在平日的学习中,大家对知识点应该都不陌生吧?知识点就是一些常考的内容,或者考试经常出题的地方。相信很多人都在为知识点发愁,以下是小编收集整理的小学三年级数学上册的知识点总结,仅供参考,希望能够帮助到大家。
小学三年级数学上册的知识点总结 1
第一单元混合运算
知识点一、
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
知识点二、
关于“0”的运算
1、“0”不能做除数;
字母表示:a÷0错误
2、一个数加上0还得原数;
字母表示:a+0=a
3、一个数减去0还得原数;
字母表示:a-0=a
4、被减数等于减数,差是0;
字母表示:a-a=0
5、一个数和0相乘,仍得0;
字母表示:a×0=0
6、0除以任何非0的数,还得0;
字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元观察物体
1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。
2、总结:同一立体图形从不同角度观察会有不同的形状。
第三单元加与减
第一节捐书活动
知识点:
1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。
2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
第二节运白菜
1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。
2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。
第三节节余多少钱
三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。
第四节里程表(一)
1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。
2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。
第五节里程表(二)
1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数
2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。
第四单元乘与除
第一节小树有多少棵
知识点:
1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。
2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。
3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。
4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。
第二节需要多少钱
知识点:
1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。
2、计算混合运算时,要先明确运算顺序,再计算。
第三节丰收了
知识点:
1、整十数除以一位数的口算方法:
(1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。
(2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。
2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。
第四节植树
知识点:
1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。
2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。
第五单元周长
知识点1:什么是周长
1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的`总和就是这个图形的周长。
2、不规则物体或图形的测量方法:绳子测量法。
3、规则物体或图形的测量方法:
(1)绳测法
(2)直尺测量法。
知识点二:长方形的周长
1、求长方形的周长必须满足两个条件:已知长和宽的长度。
2、长方形周长的计算方法:
(1)长方形的周长=长+宽+长+宽
(2)长方形的周长=长×2+宽×2
(3)长方形的周长=(长+宽)×2
(4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”
(5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”
3、正方形周长的计算方法:
(1)可以把4条边长加起来;
(2)用一条边长乘以4,即正方形的周长=边长×4
4、靠墙围成的长方形有两种情况:
(1)长边靠墙,
(2)宽边靠墙。
5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。
第六单元乘法
第一节蚂蚁做操
知识点:
1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。
2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。
第二节去游乐园
知识点:
1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。
2、两位数乘一位数(进位)的笔算,要把进位的数写到正确的位置上,不要写在积中。
第三节乘火车
知识点:
1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。
2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。
第四节去奶奶家
知识点:
借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。
第五节:0×5=?
知识点:
1、0和任何数相乘都等于0。
2、一个乘数末尾有0的乘法的计算方法:
(1)先用这个乘数0前面的数乘另一个乘数;
(2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.
3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。
4、结论:
(1)因数的末尾有0,乘积中一定有0。
(2)因数的中间有0,乘积中不一定有0。
第六节买矿泉水
知识点:
1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。
2、连乘的运算顺序:按从左到右的顺序依次计算。
3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。
第七单元年月日
第一节看日历(一)
知识点:
1、一年有12个月。
2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。
3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个
第二节看日历(二)
知识点:
1、2月29日是个特殊的日子,只有4年才出现。
2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。
3、认识平年和闰年:
(1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。
(2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.
(3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。
(4)平年一年有52个星期零1天,闰年一年有52个星期零2天。
365÷7=52(个)......1(天)
366÷7=52(个)......2(天)
4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。
第三节一天的时间
知识点:
1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。
2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,
3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。
4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。
5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。
第四节:时间表
知识点:1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。
2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。
3、判断谁跑得快,只要看谁用的时间短就可以了。
第五节数学好玩
知识点:
1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。
2、地面上一定范围内的直线距离可以直接用直尺来测量。
3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。
4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。
5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。
第八单元认识小数
第一节文具店
知识点:1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。
2、小数由整数部分、小数点、和小数部分组成。
3、一个小数的小数部分有几位数,它就是几位小数。
4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。
5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。
6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。
7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。
第二节货比三家
知识点
1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。
2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。
第三节存零用钱
知识点1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
第四节寄书
1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。
2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。
3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。
第五节能通过吗
1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。
2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。
3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。
小学三年级数学上册的知识点总结 2
1、有4条直的边和4个角的封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:
长方形的周长=(长+宽)×2
变式:①长方形的长=周长÷2—宽
②长方形的宽=周长÷2—长
正方形的周长=边长×4
变式:正方形的边长=周长÷4
数学圆的周长知识点
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。
推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的.常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。
小学数学简便计算知识点
1、连加的简便计算:
①使用加法结合律(把和是整十、整百、整千的数结合在一起)
②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
2、连减的简便计算:
①连续减去几个数就等于减去这几个数的和。如:106—26—74=106—(26+74)
②减去几个数的和就等于连续减去这几个数。如:106—(26+74)=106—26—74
3、加减混合的简便计算:
第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38—23=123—23+38146—78+54=146+54—78
4、连乘的简便计算:
使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;
5、连除的简便计算:
①连续除以几个数就等于除以这几个数的积。
②除以几个数的积就等于连续除以这几个数。
6、乘、除混合的简便计算:
第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×137。乘法分配律的应用:
①类型一:(a+b)×c(a—b)×c=a×c+b×c=a×c—b×c
②类型二:a×c+b×ca×c—b×c=(a+b)×c=(a—b)×c
③类型三:a×99+aa×b—a=a×(99+1)=a×(b—1)
④类型四:a×99a×102=a×(100—1)=a×(100+2)=a×100—a×1=a×100+a×2
小学三年级数学上册的知识点总结 3
一、知识框架
一级知识点数与代数二级知识点数的运算三级知识点
1、列竖式计算除法。
2、两位数除以一位数;
除法的验算
3、一步计算的问题
4、两步计算的问题
1、质量单位千克、克数与代数常见的量
2、千克、克之间的换算,简单的实际问题
3、24时计时法空间与图形空间与图形统计与概率图形的认识
从三个方向观察用小正方体搭成的立体图形形状
1.周长的认识
2.长方形、正方形的周长计算描述事件发生的可能性。
二、期末知识点
第一单元除法(除法是乘法的逆运算)
两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。
1.计算:列竖式计算除法。
2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。
3.笔算:两位数除以一位数;除法的验算(用乘法验算)。
4.估算:估计两位数除以一位数的商是几十多。
5.一步计算的问题:在解决的实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价
6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。
练习:
(1)用竖式计算,并验算:62÷266÷672÷347÷7
(2)口算:36÷360÷268÷290÷3
(3)列竖式计算:39÷389÷467÷274÷3
(4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3
(5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?
(6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。
整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。
练习:
(1)口算:201+4000800030006000201000+100
(2)写一写:两个千加两个百加一个十是多少?
(3)三千零二是由几个千和几个一组成?
