三年级上册数学知识点总结

2024-12-09 知识点总结

  总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以提升我们发现问题的能力,让我们一起来学习写总结吧。那么你知道总结如何写吗?以下是小编收集整理的三年级上册数学知识点总结,欢迎大家分享。

  三年级上册数学知识点总结 1

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的位上的数,如果位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看最位的后面一位,如果是0-4则用四舍法,如果是5-9就用五入法。

  的三位数是位999,最小的三位数是100,的四位数是9999,最小的四位数是1000。

  的'三位数比最小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式被减数=减数+差

  和=加数+另一个加数

  减数=被减数-差

  加数=和-另一个加数

  差=被减数-减数

  三年级上册数学知识点总结 2

  分数的初步认识

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的'分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。

  ②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  多项式定义

  在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

  对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

  数学知识点

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:

  ①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:

  ①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  三年级上册数学知识点总结 3

  第一单元 混合计算

  0除以任何非0的数,还得0;字母表示:0÷a(a≠0)=0

  0÷0得不到固定的商;5÷0得不到商.

  第二单元 观察物体

  计算连加式题时,要按从左往右的顺序依次计算

  连减

  786-284-249=253

  计算连减式题时,可以按从左往右的顺序依次计算,也可以先把两个减数加起来,再从被减数里减去两个减数的和。

  786-(284+249)=253

  加减混合

  259+148-342=65

  不带小括号的加减混合式题的运算顺序,:按从左往右的顺序依次计算。带小括号的'加减混合式题的运算顺序:先算小括号里面的,再算小括号外面的。

  里程表中的问题

  求两地间的路程,要找准起点,用较远的路程减去较近的路程就得到两地间的路程

  里程数=终点数-起点数

  第四单元 乘与除

  2.月:

  小月:4、6、9、11月

  平月(二月):平年28天

  闰年29天

  3.日历:学会看日历,知道某年某月是星期几

  4.钟表:24时记时法 12时记时法

  4.公式:

  1时=

  60分 1分= 60秒 半时= 30 分

  60分=1时

  60秒=1分 30 分=半时

  第八单元 可能性

  1.‘不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。

  2.请用“一定、可能、不可能”来说一说。

  一定:太阳一定从东边升起;月亮一定绕着地球转;地球一定每天都在转动;每天一定都有人出生;人一定要喝水……

  可能:三天后可能下雨;花可能是香的;明天可能有风;下周可能会考试。……

  不可能:太阳不可能从西边升起;地球不可能绕着月亮转;我不可能从出生到现在没吃过一点东西;鲤鱼不可能在陆地上生活;空中不可能盖楼房;我不可能比姐姐大……

  三年级上册数学知识点总结 4

  一、学习目标:

  1.认识长度单位毫米,建立1毫米的长度概念,会用毫米厘米度量比较短的物体的长度;

  2.较透彻地理解万以内笔算加法的计算法则,并能应用法则准确地计算两位数连续进位的加法题;

  3.初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类;

  4.知道有余数除法的含义,体会有余数出发的实际背景;

  5.认识时间单位“秒”,知道1分=60秒;会进行一些时间的简单计算;初步建立时、分、秒的时间观念,养成遵守和爱惜时间的意识和习惯;

  6.掌握一位数乘整十、整百、整千数的口算方法,会进行相应的口算;知道一位数乘整十、整百、整千数的简便算法;

  7.初步认识几分之一,会读会写几分之一,能比较分子是1的分数大小;

  8.理解一位数乘整十数的口算法。

  二、学习难点:

  1.认识时间单位时、分、秒,知道1分=60秒,会一些有关时间的简单计算;

  2.知道有余数的除法的含义,来自生活中;

  3.根据四边形的特点对四边形进行分类;

  4.哪一位上的数相加满十,要向前一位进1,而且在前一位上的数相加时,要记得加上进上来的1;

  5.认识长度单位毫米,会用毫米度量物体长度。

  三、知识点概括总结:

  1.毫米:毫米是长度单位和降雨量单位,英文缩写mm。

  1毫米=0.1厘米=0.01分米=0.001米=0.000001千米

  2.厘米:是一个长度计量单位,等于一米的百分之一。长度单位,符号为cm.,1厘米=1/100米。

  1厘米=10毫米=0.1分米=0.01米=0.00001千米

  3.分米:是长度的公制单位之一,1分米相当于1米的十分之一。

  0.0001千米(km)=1分米

  0.1米(m)=1分米

  10厘米(cm)=1分米

  100毫米(mm)=1分米

  4.千米:千米又称公里,是长度单位,通常用于衡量两地之间的距离。是一个国际标准长度计量单位,符号km。

  1千米(公里)=1,000米(公尺)=100,000厘米(公分)=1,000,000毫米(公厘)

  5.吨:质量单位,公制一吨等于1000公斤。

  6.加法:基本的四则运算之一,它是指将两个或者两个以上的数、量合起来,变成一个数、量的计算。

  表达加法的符号为加号(+)。

  进行加法时以加号将各项连接起来,把和放在等号(=)之后,例:1、2和3之和是6,就写成︰1+2+3=6.

