.2坐标方法的简单应用 6.2.1用坐标表示地理位置 利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下: ⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向; ⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; ⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2用坐标表示平移 在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。 在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。 第七章《三角形》 一、知识点 7.1与三角形有关的线段 7.1.1三角形的边 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。 顶点是A、B、C的三角形,记作“△ABC”,读作“三角形ABC”。三角形两边的和大于第三边。7.1.2三角形的高、中线和角平分线7.1.3三角形的稳定性 三角形具有稳定性。7.2与三角形有关的角7.2.1三角形的内角 三角形的内角和等于180。 7.2.2三角形的外角 三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。 7.3多边形及其内角和7.3.1多边形 在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n边形的.对角线公式: n(n-3)2各个角都相等,各条边都相等的多边形叫做正多边形。 7.3.2多边形的内角和 n边形的内角和公式:180(n-2)多边形的外角和等于360。 7.4课题学习镶嵌 1三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。☆2判断三条线段能否组成三角形。 ①a+b>c(ab为最短的两条线段)②a-b a-b 进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。 第九章《不等式与不等式组》 一、知识点 9.1不等式 9.1.1不等式及其解集 用“<”或“>”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。 能使不等式成立的未知数的取值范围,叫做不等式解的集合,简称解集。含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。 9.1.2不等式的性质 不等式有以下性质: 不等式的性质1不等式两边加(或减)同一个数(或式子),不等号的方向不变。不等式的性质2不等式两边乘(或除以)同一个正数,不等号的方向不变。不等式的性质3不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2实际问题与一元一次不等式 解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。 9.3一元一次不等式组 把两个不等式合起来,就组成了一个一元一次不等式组。 几个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。 对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。9.4课题学习利用不等关系分析比赛 第一章:丰富的图形世界 1、几何图形 从实物中抽象出来的各种图形,包括立体图形和平面图形。 2、点、线、面、体 ①几何图形的组成 点:线和线相交的地方是点,它是几何图形中最基本的图形。 线:面和面相交的地方是线,分为直线和曲线。 面:包围着体的是面,分为平面和曲面。 体:几何体也简称体。 ②点动成线,线动成面,面动成体。 3、生活中的立体图形 生活中的立体图形(按名称分) 柱: ①圆柱 ②棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、…… 锥: ①圆锥 ②棱锥 球 4、棱柱及其有关概念: 棱:在棱柱中,任何相邻两个面的交线,都叫做棱。 侧棱:相邻两个侧面的交线叫做侧棱。 n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。 5、正方体的平面展开图: 11种(经常考:考试形式:展开的图形能否围成正方体;正方体对面图案) 6、截一个正方体: 用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。 7、三视图: 物体的三视图指主视图、俯视图、左视图。 主视图:从正面看到的图,叫做主视图。 左视图:从左面看到的图,叫做左视图。 俯视图:从上面看到的图,叫做俯视图。 第二章:有理数及其运算 1、有理数的分类 ①正有理数 有理数{ ②零 ③负有理数 有理数{ ①整数 ②分数 2、相反数: 只有符号不同的两个数叫做互为相反数,零的相反数是零 3、数轴: 规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。 4、倒数: 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和—1。零没有倒数。 5、绝对值: 在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值,(|a|≥0)。 若|a|=a,则a≥0; 若|a|=-a,则a≤0。 正数的绝对值是它本身; 负数的绝对值是它的相反数; 0的绝对值是0。 互为相反数的两个数的绝对值相等。 6、有理数比较大小: 正数大于0,负数小于0,正数大于负数; 数轴上的两个点所表示的数,右边的总比左边的大; 两个负数,绝对值大的反而小。 7、有理数的运算: ①五种运算:加、减、乘、除、乘方 多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个数为零,积就为零。 有理数加法法则: 同号两数相加,取相同的符号,并把绝对值相加。 异号两数相加,绝对值值相等时和为0; 绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 一个数同0相加,仍得这个数。 互为相反数的两个数相加和为0。 有理数减法法则: 减去一个数,等于加上这个数的相反数! 有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数与0相乘,积仍为0。 有理数除法法则: 两个有理数相除,同号得正,异号得负,并把绝对值相除。 0除以任何非0的数都得0。 注意:0不能作除数。 有理数的乘方:求n个相同因数a的积的运算叫做乘方。 正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数。 ②有理数的运算顺序 先算乘方,再算乘除,最后算加减,如果有括号,先算括号里面的。 ③运算律(5种) 加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 8、科学记数法 一般地,一个大于10的数可以表示成a× 10n的形式,其中1≦n<10,n是正整数,这种记数方法叫做科学记数法。(n=整数位数—1) 第三章:整式及其加减 1、代数式 用运算符号(加、减、乘、除、乘方、开方等)把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。 