(4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。
2.大小比较
比较大小时的.数学思考,比较大小的实际应用,非整千数最接近几千。
练习:
比较大小:3650和2520,7890和8790第三单元千克和克
千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。
1.称一个物体有多重,一般用千克为单位。
2.净含量是指包装袋内物品实际有多重。
3.千克可以用KG表示,又叫公斤。
4.从秤上读出物品的重量。
5.称比较轻的物品,一般用克为单位。
6.认识天平。
7.千克和克之间的关系。1千克=1000克。
练习
(1)一袋盐重500克,两袋盐重()克?
(2)2千克=()克
(3)9000克=()千克第四单元加和减
1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。
练习
口算:44+2532+5714+6876642.画线段图解决问题。
练习
手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。
1.24时记时法及它与普通记时法(12时记时法)的联系
2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。
求经过时间:
记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。
普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时
早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时
深夜12时24时(也是第二天的0时)
记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。
练习
(1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?
(2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形
1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)
2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体x个面上一周边线的长度就是该物体x个面的周长)。
练习
(1)篮球场长26米,宽14米,求篮球场的周长。
(2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?
第七单元乘法
1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)
2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:
(1)200×3152×4261×3224×5(2)124×3×2115×2×4
(3)一头牛一天吃20千克草,两头牛两天吃多少千克草?
第八单元观察物体
安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。
1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。
2.在不同的位置观察,看到的物体的面的个数往往是不相同的。
3.进行简单几何体与其三视图之间的转化。
第九单元统计与可能性
学习简单的统计知识。
练习
(1)在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?
第十单元认识分数
理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。
1.分数的表示:分子、分母、分数线。
2.同分母分数比较大小。
3.同分母分数的加减。
小学三年级数学上册的知识点总结 4
《四边形》
1、知识点:认识四边形的特征,掌握长方形、正方形的特征
①能正确辨认四边形。
②掌握长方形、正方形的特征。
注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。
2、知识点:在方格纸上画出长方形和正方形
能在方格纸上画出长方形和正方形。
3、知识点:初步认识平行四边形
①能正确辨认平行四边形。
②能感悟到平行四边形易变形的特性。
③能在方格纸上正确画出平行四边形。
注:学生寻找平行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟平行四边形的特征。
4、知识点:周长的含义
结合具体情境理解周长的含义。
5、知识点:计算长方形和正方形的周长
①能正确计算长方形、正方形等平面图形的周长。
②能运用周长的知识解决实际问题。
6、知识点:长度和周长的估计
在估量物体长度的过程中,逐步建立空间观念,养成估计的意识和习惯。
注:应注重引导学生说出估计相应长度的.依据,逐步建立长度单位的表象。
《测量》
1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米
①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。
②根据具体情境选择恰当的长度单位。
2、知识点:单位间的进率
①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。
②会进行简单的单位换算。
3、知识点:估计、测量物体的长度
能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。
4、知识点:质量单位吨及1吨
①认识质量单位“吨”,建立1吨的质量观念。
②能根据具体情境选择恰当的质量单位。
5、知识点:1吨=1000千克
知道1吨=1000千克,并会进行吨与千克的单位换算。
小学三年级数学上册的知识点总结 5
一、时分秒
1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长
2、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。
3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。
4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。
5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。
6、公式。(每两个相邻的时间单位之间的进率是60)
1时=60分;1分=60秒;60分=1时;
7、常用的时间单位:时、分、秒、年、月、日、世纪等。
1世纪=100年,1年=12个月
二、分数的初步认识
1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。
2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。
3、比较大小的方法:
①分子相同,分母小的分数反而大,分母大的分数反而小。②分母相同,分子大的分数就大,分子小的分数就小。
4、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。
5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。
6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)
三、测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
3、在计算长度时,只有相同的长度单位才能相加减。
4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)
①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
6、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克
四、万以内的加法和减法
1、读数和写数(读数时写汉字写数时写阿拉伯数字)
①一个数的末尾不管有一个0或几个0,这个0都不读。
②一个数的中间有一个0或连续的两个0,都只读一个0。
2、数的大小比较:
①位数不同的数比较大小,位数多的数大。
②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。
4、求一个数的近似数:看最位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。
5、被减数是三位数的连续退位减法的运算步骤:
①列竖式时相同数位一定要对齐;
②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。
五、倍的认识
1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。
2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数3、求一个数的几倍是多少的计算方法这个数×倍数=这个数的几倍
六、长方形和正方形
1、有4条直的边和4个角封闭图形我们叫它四边形。
2、四边形的特点:有四条直的边,有四个角。
3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。
4、正方形的特点:有4个直角,4条边相等。
5、长方形和正方形是特殊的平行四边形。
6、平行四边形的特点:
①对边相等、对角相等。
②平行四边形容易变形。(三角形不容易变形)
7、封闭图形一周的长度,就是它的周长。
8、公式:长方形的周长=(长+宽)×2或长×2+宽×2长方形的'长=周长÷2—宽长方形的宽=周长÷2—长正方形的周长=边长×4正方形的边长=周长÷4
七、多位数乘一位数
1、估算。(先求出多位数的近似数,再进行计算。如497×7≈3500)
2、①0和任何数相乘都得0;
②1和任何不是0的数相乘还得原来的数。
3、三位数乘一位数:积有可能是三位数,也有可能是四位数。
4、多位数乘一位数(进位)的笔算方法:
相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
5、一个因数中间有0的乘法:
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
7、(关于“大约)应用题:问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。→(≈)
8、减法的验算方法:
①用被减数减去差,看结果是不是等于减数
②用差加减数,看结果是不是等于被减数。
9、加法的验算方法:
①交换两个加数的位置再算一遍。
②用和减一个加数,看结果是不是等于另一个加数。
小学三年级数学上册的知识点总结 6
1、乘法的含义
乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的写法和读法
⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。
如:4+4+4=12改写成乘法算式是4×3=12或3×4=12
4×3=12或3×4=12
⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。
3、乘法算式中各部分的名称及实际表示的意义