  加法各部分名称:“+”是加号,加号前面和后面的数是加数,“=”是等于号,等于号后面的数是和。

  例:100(加数)+(加号)300(加数)=(等于号)400(和)

  加法性质:

  (1)加法交换律:a+b=b+a

  (2)加法结合律:a+b+c=a+(b+c)

  7.减法:四则运算之一,将一个数或量从另一个数或量中减去的运算叫做减法。

  已知两个加数的和与其中一个加数,求另一个加数的运算叫做减法。

  减法的性质:减去一个数,等于加这个数的相反数。

  8.验算:算题算好以后,再通过逆运算(如减法算题用加法,除法算题用乘法)演算一遍,检验以前运算的结果是否正确。

  验算的作用:验算能够有效地检查出计算过程中出现的错误,但对解题思维上的错误无太大用处,通过验算(用结果来推导条件)所得的数据与原数据比较来建议运算是否正确。

  9.四边形:由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形。由凸四边形和凹四边形组成。

  10.平行四边形:两组对边分别平行的.四边形叫做平行四边形。

  11.周长:环绕有限面积的区域边缘的长度积分,叫做周长,图形一周的长度,就是图形的周长。周长的长度因此亦相等于图形所有边的和。

  12.估计:根据情况,对事物的性质、数量、变化等做大概的推断。

  13.余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:1.指整数除法中被除数未被除尽部分。

  例:27除以6,商数为4,余数为3.

  余数的性质:余数有如下一些重要性质(a,b,c均为自然数):

  (1)余数小于除数;

  (2)被除数=除数×商+余数。

  除数=(被除数-余数)÷商;

  商=(被除数-余数)÷除数;

  余数=被除数-除数×商。

  14.秒:时间单位时间单位秒(second)是国际单位制中时间的基本单位,符号是s。

  15.分:时间单位,等于1/60小时,或60秒。

  16.乘法:将相同的数加法起来的快捷方式。其运算结果称为积。

  乘法算式中各数的名称:“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)20xx(积)

  18.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。

  分子在上分母在下,也可以把它当做除法来看,用分子除以分母,相反乘法也可以改为用分数表示。

  19.分数线、分子、分母:分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。读作几分之几。

  分数可以表述成一个除法算式:如二分之一等于1除以2,其中,1分子等于被除数,分数线等于除号,2分母等于除数,而0.5分数值则等于商。

  20.分数由来:分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。

  200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米,像7/3就是一种新的数,我们把它叫做分数。

  21.可能性:可能性是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标。

  三年级上册数学知识点总结 5

  《四边形》

  1、知识点:认识四边形的特征,掌握长方形、正方形的特征

  ①能正确辨认四边形。

  ②掌握长方形、正方形的特征。

  注:应注重引导学生在长、正方形的对比中找出图形边和角的特征。

  2、知识点:在方格纸上画出长方形和正方形

  能在方格纸上画出长方形和正方形。

  3、知识点:初步认识平行四边形

  ①能正确辨认平行四边形。

  ②能感悟到平行四边形易变形的特性。

  ③能在方格纸上正确画出平行四边形。

  注:学生寻找平行四边形时,要注意与长方形、正方形的区别,逐步让学生在对比中感悟平行四边形的特征。

  4、知识点:周长的.含义

  结合具体情境理解周长的含义。

  5、知识点:计算长方形和正方形的周长

  ①能正确计算长方形、正方形等平面图形的周长。

  ②能运用周长的知识解决实际问题。

  6、知识点:长度和周长的估计

  在估量物体长度的过程中,逐步建立空间观念,养成估计的意识和习惯。

  注:应注重引导学生说出估计相应长度的依据,逐步建立长度单位的表象。

  《测量》

  1、知识点:长度单位毫米、分米、千米及1毫米、1分米、1千米

  ①认识长度单位毫米、分米、千米,建立1毫米、1分米、1千米的长度观念。

  ②根据具体情境选择恰当的长度单位。

  2、知识点:单位间的进率

  ①知道1厘米=10毫米,1分米=10厘米,1米=10分米,1千米(公里)=1000米。

  ②会进行简单的单位换算。

  3、知识点:估计、测量物体的长度

  能估计一些物体的长度,会选择不同的方式准确测量给定物体的长度。

  4、知识点:质量单位吨及1吨

  ①认识质量单位“吨”,建立1吨的质量观念。

  ②能根据具体情境选择恰当的质量单位。

  5、知识点:1吨=1000千克

  知道1吨=1000千克,并会进行吨与千克的单位换算。

  三年级上册数学知识点总结 6

  1、多位数乘一位数(进位)的笔算方法:相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  2、一个因数中间有0的乘法:

  ① 0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  ③一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  3、① 0和任何数相乘都得0;② 1和任何不是0的数相乘还得原来的.数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  公式:速度×时间=路程每节车厢的人数×车厢的数量=全车的人数

  路程÷时间=速度

  路程÷速度=时间

  5、(关于“大约)应用题:

  问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下”,条件中无论有没有大约都是求近似数,用估算。(估算时要用≈)