注意: ①代数式中除了含有数、字母和运算符号外,还可以有括号; ②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。 代数式的书写格式: ①代数式中出现乘号,通常省略不写,如vt; ②数字与字母相乘时,数字应写在字母前面,如4a; ③带分数与字母相乘时,应先把带分数化成假分数。 ④数字与数字相乘,一般仍用“×”号,即“×”号不省略; ⑤在代数式中出现除法运算时,一般写成分数的形式;注意:分数线具有“÷”号和括号的双重作用。 ⑥在表示和(或)差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。 2、整式:单项式和多项式统称为整式。 ①单项式: 都是数字和字母乘积的形式的代数式叫做单项式。单项式中,所有字母的指数之和叫做这个单项式的次数;数字因数叫做这个单项式的系数。 注意: 单独的一个数或一个字母也是单项式; 单独一个非零数的次数是0; 当单项式的系数为1或—1时,这个“1”应省略不写,如—ab的系数是—1,a3b的系数是1。 ②多项式: 几个单项式的和叫做多项式。多项式中,每个单项式叫做多项式的项;次数最高的项的次数叫做多项式的次数。 ③同类项: 所含字母相同,并且相同字母的指数也相同的项叫做同类项。 注意: ①同类项有两个条件:a。所含字母相同;b。相同字母的指数也相同。 ②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。 4、合并同类项法则: 把同类项的系数相加,字母和字母的指数不变。 5、去括号法则 ①根据去括号法则去括号: 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项都改变符号。 ②根据分配律去括号: 括号前面是“+”号看成+1,括号前面是“—”号看成—1,根据乘法的`分配律用+1或—1去乘括号里的每一项以达到去括号的目的。 6、添括号法则 添“+”号和括号,添到括号里的各项符号都不改变;添“—”号和括号,添到括号里的各项符号都要改变。 7、整式的运算: 整式的加减法:(1)去括号;(2)合并同类项。 第四章基本平面图形 1、线段、射线、直线 名称 表示方法 端点 长度 直线 直线AB(或BA) 直线l 无端点 无法度量 射线 射线OM 1个 无法度量 线段 线段AB(或BA) 线段l 2个 可度量长度 2、直线的性质 ①直线公理:经过两个点有且只有一条直线。(两点确定一条直线。) ②过一点的直线有无数条。 ③直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。 3、线段的性质 ①线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。) ②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。 ③线段的大小关系和它们的长度的大小关系是一致的。 4、线段的中点: 点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。 5、角: 有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。 6、角的表示 角的表示方法有以下四种: ①用数字表示单独的角,如∠1,∠2,∠3等。 ②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。 ③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。 ④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。 注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。 7、角的度量 角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。 把1°的角60等分,每一份叫做1分的角,1分记作“1’”。 把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。 1°=60’,1’=60” 8、角的平分线 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 9、角的性质 ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。 ②角的大小可以度量,可以比较,角可以参与运算。 10、平角和周角: 一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。 终边继续旋转,当它又和始边重合时,所形成的角叫做周角。 11、多边形: 由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。 连接不相邻两个顶点的线段叫做多边形的对角线。 从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n—3)条对角线,把这个n边形分割成(n—2)个三角形。 12、圆: 平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。 固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。 圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”; 由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。 顶点在圆心的角叫做圆心角。 第五章一元一次方程 1、方程 含有未知数的等式叫做方程。 2、方程的解 能使方程左右两边相等的未知数的值叫做方程的解。 3、等式的性质 ①等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。 ②等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。 4、一元一次方程 只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。 5、移项: 把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项。 6、解一元一次方程的一般步骤: ①去分母 ②去括号 ③移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。) ④合并同类项 ⑤将未知数的系数化为1 第六章数据的收集与整理 1、普查与抽样调查 为了特定目的对全部考察对象进行的全面调查,叫做普查。 其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。 从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。 2、扇形统计图 扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1) 圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°) 3、频数直方图 频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。 4、各种统计图的特点 条形统计图:能清楚地表示出每个项目的具体数目。 