在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。
4、乘法算式所表示的意义
求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。
5、加法写成乘法时,加法的和与乘法的积相同。
6、乘法算式中,两个乘数交换位置,积不变。
7、算式各部分名称及计算公式。
乘法:乘数×乘数=积
加法:加数+加数=和
和—加数=加数
减法:被减数—减数=差
被减数=差+减数
减数=被减数—差
8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。
如:1×9=10—19×5=50—5
9、看图,写乘加、乘减算式时:
乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。
计算时,先算乘,再算加减。
如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14
10、“几和几相加”与“几个几相加”有区别
求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)
求几个几相加,用几乘几。
如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8
2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64
11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。
“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),
都可以用口诀(三五十五)来计算,表示(3)个(5)相加
3×5=15读作:3乘5等于15.5×3=15读作:5乘3等于15
第五单元观察物体
1、从不同的角度观察同一物体,所看到的物体的形状一般是不同的;
2、观察物体时,要抓住物体的特征来判断。
3、观察长方体的某一面,看到的可能是长方形或正方形。观察正方形的某一面,看到的都是正方形
4、观察圆柱体,看到的可能是长方形或圆形。观察球体,看到的都是圆形
第七单元认识时间
1、认识时间
(1)钟面上有时针和分针,走得快的,较长的'是分针;走得慢的,较短的是时针;
(2)钟面上有12个大格,60个小格,1个大格有5个小格。时针走1大格是1小时,分针走1大格是5分钟。
(3)时针走1大格分针要走一圈,所以1时=60分;
(4)半小时=30分,一刻钟=15分钟
(5)时间的读与写:如3:30,可以读作3时30分,也可以读作3点半;8时零5分应写作8:05。
2、运用知识解决问题
(1)要按着时间的先后顺序安排事件,时间上不能重复。
(2)问过几分钟后是几时,先要读出现在是几时,再推算过几分钟后是几时几分。
(3)时针和分针能形成直角的时刻是3时和9时。
第八单元数学广角-搭配
1、用两个不同的数字(0除外)组合时可以交换两个数字的位置;用三个不同的数字组合成两位数时,可以让每个数字(0除外)作十位数字,其余的两个数字依次和它组合。
2、借用连线或者符号解答问题比较简单。
3、排列与顺序有关,组合与顺序无关。
小学三年级数学上册的知识点总结 7
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的'参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
学好数学的方法和技巧总结
主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
让数学课学与练结合
在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
单项式书写格式
1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
2、π是常数,因此也可以作为系数。它不是未知数。
3、若系数是带分数,要化成假分数。
4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。
5、在单项式中字母不可以做分母,分子可以。
6、单独的数“0”的系数是零,次数也是零。
7、常数的系数是它本身,次数为零。
8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。
小学三年级数学上册的知识点总结 8
第一单元【大数的认识】
1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
计数单位
数字表示
2、多位数的读法:
①、从高位数读起,一级一级往下读。
②、万级的数要按照个级的数的读法来读,再在后面加一个万字。
③、每级末尾不管有几个零都不读,其他数位有一个“零”或连续几个“零”,都只读一个“零”。
3、多位数的写法
小结:
①、从高级写起,一级一级往下写。
②、当哪一位上一个计数单位也没有,就在哪一位上写0。
特别注意:多位数的读写都先划上分级线。
4、多位数的大小比较:
小结:①、位数多的时候,这个数就比较大。
②、当这两个数位数相同的时候,就从最高位开始比,哪个数位上的数大,这个数就大。
5、“万”“亿”作单位的数:
有时候,为了读写方便,我们把整万(亿)的数改写成有“万”(亿)做单位的数。
方法概括:分级、去0,写万(写亿)
6、求近似数:
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数部分的最高位是小于5还是等于或大于5。
方法概括:分级、去尾、四舍五入约
近似数的取值范围:近似数+4999(最大)
近似数—5000(最小)
7、表示物体个数的数:0、1、2、3、4、5、6…….叫自然数一个物体也没有:用0来表示。0也是自然数。最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
8、计算工具的认识:算盘,计算器
9、测量得到的数都是近似数,数出来的'数都是准确数
第二单元【角的度量】
1、直线、射线、角
没有端点,可以向两端无限延伸,这种线叫直线。
只有一个端点,向一端无限延伸,这种线叫射线。
直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
2、角的计量单位是“度”,用符号“°”表示。把半圆平分成180等份,每一份所对的、角的大小是l度。记做1°
3、角的大小与角的两边画出的长短没关系。角的大小要看两条边叉开的大小,叉开得越大,角越大。
4、小于90°的角叫做锐角
直角=90°,
大于90而小于180°的角叫做钝角,
平角=180°=2个直角,周角=360°=2个平角=4个平角
特别注意:因为直线射线都无法度量,所以在判断题中,与直线射线比较长短的都是错误的。
平行四边形对角相等,邻角和等于180°,只需要量一个角的度数,就可以知道其他几个角的度数,
5、角的个数=n×(n-1)÷2
n为边的条数。数线段的方法也如此。
6、75度=45度+30度
15度=60度-45度=45度-30度
120度=30度+90度
150度=60度+90度
135度=90度+45度
第三单元【三位数乘两位数】
速度×时间=路程
单价×数量=总价
工作效率×工作时间=工作总量
路程÷时间=速度
总价÷单价=数量
工作总量÷工作时间=工作效率
路程÷速度=时间
总价÷数量=单价
工作总量÷工作效率=工作时间
积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)
一个因数乘几,另一个因数除以几,积不变(零除外)。
两位数乘三位数,积最多五位数,最少四位数
估算原则:便于口算、接近准确数、能解决实际问题(估大或估小)
第四单元【平行四边形和梯形】
1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。
2、两条平行线之间的距离处处相等。
3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。
4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。
5、只有一组对边平行的四边形叫梯形。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
5、画高:
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。
当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。
特别注意:画高时,请注意;虚线、垂直标记、和名称
第五单元【除数是两位数的除法】
除数是两位数除法:先看被除数的前两位,如果前两位数不够除,就看被除数的前三位数;
除到被除数的哪一位,就把商在哪一位上面;
每求出一位商,余数一定要比除数小
商的变化规律:
被除数和除数同时乘或除以一个相同的数(零除外),商不变。但是余数也要同时乘或除以一个相同的数
第六单元【统计】
第七单元【数学广角】
目标:通过观察、操作、实验、推理、交流,从数学的角度寻找解决问题的最优方案和策略。
1、烙饼类问题策略:
饼个数×2÷同时可以烙的个数=需要烙多少次
需要烙多少次×每一面的时间=至少需要的时间
2、沏茶类问题策略:首先要明确沏茶的大致顺序,也就是说哪些事情要先做,然后再考虑还有哪些事情可以同时做,能同时做的事尽量同时做,这样才能节省时间。
3、排队论问题策略:依次从等候时间较少的事情做起,就能使总的等候时间最少。
4、“田忌赛马”问题策略:田忌用下等马对齐王的上等马,用上等马对齐王的中等马,用中等马对齐王的下等马。三场两胜,田忌胜出。
小学三年级数学上册的知识点总结 9
第一单元大数的认识
1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
6、亿以上数的读法:
①先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
②亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
7、亿以上数的写法:
①从最高位写起,先写亿级,再写万级,最后写个级。
②哪个数位上一个单位也没有,就在那个数位上写0。
8、比较数的大小:
①位数不同的两个数,位数多的数比较大。
②位数相同的两个数,从最高位开始比较。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5还是等于或大于5。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。
10、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
13、ON╱CE:开关及清除屏键,清除显示屏上的内容。
AC:清除键,清除所有内容。
第二单元公顷和平方千米
1、边长是100米的正方形面积是1公顷。
1公顷=10000平方米
2、边长是1千米的正方形面积是1平方千米。
1平方千米=1000000平方米
1平方千米=100公顷
3、从大单位变到小单位,乘以进率。
从小单位变到大单位,除以进率。
4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如
香港特别行政区的面积约1100。
广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44;
操场、教室等较小的面积适合用平方米。如一个教室的面积约60;
5、长方形面积=长×宽
正方形面积=边长×边长
第三单元角的度量
1、直线、射线、线段
直线:可以向两端无限延伸,没有端点。