  例:387×5≈

  把387看作390(个位是7,四舍五入,7大于5所以进1,看作390)再算390×5=1950。

  所以:387×5≈1950

  小学数学运算定律

  1、加法交换律:交换加数的位置和不变。[a+b=b+a](如:23+34=57与34+23=57)

  2、加法结合律:(a+b)+c=a+(b+c)先把前两个数相加,或者先把后两个数相加,和不变。

  3、乘法交换律:a×b=b×a交换因数的位置积不变。

  4、乘法结合律:(a×b)×c=a×(b×c)先把前两个数相乘,或者先把后两个数相乘,积不变。

  5、乘法分配律:(a+b)×c=a×c+b×c两个数的和与一个数相乘,可以把他们与这个数相乘,再相加。

  数学三角形体积知识点

  三角形是二维图形,二维图形没有体积公式。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

  体积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。一维空间物件(如线)及二维空间物件(如正方形)在三维空间中都是零体积的。

  三年级上册数学知识点总结 7

  1、有4条直的边和4个角的封闭图形我们叫它四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等。

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2

  变式:①长方形的长=周长÷2—宽

  ②长方形的宽=周长÷2—长

  正方形的周长=边长×4

  变式:正方形的边长=周长÷4

  数学圆的周长知识点

  环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。

  推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的.理论讨论,上面的做法就足够了。

  小学数学简便计算知识点

  1、连加的简便计算:

  ①使用加法结合律(把和是整十、整百、整千的数结合在一起)

  ②个位:1与9,2与8,3与7,4与6,5与5,结合。

  ③十位:0与9,1与8,2与7,3与6,4与5,结合。

  2、连减的简便计算:

  ①连续减去几个数就等于减去这几个数的和。如:106—26—74=106—(26+74)

  ②减去几个数的和就等于连续减去这几个数。如:106—(26+74)=106—26—74

  3、加减混合的简便计算:

  第一个数的位置不变,其余的加数、减数可以交换位置(可以先加,也可以先减)例如:123+38—23=123—23+38 146—78+54=146+54—78

  4、连乘的简便计算:

  使用乘法结合律:把常见的数结合在一起25与4;125与8;125与80等看见25就去找4,看见125就去找8;

  5、连除的简便计算:

  ①连续除以几个数就等于除以这几个数的积。

  ②除以几个数的积就等于连续除以这几个数。

  6、乘、除混合的简便计算:

  第一个数的位置不变,其余的因数、除数可以交换位置。(可以先乘,也可以先除)例如:27×13÷9=27÷9×13 7。乘法分配律的应用:

  ①类型一:(a+b)×c(a—b)×c= a×c+b×c = a×c—b×c

  ②类型二:a×c+b×c a×c—b×c=(a+b)×c =(a—b)×c

  ③类型三:a×99+a a×b—a= a×(99+1)= a×(b—1)

  ④类型四:a×99 a×102= a×(100—1)= a×(100+2)= a×100—a×1 = a×100+a×2

  三年级上册数学知识点总结 8

  第一单元混合运算

  知识点一、

  1、加法、减法、乘法和除法统称四则运算。

  2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。

  3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。

  4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。

  知识点二、

  关于“0”的运算

  1、“0”不能做除数;

  字母表示:a÷0错误

  2、一个数加上0还得原数;

  字母表示:a+0=a

  3、一个数减去0还得原数;

  字母表示:a-0=a

  4、被减数等于减数,差是0;

  字母表示:a-a=0

  5、一个数和0相乘,仍得0;

  字母表示:a×0=0

  6、0除以任何非0的数,还得0;

  字母表示:0÷a(a≠0)=0

  7、0÷0得不到固定的商;5÷0得不到商.

  第二单元观察物体

  1、生活中的简单物体观察总结:同一个物体从不同的角度看会有不同的形状。

  2、总结:同一立体图形从不同角度观察会有不同的形状。

  第三单元加与减

  第一节捐书活动

  知识点:

  1、在计算脱式计算连加时,按从左到右的顺序,先把前两个数相加,再加第三个数,也可以把三个数直接用一个竖式计算相同数位对齐,从个位加起,哪一位上的数字满几十就要向前一位进几,不要认为满十进一。

  2、在计算三个三位数连加时,如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第二节运白菜

  1、用脱式计算连减时,按从左到右的顺序,先把前两个数相减,再减第三个数。也可以先把后两个数相加,写在小括号里面,再用第一个数减去这两个数的和。

  2、如果哪两个数相加能凑成整百,整千数,就先将这两个数相加,再加另外那个数。

  第三节节余多少钱

  三位数加减混合运算的顺序:没有小括号的按从左到右的顺序依次计算,有小括号的先算小括号里面的,再算小括号外面的。

  第四节里程表(一)

  1、根据里程表提出问题,一般先把里程表转化成线段图来观察,再列式计算。

  2、解决此类问题时,一定要从多个角度画图去理解三者之间的位置关系。位置变化,列式也随之变化。

  第五节里程表(二)

  1、当天行驶的里程数=当天里程表的读数-前一天里程表的读数

  2、解答算式谜时,要通过观察推理找到从哪一位先计算,然后一步一步推算出答案。

  第四单元乘与除

  第一节小树有多少棵

  知识点:

  1、整十数乘一位数,根据表内乘法,先用整十数0前面的数与一位数相乘,再在积的末尾添上一个0。

  2、整百数乘一位数,根据表内乘法,先用整百数0前面的数与一位数相乘,再在积的末尾添上两个0。

  3、整十、整百数乘一位数,先根据表内乘法用整十、整百数0前面的数与一位数相乘,再在积的末尾添上相应个数的0。

  4、在口算整百、整千数乘一位数时,先看清楚整百、整千数的末尾有几个0,就在积的末尾添上几个0。要注意一位数与0前面的数相乘时得到的0不能丢。

  第二节需要多少钱

  知识点:

  1、两位数乘一位数(不进位)的口算方法:先把前两位数看作几个十和几个一相加的和,再用一位数分别与它们相乘,最后把所得的两个积相加。

  2、计算混合运算时,要先明确运算顺序,再计算。

  第三节丰收了

  知识点:

  1、整十数除以一位数的口算方法:

  (1)、先看一位数与什么数相乘能得到这个整十数(也就是被除数),结果就是那个数。

  (2)、按表内除法计算:先不看被除数末尾的0,按照表内除法算出商,再将被除数末尾的0填写在商的末尾。

  2、在除法算式里,被除数不变(被除数不为0)。除数越大,商越小,除数越小,商越大;除数不变,被除数越大,商越大,被除数越小,商越小。

  第四节植树

  知识点:

  1、口算两位数除以一位数,先把被除数看成一个整十数和一个一位数,然后分别除以除数,再把所得的两个商相加。

  2、(两个连续自然数之和+1)÷2=较大自然数,(两个连续自然数之和-1)÷2=较小自然数,(两数之和+两数之差)÷2=较大数,(两数之和-两数之差)÷2=较小数。

  第五单元周长

  知识点1:什么是周长

  1、围成一个图形所有边的长度总和或者说绕一个图形边线一周的总和就是这个图形的周长。

  2、不规则物体或图形的测量方法:绳子测量法。

  3、规则物体或图形的测量方法:

  (1)绳测法,

  (2)直尺测量法。

  知识点二:长方形的周长

  1、求长方形的周长必须满足两个条件:已知长和宽的长度。

  2、长方形周长的计算方法:

  (1)长方形的周长=长+宽+长+宽

  (2)长方形的周长=长×2+宽×2

  (3)长方形的周长=(长+宽)×2

  (4)已知长方形的周长和宽,求长;“长=(周长-宽×2)÷2”或“长=周长÷2-宽”

  (5)已知长方形的周长和长,求宽;“宽=(周长-长×2)÷2”或“宽=周长÷2-长”

  3、正方形周长的计算方法:

  (1)可以把4条边长加起来;

  (2)用一条边长乘以4,即正方形的周长=边长×4

  4、靠墙围成的长方形有两种情况:

  (1)长边靠墙,

  (2)宽边靠墙。

  5、围成的两种长方形,宽边靠墙比长边靠墙所需的围栏多。

  第六单元乘法

  第一节蚂蚁做操

  知识点:

  1、两、三位数乘一位数(不进位)的笔算方法:从个位算起,用一位数依次去乘多位数每一位的数,与哪一位上的数相乘,就在那一位的下面写积。

  2、在列竖式计算两位数乘一位数时,一定要用一位数依次去乘两位数中每个数位上的数。

  第二节去游乐园

  知识点:

  1、两、三位数乘一位数(进位)的笔算乘法,列竖式计算时,先将一位数与多位数对齐,从个位算起,哪一位上相乘满几十就向前一位进几。

  2、两位数乘一位数(进位)的笔算,要把进位的'数写到正确的位置上,不要写在积中。

  第三节乘火车

  知识点:

  1、两、三位数乘一位数(连续进位)的笔算方法:从个位算起,用一位数依次去乘两位数每一位上的数,哪一位上乘得的积满几十,就向前一位进几。计算时每一步都不要忘记加上进位数。

  2、笔算乘法时,哪一位上满十就向前一位进1,向哪一位进1,就在那一位加1。

  第四节去奶奶家

  知识点:

  借助里程图解决问题时,一定要明确里程图中的数学信息,理解题意后再进行计算。

  第五节:0×5=?

  知识点:

  1、0和任何数相乘都等于0。

  2、一个乘数末尾有0的乘法的计算方法:

  (1)先用这个乘数0前面的数乘另一个乘数;

  (2)再看这个乘数末尾有几个0,就在积的末尾添上几个0.