折线统计图:能清楚地反映事物的变化情况。 扇形统计图:能清楚地表示出各部分在总体中所占的百分比。 有理数: (1)凡能写成形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; (2)有理数的'分类:①② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数0和正整数;a>0a是正数;a<0a是负数; a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数. 1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b) 2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。 3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。 4、特殊位置的点的坐标的特点: (1)x轴上的'点的纵坐标为零;y轴上的点的横坐标为零。 (2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。 (3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。 5、点到轴及原点的距离 点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号; 在平面直角坐标系中对称点的特点: 1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。 2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。 3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。 各象限内和坐标轴上的点和坐标的规律: 第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-) x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-) x轴上的点纵坐标为0,y轴横坐标为0。 1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。同类项与系数无关,与字母排列的顺序也无关。 2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.整式的加减:有括号的先算括号里面的,然后再合并同类项。 4.幂的运算: 5.整式的乘法: 1)单项式与单项式相乘法则:把它们的系数、同底数幂分别相乘,其余只在一个单项式里含有的`字母连同它的指数作为积的因式。 2)单项式与多项式相乘法则:用单项式去乘多项式的每一项,再把所得的积相加。 3)多项式与多项式相乘法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 6.整式的除法 1)单项式除以单项式:把系数与同底数幂分别相除作为上的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 2)多项式除以单项式:把这个多项式的每一项除以单项式,再把所得的商相加。 四、因式分解——把一个多项式化成几个整式的积的形式 1)提公因式法:(公因式——多项式各项都含有的公共因式)吧公因式提到括号外面,将多项式写成因式乘积的形式。取各项系数的最大公约数作为因式的系数,取相同字母最低次幂的积。公因式可以是单项式,也可以是多项式。 2)公式法:A.平方差公式;B.完全平方公式 1、单项式的定义: 由数或字母的积组成的式子叫做单项式。 说明:单独的一个数或者单独的一个字母也是单项式. 2、单项式的系数: 单项式中的数字因数叫这个单项式的系数. 说明:⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32 系数是1;4.8a的系数是4.8; 3 ⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号, ?4xy2的系数是4;2x2y的系数是4; ⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的 系数是-1;ab的系数是1; ⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2. 3、单项式的次数: 一个单项式中,所有字母的指数的和叫做这个单项式的次数. 说明:⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1 的情况。如单项式2xyz的.次数是字母z,y,x的指数和,即4+3+1=8, 而不是7次,应注意字母z的指数是1而不是0; ⑵单项式的指数只和字母的指数有关,与系数的指数无关。 ⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数; 4、在含有字母的式子中如果出现乘号,通常将乘号写作“* ”或者省略不写。 5、在书写单项式时,数字因数写在字母因数的前面,数字因数是带分数时转化成假分数.。 棱柱的基础知识 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个多边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱用表示底面各顶点的字母来表示。 棱柱的底面:棱柱中两个互相平行的面,叫做棱柱的底面。 棱柱的侧面:棱柱中除两个底面以外的其余各个面都叫做棱柱的侧面。 棱柱的侧棱:棱柱中两个侧面的公共边叫做棱柱的侧棱。 棱柱的形成方式 棱柱是由一个由直线构成的平面沿着不平行于此平面的直线整体平移而形成的。 棱柱的顶点 在棱柱中,侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的对角线:棱柱中不在表面同一平面上的两个顶点的连线叫做棱柱的对角线。 棱柱的高:棱柱的两个底面的距离叫做棱柱的高。 棱柱的.对角面:棱柱中过不相邻的两条侧棱的截面叫做棱柱的对角面。 棱柱的分类 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱,画斜棱柱时,一般将侧棱画成不与底面垂直。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。画直棱柱时,应将侧棱画成与底面垂直。 正棱柱:底面是正多边形的直棱柱叫做正棱柱。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体。 我们学习的棱柱也包括了斜棱柱、直棱柱、正棱柱,连长方体也是棱柱的一种。 【数学初一知识点总结】相关文章: 数学初一知识点总结07-03 初一的数学知识点总结03-19 初一数学知识点总结09-04 初一数学下册知识点总结11-22 初一数学下册的知识点总结07-25 初一数学全部知识点总结10-24 初一数学知识点总结04-18 初一数学下知识点总结12-06 初一数学下册知识点总结07-11 初一数学知识点总结05-29 数学初一知识点总结 10
数学初一知识点总结 11
数学初一知识点总结 12
数学初一知识点总结 13
数学初一知识点总结 14
数学初一知识点总结 15
数学初一知识点总结 16
数学初一知识点总结 17
数学初一知识点总结 18
数学初一知识点总结 19