射线:可以向一端无限延伸,只有一个端点。
线段:不能延伸,有两个端点,线段是直线的一部分。
2、直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
4、角的计量单位是“度”,用符号“°”表示。 3、从一点引出两条射线所组成的图形叫做角。
将圆平均分成360份,每一份所对的角的大小是l度,记做1°。
5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。
6、度量角的工具叫量角器。
7、量角的步骤:
①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。
②角的另一条边所对的量角器上的刻度,就是这个角的度数。
8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
1周角=2平角=4直角1直角=90°
11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。
锐角<直角<钝角<平角<周角
12、画角的步骤:
(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。
(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。
13、经过一点可以画无数条直线;经过两个点,只能画一条直线。
14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
第四单元三位数乘两位数
1、三位数乘两位数的笔算方法:
先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。
2、积的变化规律:
一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
单价×数量=总价
单价=总价÷数量
数量=总价÷单价
4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
速度×时间=路程
速度=路程÷时间
时间=路程÷速度
5、速度单位通常有:千米/时、米/分、米/秒等。
第五单元平行四边形和梯形
1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
记作:a‖b读作:a平行于b
2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b
3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。经过直线上一点(或外一点)作垂线,可以画一条。
5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。
6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。
8、平行四边形的特点:容易变形。例如:伸缩门、升降机
9、平行四边形和梯形有无数条高。
10、两腰相等的梯形叫做等腰梯形。特点:两腰相等,两底角相等。
11、有一个角是直角的梯形叫做直角梯形。特点:有一条腰就是梯形的高。
12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
13、两个完全一样的三角形可以拼成一个平行四边形。
两个完全一样的梯形可以拼成一个平行四边形。
两个完全一样的直角梯形可以拼成一个长方形或平行四边形。
14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。
15、三角形三个内角的和是180°,四边形四个内角的和是360°。
16、四边形小结:
两组对边分别平行的四边形叫做平行四边形;
只有一组对边平行的四边形叫梯形。
两腰相等的梯形叫做等腰梯形。
有一个角是直角的梯形叫做直角梯形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
第六单元除数是两位数的除法
1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。
2、除数是两位数的除法的计算方法:
从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。
除到被除数的哪一位,就在那一位上写商。
求出每一位商,余下的数必须比除数小。
3、商的变化规律:
被除数和商的变化相同。除数和商的变化相反。
商不变的`性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
除数×商+余数=被除数
(被除数-余数)÷商=除数
第七单元条形统计图
1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。
2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定
第八单元数学广角--优化
1、沏茶问题:
合理安排时间的过程:(1)明确完成一项工作要做哪些事情;(2)明确每项事情各需要多少时间;(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。
2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。
3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。
四年级数学的学习方法
1.预习的习惯
预习是学生在学习新知识前,通过自学对新知识有初步的认识,形成一定的表象,这对于学生在课中学习新知识时,是很有帮助的。而且学生有了一定的预习基础后,教师在教学时就能有的放矢,更多地让学生通过尝试来获取新知识,可以更多的发挥学生的主体性。
而实际情况,当今的学生中养成预习习惯的还不够普遍,当然这是有一个过程的,这其中固然有学生自身的因素,但我们教师、家长也有不可推卸的责任。
因此,要培养学生的预习习惯,老师和家长首先要起到引导作用,有意识的引导学生如何去预习,教给他们预习的方法。在上新课之前,可以提出几个能引起学生的注意的问题作为预习的作业,如要求读、划、问、查,提高学生预习的兴趣。结合课文背景、内容查找相关的资料,使学生很容易理解课文的内容,我们现在学的课文有很多都距离孩子们很远,这就需要背景的查找来辅助学习,加深理解。
这样坚持较长一段时间之后,学生对预习就有了一定的习惯性。其次,学生本身也要有一定的学习自觉性,在预习中有不懂的地方打个问号,核心重点的地方或较难理解的地方打个*号等等。
作为家长也可以和孩子一起预习,有些问题孩子会主动向你询问,上网的查询还需要家长的辅导。在上课时,因为学生做了充分的预习,那么他的思维会紧跟着教师,不是老师引着走,而是进行互动的学习。只要学校家庭共同联合,孩子的预习习惯一定会很好地养成,这对于他今后的学习有很大的帮助。
2.听讲的习惯
上课专心听讲,集中注意力,这是保证课堂35分钟效率的最低要求。它包括两个方面的要求,一是认真听教师讲课并观察教师的教具演示过程、板书内容、讲课的动作及表情等等,理解教师讲课的内容。老师在讲课时,较多采用动作信号,往往一个动作、一个手势,一个眼神就可能是个问题。
因此,学生只有在认真听讲的基础上,才能回答我的动作问题,或领会一个手势所表示的意思。二是注意听同学的发言,同学在回答老师提出的问题时,要注意听,边听边想,同学回答得对或不对,如果不对,错在什么地方;如果让自己回答,该怎样说好。
边听边思考,同意的可以轻轻点头表示赞同,若需要补充或者有不同的看法时,要积极大胆的举手站起来发表自己的意见,这样可以沟通同学之间的信息,取长补短,促进学生听懂教学内容。
3.课堂上说的习惯
上课积极回答问题、大胆发言,既可以培养学生的口语表达能力,有培养了学生的思维能力。因此,在学生回答问题时,首先要求语言要完整,不要语无伦次;其次,如果学生回答错了或回答不完整,老师要鼓励学生,表扬他敢于说的勇敢的精神,不让学生觉得回答问题是种压力而不敢说、不肯说。
所以,在班上,学生回答问题时会说“我认为”“我补充谁的问题”……显得非常自信,有时像开辩论会一样,一个个争先恐后的表达自己的观点。这样,学习的主动权就还给了学生,教师只是一个组织者。
4.做作业的习惯
总体来说,学生的作业书写较好,但是要做到持之以恒那是要有恒心的。现在有的学生做作业只是为了应付教师,有的回家马马虎虎做好就出去玩了;有的一边做作业一边看电视;有的一有不懂得题目,就马上问家长,自己不动脑筋;有的甚至不完成作业……因此,要培养学生的良好的作业习惯,应该从几方面着手。
(1)培养按时完成作业的习惯,要求学生当天的作业当天完成。
(2)独立完成作业,遇到困难想办法自已解决,不能依赖他人。
(3)做完作业认真检查。
作为一些作业常迟交的学生的家长可以相机地抽查孩子的书包,或者和别的学生交流后,再来询问。只有多督促,多提醒,才能让学生改掉迟交或者不叫不交的不良习惯。
小学三年级数学上册的知识点总结 10
第一单元长度单位
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米100厘米=1米
5、线段
⑴线段的特点:
①线段是直的;
②线段有两个端点;
③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的.’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
小明身高1(米)30(厘米)
练习本宽13(厘米)
铅笔长17(厘米)
黑板长2(米)图钉长1(厘米)
一张床长2(米)一口井深3(米)
学校进行100(米)赛跑
教学楼高25(米)宝宝身高80(厘米)
跳绳长2(米)一棵树高3(米)
一把钥匙长5(厘米)
一个文具盒长24(厘米)
讲台高90(厘米)
门高2(米)教室长12(米)
筷子长20(厘米)
一棵小树苗高1(米)
小朋友的头围48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二单元100以内的加法和减法
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:
①相同数位对齐;
②从个位加起;
③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
4、和=加数+加数
一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
2、两位数减两位数退位减的笔算法则:
①相同数位对齐;
②从个位减起;
③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数+差
三、连加、连减和加减混合
1、连加、连减
连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混合
加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。
3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
四、解决问题(应用题)
1、步骤:
①先读题
②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)
③作答。
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的较大数减去较小数。
3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
4、关于提问题的题目,可以这样提问:
①…….和……一共…….?