  3、在计算乘数中间有0的乘法时,从个位算起,用一个数依次去乘多位数每一位上的数,哪一位上的乘积是0,要在那一位上写0占位,如果有进上来的数必须加上。

  4、结论:

  (1)因数的末尾有0,乘积中一定有0。

  (2)因数的中间有0,乘积中不一定有0。

  第六节买矿泉水

  知识点:

  1、连乘的估算方法:尽可能将其中两个数的乘积估成整十,整百数,再与第三个数相乘。

  2、连乘的运算顺序:按从左到右的顺序依次计算。

  3、三个数连乘时,可以先把前两个数相乘,在乘第三个数;也可以先把后两个数相乘,再乘第一个数;还可以把任意两个数交换位置后再相乘。

  第七单元年月日

  第一节看日历(一)

  知识点:

  1、一年有12个月。

  2、1、3、5、7、8、10、12月每月有31天,是大月;4.6.9.11月每月有30天,是小月;2月有28天或29天,2月既不是大月,也不是小月。

  3、一个月只有28天时,这个月有四个星期一至星期日;一个月有29天时,这个月中星期一至星期日的某一个是5天;一个月有30天时,这个月中星期一至星期日的某2个是5天;一个月有31天时,这个

  第二节看日历(二)

  知识点:

  1、2月29日是个特殊的日子,只有4年才出现。

  2、每四年中有一年的二月份有29天,其他年份的二月份都只有28天。

  3、认识平年和闰年:

  (1)公里年份是4的倍数的是闰年,不是4的倍数的是平年,公立年份是整百年的,是必须是400的倍数的才是闰年。

  (2)判断一个整百年份是不是闰年,要看这个年份数是不是400的倍数,如果是整数倍就是闰年,否者就是平年.

  (3)2月份是28天的是平年,2月份是29天的是闰年,平年一年有365天,闰年一年有366天。

  (4)平年一年有52个星期零1天,闰年一年有52个星期零2天。

  365÷7=52(个)......1(天)

  366÷7=52(个)......2(天)

  4、推算几周年的的时间问题,可以用终止年份直接减去起始年份,所得的差即为所求。

  第三节一天的时间

  知识点:

  1、24时记时法:在一日(天)里,钟表上的时针正好走2圈,共计24时。所以经常采用从0到24时的计时法,通常叫作24时计时法。

  2、普通计时法与24时记时法的表示时刻的换算:从凌晨0:00到中午12:00与普通计时法相同;中午12:00以后,普通计时法与24时记时法的整点时刻相差12,普通计时法去掉限制词后加12就是24时计时法,24时计时法减12后就是普通计时法,

  3、计算从一个时刻到另一个时刻所进过的时间,可以根据钟表推算,也可以用终止时刻减去起始时刻。

  4、计算中午12时的经过时间,要么把时间都换算成24时计时法来计算,要么先算中午12时以前有多长时间,再加上下午的一段时间。

  5、普通计时法在表述时要加上限制词上午、下午或者晚上等,这样才能将时间准确的表达出来。

  第四节:时间表

  知识点:

  1、时间表是管理时间的一种手段,是将某一段时间中已经明确的工作任务清晰的记载和表明的表格,用来提醒使用人和相关人按照时间表的进程活动。

  2、制作时间表,最主要的是做好时间的分配,合理分配时间有助于我们养成良好的生活规律和守时习惯。

  3、判断谁跑得快,只要看谁用的时间短就可以了。

  第五节数学好玩

  知识点:

  1、同一段距离,测量方法和测量工具不同,在测量的结果相同的情况下,选简便的方法比较合适。

  2、地面上一定范围内的直线距离可以直接用直尺来测量。

  3、解决搭配问题也可以用乘法计算,也能得到有多少种不同的搭配方法。

  4、数路线问题实际上也属于搭配问题,在确定行走路线时,一定不要重复和遗漏。

  5、日历中的数有很多规律,如横向左边的数比右边的数少1;纵向上面的数比下面少7等。

  第八单元认识小数

  第一节文具店

  知识点:

  1、像3.15,0.50,1.06,6.66,...这样的数,都是小数。“.”叫作小数点。

  2、小数由整数部分、小数点、和小数部分组成。

  3、一个小数的小数部分有几位数,它就是几位小数。

  4、读小数时,整数部分按整数的读法读,中间的小数点读作点,小数部分依次读出每一数位上的数。

  5、写小数时,要先写整数部分,按照整数的写法来写,然后在个位的右下角点上小数点,最后写小数部分,依次写出各个数位上的数。

  6、把以元为单位的小数改写成以元、角、分的数的方法:小数的整数部分是几,就改写成几元;小数点后的第一位是几,就改写成几角;小数点后的第二位是几,就改写成几分。若那一位上是0,那一位就省略不写。

  7、把带有元、角、分的数改写成一元为单位的小数时,元与小数的整数部分相对应,角与小数点后的第一位数相对应,分与小数点后的第二位数相对应。

  第二节货比三家

  知识点

  1、比较小数大小的方法:先比较整数部分,整数部分大的这个小数就大;如果整数部分相同,就比较小数点后的第一位,小数点后的第一位上的数大的这个小数就大;如果相同就比较小数点后的第二位,以此类推。

  2、比较三个或三个以上小数的大小和比较两个小数大小的方法相同,先比较整数部分,整数部分相同,再依次比较小数部分。

  第三节存零用钱

  知识点

  1、小数加法的计算方法:小数相加,先把小数点对齐(也就是把相同数位对齐),再按照整数加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数减法的计算方法:小数相减,先把小数点对齐(也就是把相同数位对齐),再按照整数减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  第四节寄书