②……比……..多多少/几……?
③……比……..少多少/几……?
第三单元元角的初步认识
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。
2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:
①先画一个顶点,再从这个点出发画一条直线
②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线
③再从这点出发沿着三角尺上的另一条直角边画一条线
④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
小学三年级数学上册的知识点总结 11
第一单元《位置与方向》
1.相对的方向:南←→北,西←→东;西北←→东南,东北←→西南
2.地图上的方向:上北下南,左西右东。
实际方向:面北背南,左西右东。
3.指南针可以帮助我们辨别方向。
4.看简单路线图的方法:先要确定好自己所处的位置,以自己所处的位置为中心,再根据上北下南,左西右东的规律来确定目的地和周围事物所处的方向,最后根据目的地的方向和路程确定所要行走的路线。
5.描述行走路线的方法:以出发点为基准,再看哪一条路通向目的地,最后把行走路线描述出来(先向哪走,再向哪走),有时还要说明路程有多远。
6.绘制简单示意图:先确定好观察点,把选好的观察点画在平面图中心位置,再确定好各物体相对于观察点的方向。在纸上按“上北下南、左西右东”绘制,用箭头“↑”标出北方。
(描述是要注意是选取哪个物体作参照物的,选取的参照物不同,描述的结果也不一样。)
第二单元《除数是一位数的除法》
(一)口算除法
1.整千、整百、整十数除以一位数的口算方法。
(1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。
2.三位数除以一位数的估算方法。
(1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,那么几百或几十就是所要估算的商。
(二)笔算除法
1.牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用“0”占位。每一次除得的余数必须比除数小。)
2.会判断商是几位数。
比较除数与被除数最高位的大小,如果被除数最高位上的数比除数小,那么商一定比被除数少一位;如果被除数最高位上的数比除数大或相等,那么商和被除数的位数相等。
3.除法的验算方法:
(1)没有余数的除法:商×除数=被除数;
(2)有余数的除法:商×除数+余数=被除数;
4.关于0的一些规定:
(1)0不能作除数。
(2)相同的两个数相除商是1。(既然能相除这个数就不是0)
(3)0除以任何不是0的数都得0;0乘任何数都得0。
5.乘除法的估算:4舍5入法。
如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。
除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60。
第三单元《统计》
1.会看横向条形统计图及起始格与其他格代表的单位量不一致的条形统计图。能根据统计表中的数据完成统计图,完成的统计图上一定要标数据。
2.能根据统计图表进行分析,解决简单的实际问题(应用题)。能根据统计图、表提出简单的问题,并进行解答。
3.能根据统计图、表中的内容进行简单的数据分析提出合理化的建议。
4.理解平均数的含义,给出一组数据会求它们的平均数。(若干数相加的和,除以这些数的个数,所得的结果叫算术平均数,简称平均数。求平均数分为两步,首先求出若干数的和,再用所求的和除以这些数的个数。)如:3个女生身高:135厘米、140厘米、132厘米,求平均身高。熟记平均数的格式,总数量除以总份数:(++……+)÷并脱式计算p42。会检查平均数的对错,平均数一定介于最大数与最小数之间。
5.会用平均数来比较两组数据的总体情况。
6.给出平均数和几个数据,求另一个数据。如:小明三科成绩的平均分是85分,其中外语83分,数学80分,求语文多少分。
第四单元《年月日》
(一)年、月、日部分
1.一年有12个月;一年有4个季度(1、2、3月为第1季度;4、5、6月为第2季度,;7、8、9月为第3季度;10、11、12月为第4季度)。
2.记大小月的方法:1、3、5、7、8、10、腊,31天永不差;4、6、9、冬,30整,只有2月二八九。7个大月,4个小月,二月平年28天,闰年29天。
3.平年全年有365天,平年2月是28天,平年的上半年有181天,下半年有184天。平年全年有52个星期零1天。
4.闰年全年有366天,闰年2月是29天,闰年的上半年有182天,下半年有184天。闰年全年有52个星期零2天。
5.公历年份是4的倍数的一般都是闰年;但公历年份是整百数的,必须是400的倍数才是闰年。如:1900、2100等不是闰年,而1600、2000、2400等是闰年。
6.连续两个月共62天的是:7月和8月,12月和第二年的1月;
一年中连续两个月共62天的是:7月和8月。
7.一个人今年20岁,但只过了5个生日,他是2月29日出生的。
8.计算周年的方法是用现在的年份减去原来的年份得的数就是周年。如:到2008年10月1日,是中国成立(59)周年。用2008—1949=59周年
(二)24时计时法部分
1.年月日、时分秒都是时间单位。
2.在一日里,钟表上时针正好走两圈,共24小时。所以,经常采用从0时到24时的计时法,通常叫做24时计时法。
3.1日(天)=24小时;1小时=60分;1分=60秒
4.求经过的时间。如:一辆汽车上午8:20出发,到下午5:50到达终点,一共行使多长时间。第一步要先进行换算:把下午5:50变成24时计时法的形式5:50+12=17:50,第二步用17时50分-8时20分=9时30分,就求出了经过的时间。
5.认识时间与时刻的区别。
如:火车11:00出发,21:30到达,火车运行时间是10小时30分,注意不要写成10:30。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。
再如:火车19时出发,第二天8时到达,火车运行时间是13小时。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时)。
又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。
6.经过的天数的计算:
公式:结束时间—开始时间+1=经过的天数
例如:6月12到6月30日是多少天?(30—12+1=19天)
第五单元《两位数乘两位数》
(一)口算乘法:
1.整十、整百、整千相乘的方法:先用0前边的数相乘,得到一个结果,然后再数一数被乘数和乘数中一共有多少个0,再在结果的后边添上多少0。
2.估算:想被乘数和乘数最接近或等于哪个整十的两位数,那么所要估算的结果就是这两个整十数的乘积。
(二)笔算乘法:注意竖式的格式。
两位数乘两位数在笔算时,首先要相同数位对齐,用下面因数的个位数和十位数依次去乘上面因数的个位数和十位数,将所得的积相加。(遇到进位乘法时,那一位上的乘积满几十就向前一位进几)
1、两位数乘两位数积可能是(三)位数,也可能是(四)位数。
2、验算:交换两个因数的位置。
第六单元《面积》
1.物体的表面或封闭图形的大小,就是他们的面积。
2.比较两个图形面积的大小,要用统一的面积单位来测量。
3.常用的面积单位有平方厘米(cm2),平方分米(dm2)、平方米(m2)。
4.边长1厘米的正方形面积是1平方厘米。
5.边长1分米的正方形面积是1平方分米。
6.边长1米的正方形面积是1平方米。
7.边长100米的正方形面积是1公顷(10000平方米)。
8.边长1千米(1000米)的正方形面积是1平方千米。
9.测量土地的面积时,常常要用到更大的面积单位:公顷、平方千米。
平方千米公顷平方米平方分米平方厘米
10.长方形的面积=长×宽长=面积÷宽宽=面积÷长
11.正方形的面积=边长×边长
12.长方形的`周长=(长+宽)×2宽=周长÷2-长长=周长÷2-宽
13.正方形的周长=边长×4
14.正方形的边长=周长÷4
15.相邻的两个常用的长度单位间的进率是10。
16.相邻的两个常用的面积单位间的进率是100。
17.1平方米=100平方分米;1平方分米=100平方厘米;
1公顷=10000平方米;1平方千米=100公顷(公顷、平方千米这两个土地面积单位间的进率是100。)
注:面积和周长是不能相比较的;分清楚什么时候填长度单位,什么时候填面积单位,填土地面积单位时,比较小的土地面积(如:公园、体育场馆、超市、果园、广场)等一般情况下填公顷;(城市的占地、国家的面积、江河湖海的面积)等一般情况下填平方千米。
面积相等的两个图形,周长不一定相等。
注意:
周长相等的两个图形,面积不一定相等。
第七单元《小数的初步认识》
小数的意义
把1个整体平均分成10份、100份、1000份……这样一份或几份可以用分母是10、100、1000的份数来表示,也可以依照整数的写法写在整数个位右面,用圆点隔开来表示十分之几、百分之几、千分之几……的数,叫做小数。
小数的数位
小数点的左边是它的整数部分,小数点的右边是它的小数部分。小数的计数单位是十分之一、百分之一、千分之一……按照一定的顺序排列起来。
1.把1米平均分成10份,每份是1分米;用米作单位是1/10米,也是0.1米。3份就是3分米、3/10米、0.3米。
2.把1米平均分成100份,每份是1厘米;用米作单位是1/100米,也是0.01米。7份就是7厘米、7/100米、0.07米。
注:一位小数的形式实际上是分数十分之几的另外一种表示形式,4/10写成小数就是0.4。
3.小数的基本性质:在一个小数的末尾添上0,小数的大小不变。
如:10.05,在它的末尾添上0,就变成了10.050,10.05=10.050=10.0500=10.05000……大小没有发生变化。
4.比较小数的大小:先看最高位,再看次高位,以此类推。
比较两个小数的大小,先看它们的整数部分,整数部分大的那个小数就大;整数部分相同的,十分位上的数大的那个数就大;十分位相同就比较百分位……
5.小数的加减法:列竖式相加减的时候,要把小数点对齐,然后再进行加减。
计算小数加、减法,先把各数的小数点对齐(也就是把相同数位上的数对齐),再按照整数加、减法的法则进行计算,最后记住在得数中点上小数点。
6.小数不一定比整数小
八、解决问题
在解答应用题时,首先要读准题目,分析题意,找出题目中的数量关系,在选择合适的方法来进行解答。
九、数学广角
在进行等量交换时,首先要正确理解已知条件,掌握已知条件中的数量关系,在进行交换。
小学三年级数学上册的知识点总结 12
复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:
(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加
(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:
(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。
(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。
(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:
一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:
先用这个两位数与整十数十位上的.数相乘,然后在积的末尾添上一个O。
小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
如:30×500=15000可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000
笔算乘法
先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
注意事项
估算:18×22,可以先把因数看成整十、整百的数,再去计算。
→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
2、有大约字样的一般要估算。
3、凡是问够不够,能不能等的题,都要三大步:
①计算、②比较、③答题。→别忘了比较这一步。
几个特殊数:
25×4=100,125×8=1000
4、相关公式:
因数×因数=积
积÷因数=另一个因数
小学三年级数学上册的知识点总结 13
第一单元位置与方向
1、①(东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。②清楚以谁为标准来判断位置。③理解位置是相对的,不是绝对的。
2、地图通常是按(上北、下南、左西、右东)来绘制的。(做题时先标出北南西东。)
3、会看简单的路线图,会描述行走路线。一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。同一个地点有不同的行走路线。一般找比较近的路线走。
4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:①北极星永远在北方。②影子与太阳的方向相对。③早上太阳在东方,中午在南方,傍晚在西方。④风向与物体倾斜的方向相反。
第二单元除数是一位数的除法
1、口算时要注意:(1)0除以任何数(0除外)都等于0;(2)0乘以任何数都得0;(3)0加任何数都得任何数本身;(4)任何数减0都得任何数本身。
2、没有余数的除法:被除数÷除数=商,商×除数=被除数,被除数÷商=除数
有余数的除法:被除数÷除数=商……余数,商×除数+余数=被除数,(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
4、基本规律:(1)从高位除起,除到哪一位,就把商写在那一位;(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)(3)哪一位有余数,就和后面一位上的数合起来再除;(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
5、课外知识拓展:2、3、5倍数的特点2的倍数:个位上是2、4、6、8、0的数是2的倍数。5的倍数:个位上是0或5的数是5的倍数。3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。
6、关于倍数问题:两数和÷倍数和=1倍的数,两数差÷倍数差=1倍的数
7、和差问题(两数和-两数差)÷2=较小的数,(两数和+两数差)÷2=较大的数
第三单元复式统计表
1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。
2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。
第四单元两位数乘以两位数
口算乘法
1、两位数乘一位数的口算方法:(1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加(2)在脑中列竖式计算。
2、整百整十数乘一位数的口算方法:(1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。(2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。(3)在脑中列竖式计算。
3、一个数与10相乘的口算方法:一位数与10相乘,就是把这个数的末尾添上一个0。
4、两位数乘整十数的口算方法:先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。
笔算乘法
1、先把第一个因数同第二个因数个位上的`数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。
2、凡是问“够不够,能不能”等的题,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。
3、相关公式:因数×因数=积,积÷因数=另一个因数。
4、两位数乘两位数积可能是(三)位数,也可能是(四)位数。
第五单元面积
面积和面积单位:
1、常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。
2、理解面积的意义和面积单位的意义。
面积:物体表面或封闭图形的大小,叫做它们的面积。边长是1米的正方形,它的面积是1平方米。边长是1分米的正方形,它的面积是1平方分米。边长是1厘米的正方形,它的面积是1平方厘米。
3、区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。
4、正确理解并熟记相邻的面积单位之间的进率。①进率100:1平方米=100平方分米,1平方分米=100平方厘米②相邻两个常用的长度单位之间的进率是(10)。相邻两个常用的面积单位之间的进率是(100)。
背熟公式1、周长公式:长方形的周长=(长+宽)×2,长=周长÷2-宽,或者:(周长-长×2)÷2=宽,宽=周长÷2-长,或者:(周长-宽×2)÷2=长;正方形的周长=边长×4,正方形的边长=周长÷4
5、面积公式:长方形面积=长×宽,正方形的面积=边长×边长,长方形周长=(长+宽)×2,正方形周长=边长×4,已知面积求长:长=面积÷宽,已知面积求边长:边长=面积开平方,已知周长求长:长=周长÷2-宽。
第六单元年、月、日
年、月、日
1、常用的时间单位有:(年、月、日)和(时、分、秒)。
2、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊)