  1、小数进位加法的计算方法:先把小数点对齐,然后按照整数进位加法的计算方法计算,哪一位上的数相加满十就向前一位进1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  2、小数退位减法的计算方法:先把小数点对齐,然后按照整数退位减法的计算方法计算,哪一位上的数不够减,就从前一位退1,最后在得数里点上小数点,使它与横线上的小数点对齐。

  3、在计算小数加法时,与整数加法一样,哪一位上的数相加满十就向前一位进1,千万不要忘记满十进一,也不要忘记下一位进上来的一。

  第五节能通过吗

  1、小数在现实生活中的应用非常广泛,小数可以使数据更加精确。

  2、把带有米、分米、厘米的数改写成以“米”为单位的小数时,米与小数的整数部分相对应,分米与小数点后的第一位数相对应,以此类推。

  3、如果米、分米、厘米中某一个单位上一个数也没有,在改写成以“米”为单位的小数时,就在那个单位所对应的数位上写0。

  三年级上册数学知识点总结 9

  认识分数

  1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  2、分母越大,分数单位越小,的分数单位是1/2

  3、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份。还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。

  4、4米的1/5和1米的4/5同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

  6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的`假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  24时计时法

  1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

  ①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。

  ②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

  两位数乘两位数

  1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

  2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

  3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  4、有大约字样的一般要估算。

  5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

  6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

  7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

  除数是一位数的除法

  1、只要是平均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数-余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  年、月、日

  1、认识年、月、日。认识平年和闰年。

  2、记忆大小月的方法

  3、一年分四个季度:1、2、3月第一季度;

  4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  5、普通记时法与24时记时法的转换。

  6、简单的经过时间的计算方法。认识年、月、日1.1年有12个月。

  7、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。

  8、小月:有30天的月份是大月。小月有4月、6月、9月、11月。

  9、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

  10、一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  平年和闰年

  1、平年:2月有28天的月份是平年,平年有365天。

  2、闰年:2月有29天的月份是平年,平年有365天。

  3、平年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。

  三年级上册数学知识点总结 10

  有余数的除法

  1、余数:在整数的除法中,只有能整除与不能整除两种情况。当不能整除时,就产生余数,取余数运算:指整数除法中被除数未被除尽部分。例如27除以6,商数为4,余数为3。

  2、余数的性质:余数有如下一些重要性质(a,b,c均为自然数)

  (1)余数小于除数。

  (2)被除数=除数×商+余数

  除数=(被除数—余数)÷商

  商=(被除数—余数)÷除数

  余数=被除数—除数×商。

  3、有余数除法的含义:通过平均分一些物体,有时有剩余,就出现了余数。

  如:一共有23盆花,每组摆5盆,最多可以摆几组,还多几盆?

  23÷5=4(组)……3(盆)

  其中,被除数23,除数5,商4,余数3

  4、余数与除数的'关系:

  在有余数的除法中,每一次除得的余数必须比除数小。(余数<除数)

  如:23÷5=4……3,其中(余数3<除数4)

  5、除法各部分之间的关系:

  被除数=商×除数+余数

  或被除数=商×除数

  可能性

  1、不可能和一定’,都表示确定的现象。‘可能’,表示不确定的现象。

  2、请用“一定、可能、不可能”来说一说。

  ①一定:太阳一定从东边升起,月亮一定绕着地球转,地球一定每天都在转动,每天一定都有人出生,人一定要喝水……

  ②可能:三天后可能下雨,花可能是香的,明天可能有风,下周可能会考试。

  ③不可能:太阳不可能从西边升起,地球不可能绕着月亮转,鲤鱼不可能在陆地上生活。

  三年级上册数学知识点总结 11

  《除法》

  (一)口算除法

  1、整千、整百、整十数除以一位数的口算方法。

  (1)用表内除法计算:先用被除数0前面的数除以一位数,算出结果后,再看被除数的末尾有几个0,就在算出的结果后添几个0。

  (2)用乘法来算除法:看一位数乘多少等于被除数,乘的数就是所求的商。

  2、三位数除以一位数的估算方法。

  (1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。

  (2)想口诀估算:想一位数乘几最接近或等于被除数的位或前两位,那么几百或几十就是所要估算的商。

  (二)笔算除法

  1、牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。

  (除数是一位数的计算法则,除数是一位数,从被除数的高位除起,先除被除数的前一位,如果不够除,再除被除数的前两位,除到被除数的哪一位,商就写到被除数那一位的上面。除到被除数的哪一位不够商1,用“0”占位。每一次除得的余数必须比除数小。)

  2、会判断商是几位数。

  比较除数与被除数位的`大小,如果被除数位上的数比除数小,那么商一定比被除数少一位;如果被除数位上的数比除数大或相等,那么商和被除数的位数相等。

  3、除法的验算方法:

  (1)没有余数的除法:商×除数=被除数;

  (2)有余数的除法:商×除数+余数=被除数;

  4、关于0的一些规定:

  (1)0不能作除数。

  (2)相同的两个数相除商是1。(既然能相除这个数就不是0)

  (3)0除以任何不是0的数都得0;0乘任何数都得0。

  5、乘除法的估算:4舍5入法。

  如乘法估算:81×68≈5600,就是把81估成80,68估成70,80乘70得5600。

  除法估算:493÷8≈60,就是把493估成480(480是8的倍数,也最接进492),然后再口算480÷8得60。

  《吨的认识》

  含义:

  计量很重的物品或大宗物品的质量,通常用吨做单位,吨用符号t表示。

  举例:1袋大米约重10千克,100袋大米约重1000千克,也就是1吨。

  单位换算:

  1吨=1000千克

  2吨=2000千克

  方法分析:

  1吨=1000千克,2吨是2个1吨,就是2个1000千克,是2000千克,即2吨=2000千克。

  方法归纳:

  把较大的质量单位换算成相邻的较小的质量单位时,就是在所换算数的末尾添上3个0,把较小的质量单位换算成相邻的较大的质量单位时,就是在所换算数的末尾去掉3个0。

  生活中吨的应用:

  吨的确是个比千克重的多的单位,那么,在计量较重的或大宗物品的质量时,通常用吨作单位?例如“一列货车每节车厢的载重量是50吨,一般一辆货车大约有30—50节车厢,也就是说可以运送200吨左右的货物。实际上,生活中很多物品的质量是用吨来作单位的。比如:嫦娥一号起飞重量为2.35吨;空集装箱本身的重量在2吨—5吨;亚洲象平均重3—4吨,非洲象平均五到六吨左右等等。

  《测量》

  1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

  量比较长的物体,常用米(m)做单位。

  量比较长的路程一般用千米(km)做单位。

  2、运动场的跑道,通常1圈是400米,2圈半是1000米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

  4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

  5、1厘米中间的每一小格的长度是1毫米。

  6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。

  7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

  8、常用长度单位:米、分米、厘米、毫米、千米。

  9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。

  1米=10分米,1分米=10厘米,1厘米=10毫米

  1米=100厘米

  1千米(公里)=1000米

  10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000。

  1吨=1000千克

  1千克=1000克

  三年级上册数学知识点总结 12

  第一章分式

  1、分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2、分式的运算

  (1)分式的乘除

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

  (2)分式的加减

  加减法法则:同分母分式相加减,分母不变,把分子相加减;

  异分母分式相加减,先通分,变为同分母的分式,再加减

  3、整数指数幂的加减乘除法

  4、分式方程及其解法

  第二章反比例函数

  1、反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2、反比例函数在实际问题中的应用

  第三章勾股定理

  1、勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2、勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形。

  第四章四边形

  1、平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2、特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的'对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;

  对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的中线等于斜边的一半。

  (2)菱形

  性质:菱形的四条边都相等;

  菱形的对角线互相垂直,并且每一条对角线平分一组对角;

  菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;

  对角线互相垂直的平行四边形是菱形;

  四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3、梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等;

  同一个底上的两个角相等的梯形是等腰梯形。

  第五章数据的分析

  加权平均数、中位数、众数、极差、方差

  三年级下册数学学习方法

  回顾和把握平时的困难,注意检查错误,填补空白,合理解决问题。

  在实践中,我们要抓住一个难题。我省高考数学考试的难度在0.65左右,如果命题的方向不偏颇,大多数学生都能减少当前问题的难度。对于优等生,要提高难度,灵活运用知识,深入分析问题,提高解决问题的能力。在平时,练习的次数应该适度控制,以前做过的问题应该被发现,特别是容易出错的知识点。我们应该再看一遍,把概念搞清楚,这样才能减少类似问题再犯错误的可能性。有两个重要的问题,一个是战略,另一个是技能。高考就像战争一样,在战略上要轻视敌人,在战术上要重视敌人。在策略上,学生应该建立信心。毕竟复习时间已经够长了,应该掌握知识,这样答案才能立于不败之地。就技巧而言,回答问题比回答问题容易。在试卷中,难度一般是分散的:选择题的难度在后面,填空的难度也是一样的。大问题一般可以在前面或两个做,在后面的大问题中,一两个小问题是比较容易解决的。当你回答一个问题时,你必须先解决这些问题。当你遇到麻烦时,不要花太多时间。只要放弃,做一些简单的事情,专注于突破。考试时间比较紧,要分配合理的答题时间。当然,这会因人而异。中产阶层应该把重心往前移动,在前面选择,填的时间越多,问题越大,有的由前面的问题比较简单,就能拿到积分来把握。优等生要在掌握问题速度的前提下,在适当的重心转移的前提下解决问题。

  三年级下册数学学习技巧

  学会看题

  高中比初中有更多的相关材料。高考是全社会关注的问题。因此,在高中的实践尤其多,一些学生购买更多的材料。因此,如何利用主题来掌握我们学习的知识,扩大我们所学的知识是学习的关键。我认为我们应该看更多的话题,更多的思考,看看解决材料中问题的方法,思考方法中的原因,这样我们就可以从更多的方法中学习。