3、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。
4、经过的天数的计算:公式:结束时间—开始时间+1
5、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。
6、通常每4年里有(1)个闰年,(3)个平年。
24计时法
1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时)
2、24时计时法:就是把一天分成24时表示,不加前缀
3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12,去掉前缀。
4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。
5、计算经过时间,就是用结束时刻减开始时刻。结束时刻-开始时刻=时间段(经过时间)★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算)
6、认识时间与时刻的区别:(时间是一段,时刻是一个点)
7、时间单位进率:1世纪=100年,1年=12个月,1天(日)=24小时,1小时=60分钟,1分钟=60秒钟,1周=7天
第七单元小数的初步认识
1、小数的意义:像,,,,和这样的数叫做小数。小数是分数的另一种表现形式。
2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。
3、小数与分数的关系、互换。小数不同表示的分数就不同。
4、把“单位1”平均分成10份,每份是它的十分之一,也就是,把“单位1”平均分成100份,每份是它的百分之一,也就是。
5、分母是10的分数写成一位小数(),分母是100的分数写成两位小数()。
6、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。
7、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。
8、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。
9、小数不一定比整数小。(如:>5;>1等)
小学三年级数学上册的知识点总结 14
第一单元混合计算
6、0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元观察物体
计算连加式题时,要按从左往右的顺序依次计算
连减
786-284-249=253
计算连减式题时,可以按从左往右的顺序依次计算,也可以先把两个减数加起来,再从被减数里减去两个减数的和。
786-(284+249)=253
加减混合
259+148-342=65
不带小括号的加减混合式题的运算顺序,:按从左往右的顺序依次计算。带小括号的加减混合式题的运算顺序:先算小括号里面的,再算小括号外面的`。
里程表中的问题
求两地间的路程,要找准起点,用较远的路程减去较近的路程就得到两地间的路程
里程数=终点数-起点数
第四单元乘与除
2.月:
小月:4、6、9、11月
平月(二月):平年28天
闰年29天
3.日历:学会看日历,知道某年某月是星期几
4.钟表:24时记时法12时记时法
4.公式:
1时=
60分1分=60秒半时=30分
60分=1时
60秒=1分30分=半时
第八单元可能性
1.‘不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。
2.请用“一定、可能、不可能”来说一说。
一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……
可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。……
不可能:太阳不可能从西边升起;地球不可能绕着月亮转;我不可能从出生到现在没吃过一点东西;鲤鱼不可能在陆地上生活;空中不可能盖楼房;我不可能比姐姐大……
小学三年级数学上册的知识点总结 15
1、口算时要注意:
(1)0除以任何数(0除外)都等于0;
(2)0乘以任何数都得0;
(3)0加任何数都得任何数本身;
(4)任何数减0都得任何数本身。
2、没有余数的除法:
被除数÷除数=商
商×除数=被除数
被除数÷商=除数
有余数的除法:
被除数÷除数=商……余数
商×除数+余数=被除数
(被除数—余数)÷商=除数
3、笔算除法顺序:确定商的位数,试商,检查,验算。
(1)一位数除两位数(商是两位数)的笔算方法:先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。
(2)一位数除三位数的笔算方法:先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。
(3)除法的验算方法:
没有余数的除法的验算方法:商×除数:被除数;
有余数的除法的验算方法:商×除数+余数=被除数。
4、基本规律:
(1)从高位除起,除到哪一位,就把商写在那一位;
(2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。)
(3)哪一位有余数,就和后面一位上的数合起来再除;
(4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。
数学测量知识点
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的`硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。
1米=10分米,1分米=10厘米,1厘米=10毫米
1米=100厘米1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。
1吨=1000千克1千克=1000克
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
小学三年级数学上册的知识点总结 16
第一单元《除法》
1、除法读作:被除数除以除数除数除被除数
例题:35÷5读作:三十五除以五或五除三十五
2、余数一定要比除数小。(余数∠除数)
3、有余数的除法验算方法:被除数=商×除数+余数
4、0除以任何不是0的数都得0。
5、在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
例题:20÷4=5扩大2倍:40÷8=5缩小2倍:10÷2=5
6、连除的简便运算:一个数连续除以两个数等于这个数除以这两个数的积。
例题:30÷2÷3=30÷(2×3)
第二单元《图形的运动》
1、轴对称图形定义:一个图形沿着一条直线对折后,折痕两侧的图形能够完全重合,这样的`图形就叫做轴对称图形。
2、对称轴定义:把轴对称图形对折,折痕左右两边能够完全重合,这条折痕所在的直线就叫做对称轴。
3、画简单轴对称图形的依据:对称点到对称轴的距离相等。
4、平移:物体(或图形)沿着直线运动的现象叫做平移。特点:做直线运动。
5、旋转:物体(或图形)绕着一个点或一个轴做圆弧或圆周运动的现象,叫做旋转。特点:做圆弧或圆周运动。
第三单元《乘法》
1、乘数末尾有几个0,积的末尾就至少有几个0。
2、两个数相乘,如果一个乘数扩大到原来的m倍,另一个乘数扩大到原来的n倍,则它们的积就扩大到原来的m×n倍。(m>0n>0)
例题:4×6=248(扩大2倍)×18(扩大3倍)=144(扩大了2×3倍)
第四单元《千克克吨》
1、常用的质量单位有:克、千克、吨。每相邻两个质量单位之间的进率是1000
2、1千克=1000克(1kg=1000g)1吨=1000千克(1t=1000kg)
第五单元《面积》
1、面积定义:物体的表面或封闭图形的大小就是它们的面积。
2、长方形的面积=长×宽S=a×b
长=面积÷宽宽=面积÷长
长方形的周长=(长+宽)×2C=(a+b)×2
长=周长的一半
小学三年级数学上册的知识点总结 17
位置:所在或所占的地方。
方向:指东,西,南,北等方位。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。
若ab=c(b≠0),用积数c和因数b来求另一个因数a的运算就是除法,写作c/b,读作c除以b(或b除c)。
其中,c叫做被除数,b叫做除数,运算的结果a叫做商。
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。
余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
商不变性质:被除数和除数同时乘或除以一个非零自然数,商不变。
除法的性质:一个数连续除以几个数,等于这个数除以那几个数的乘积,就是除法的性质。有时可以根据除法的性质来进行简便运算。如:300÷25÷4=300÷(25×4)。
被除数、除数、商的关系:被除数扩大(缩小)n倍,商也相应的扩大(缩小)n倍;除数扩大(缩小)n倍,商相应的缩小(扩大)n倍)。
笔算除法:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。
除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。
没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。
第一级运算:加法和减法叫做第一级运算。
第二级运算:乘法和除法叫做第二级运算。
数据:数据也称观测值,是实验、测量、观察、调查等的结果,常以数量的形式给出。
数据分析:数据分析是组织有目的地收集数据、分析数据,使之成为信息的过程。
数据分析的步骤和应用:数据分析有极广泛的应用范围。典型的数据分析可能包含以下三个步:
(1)探索性数据分析,当数据刚取得时,可能杂乱无章,看不出规律,通过作图、造表、用各种形式的方程拟合,计算某些特征量等手段探索规律性的可能形式,即往什么方向和用何种方式去寻找和揭示隐含在数据中的规律性。
(2)模型选定分析,在探索性分析的基础上提出一类或几类可能的模型,然后通过进一步的分析从中挑选一定的模型。
(3)推断分析,通常使用数理统计方法对所定模型或估计的可靠程度和精确程度作出推断。
平均数:指在一组数据中所有数据之和再除以数据的个数。平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标。
解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
二十四时计时法
(1)分段计时法(十二时计时法):深夜12时是一日的开始,1天的24小时又分为两段,每段12小时。从深夜12时起到中午12时叫做上午,再从中午12时起到深夜12时叫做下午。生活中通常采用这种计时法。
(2)二十四时计时法:这是是广播电台、车站、邮电局等部门采用的0到24时计时法,按照这种计时法,下午1时就是13:00,下午2时就是14:00……夜里12时就是24:00,又是第二天的'0:
乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)20XX(积)
乘法的运算定律:
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求交换律。最有名的非交换例子,就是哈密尔顿发现的四元数群。但是结合律仍然满足。
(1)乘法交换律:a×b=b×a
(2)乘法结合律:(a×b)×c=a×(b×c)
(3)乘法分配律:(a+b)×c=a×c+b×c
面积:物体的表面—平面图形的大小,叫做它们的面积。
常用的面积单位有平方厘米、平方分米和平方米。
(1)边长是1厘米的正方形,面积是1平方厘米。
(2)边长是1分米的正方形,面积是1平方分米。
(3)边长是1米的正方形,面积是1平方米。
一般测量较大的面积用到公顷和平方千米。
(1)边长是100米的正方形,面积是1公顷。
(2)边长是1千米的正方形,面积是1平方千米。
面积计算方法:
长方形:S=ab{长方形面积=长×宽}
正方形:S=a2{正方形面积=边长×边长}
平行四边形:S=ab{平行四边形面积=底×高}
三角形:S=ab÷2{三角形面积=底×高÷2}
梯形:S=(a+b)×h÷2{梯形面积=(上底+下底)×高÷2}
圆形(正圆):S=πr2{圆形(正圆)面积=圆周率×半径×半径}
面积计量单位及进率:
1平方千米(k㎡)=100公顷(ha)1平方千米=1000000平方米(㎡)
1公顷=10000平方米1平方米=100平方分米(d㎡)
1平方分米=100平方厘米(c㎡)。
公顷:公顷的单位符号用“h㎡”表示,其中h表示百米,h㎡的含义就是百米的平方,也就是10000平方米,即1公顷。
小数:小数由整数部分、小数部分和小数点组成。
当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数小数是十进制分数的一种特殊表现形式。
分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。
小数的基本性质:小数末尾添上0或去掉0,小数的大小不变,但计数单位变了。
而且,小数点向左移动一位、两位、三位,原来的数就缩小10倍、100倍、1000倍,小数点向右移动一位、两位、三位,原来的数就扩大10倍、100倍、1000倍。
小数写法:整数部分写在小数点前,小数部分写在小数点后,中间用小数点隔开。
小数的读法:
(1)按照分数的读法来读.带小数的整数部分按整数读法读;小数部分按分数读法读。
例:读作百分之三十八,读作十四又百分之五十六。
(2)整数部分仍按整数的读法来读,小数点读作“点”,小数部分顺次读出每个数位上的数字,若几个零重复,不可只读一个
例:读作零点四五;读作五十六点零三二;读作一点零零零五。
小学三年级数学上册的知识点总结 18
1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。
2、一个因数中间有0的乘法:
①0和任何数相乘都得0;
②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。
③一个因数末尾有0的'乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。
3、①0和任何数相乘都得0;②1和任何不是0的数相乘还得原来的数。
4、三位数乘一位数:积有可能是三位数,也有可能是四位数。
公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数
路程÷时间=速度
路程÷速度=时间
5、(关于“大约)应用题:
问题中出现“大约”、“约”、“估一估”、“估算”、“估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)
例:387×5≈
把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。
所以:387×5≈1950
小学数学运算定律
1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)
2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。
3、乘法交换律:a×b=b×a交换因数的位置积不变。
4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。
5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。
数学三角形体积知识点
三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。
小学三年级数学上册的知识点总结 19
第一单元测量
1、在生活中,测量比较短的物品,可以用(毫米、厘米、分米)做单位;测量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。10个100米就是1千米,1千米(公里)=1000米。
2、1厘米的长度里有(10)小格,每个小格的长度(相等),都是(1)毫米。所以,毫米是比厘米小的长度单位。1厘米=10毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、10厘米的长度就是1分米,因此1分米=10厘米。1米=10分米。
5、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的.末尾去掉0(关系式中有几个0,就去掉几个0)。
6、长度单位的关系式有:
①进率是10
1米=10分米1分米=10厘米1厘米=10毫米
10分米=1米10厘米=1分米10毫米=1厘米
②进率是100
1米=100厘米1分米=100毫米100厘米=1米100毫米=1分米
③进率是1000
1千米=1000米1公里=1000米1000米=1千米1000米=1公里
7、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;把千克换算成吨,是在数字的末尾去掉3个0。如:3吨=3000千克5000千克=5吨
7、(相邻)质量单位进率是1000。
1吨=1000千克1千克=1000克
1000千克=1吨1000克=1千克
【小学三年级数学上册的知识点总结】相关文章:
小学数学三年级上册知识点06-04
小学数学三年级上册的知识点06-04
数学三年级上册知识点总结12-08
小学三年级数学上册知识点总结01-18
小学三年级数学上册的知识点总结07-31
小学数学三年级上册知识点详解06-04
小学三年级数学上册知识点总结大全06-13
初二数学上册知识点总结01-05
初三数学上册知识点总结03-19
初三数学上册的知识点总结12-20