  有很多方法来消化它们。因此,我们将不得不选择去做这个问题,用一半的努力达到两倍的结果。我建议每天练习一次,每周做一组完整的试题,看2到3组试题,从中找出这段时间数学学习的关键知识,这些是我们常用来解决问题的方法,以及可以用来优化解题的方法。

  课后巩固

  很多学生在课后的学习过程中不注重巩固,只是觉得课堂上的一些知识就足够了,其实这是错误的。高中数学知识丰富,不像初中数学那么简单,却有着丰富的内涵。如果它不能进一步挖掘,那么它只是掌握这些知识的表面。因此,我不知道如何理解,也不能使用这些知识时,我做我的练习。

  做练习是必要的,但有些学生只是做练习,而不是巩固这些知识,把知识扩展到做练习,经常是在练习完成后完成练习。这和中学问题没有什么区别。事实上,我们也应该把在这个练习中使用的知识联系起来,这样我们才能理解正在使用的知识,并且能够掌握更多的知识。也可以发现知识点是关键,也可以发现如何链接相关知识的难题。

  三年级上册数学知识点总结 13

  位置与方向

  1、①(东与西)相对,(南与北)相对,

  (东南—西北)相对,(西南—东北)相对。

  ②清楚以谁为标准来判断位置。

  ③理解位置是相对的,不是绝对的。

  2、地图通常是按(上北、下南、左西、右东)来绘制的。

  (做题时先标出北南西东。)

  3、会看简单的路线图,会描述行走路线。

  一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。

  4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。

  5、生活中的方位知识:

  ①北斗星永远在北方。

  ②影子与太阳的方向相对。

  ③早上太阳在东方,中午在南方,傍晚在西方。

  ④风向与物体倾斜的方向相反。

  (刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……)

  除数是一位数的除法

  1、除数是一位数的除法计算方法:从被除数的位除起,先看被除数的位,如果不够除,就看前两位,除到被除数的哪一位就把商写在哪一位的.上面,余数要比除数小。

  2、没有余数时:被除数=商×除数。有余数时:被除数=商×除数+余数。

  3、“0”不能做除数,做除数没有意义,0除以任何不是0的数都得0。

  4、想:商中间有0的除法,在什么情况下商中间才有0?

  商末尾有0的除法,在什么情况下商末尾才有0?

  特殊统计图:

  当数据比较大而且各个数据间的差距比较小的时候,为了反映这组数据的差异性,我们用起始格表示比较大的数量,而其他格表示较小的数量的统计图,我们称之为“特殊统计图”。

  1、分析统计图时首先要清楚横轴和纵轴各表示什么,每格代表多少。

  2、平均数=总数量÷总份数。

  3、平均数能较好地反映一组数据的总体情况。

  4、在计算平均数之前,要注意先估一估平均数的范围应该大约是多少,然后再进行计算,在算各个数据的总和时,应注意算2次以上以保证计算结果的准确性。

  三年级上册数学知识点总结 14

  1.两位数乘整十数的乘法: 探索因数是整十数的乘法计算,找出计算规律。

  2.两位数乘两位数(不进位):探索两位数乘两位数(不进位)的乘法经历估算与交流算法多样化的过程。

  3.两位数乘两位数(进位) 进一步掌握两位数乘两位数(有进位)的计算方法。并能正确进行估算和计算。解决简单的实际问题。

  4.解决相关的简单实际问题 巩固两位数乘两位数的计算方法,使学生能够正确进行计算,提高计算能力,从而体会数学与实际生活的密切联系,感受到数学在实际生活中的应用。

  找 规 律

  1.乘数是整十数的乘法计算规律:一个因数不变,另一个因数扩大若干倍,积也扩大相同的倍数。

  2.在两位数乘两位数的计算中,让学生经历交流乘法的过程。

  住 新 房

  1.两位数乘两位数(不进位)的乘法,经历使估算与交流算法多样化的过程。体验算法的多样化和灵活性。

  2.掌握竖式计算的基本方法。注意书写格式要理解对应值要对齐的道理。

  3.准确叙述出竖式计算中每一步的算理。

  电 影 院

  知识点:1.准确叙述出两位数乘两位数(进位)乘法的计算方法。

  2.能正确进行估算和计算,解决实际生活中的问题。

  3.进行计算的过程中,注意乘法进的进位。

  旅 游 中 的 数 学

  1.租车活动中:渗透列表解决问题的策略思想,了解最省钱的策略是车的座位尽可能坐满,如果不能坐满,空位必须尽可能少。

  2.用餐活动中:应懂得合理选择的重要性。复习应用小数加减法知识。

  3.旅游计算中:收集数据,处理数据。

  数学学习方法技巧

  培养学生数学学习能力,先得激发他们学习数学的兴趣。

  在我们的生活中,我们经常会感受到,要是你对某种事情感兴趣,关于这个事情的一切你就会很关注,就会投入极大的热情,锲而不舍地钻研它,思考它,对于它的每一个细节你就会很容易地记住,完成起它来也很顺手。在数学学习中,学习兴趣更凸显出了其重要性。对于三年级的学生,更容易看到他们对某一种东西产生兴趣的.那种极大热情。所以要抓牢这一点,让学习兴趣成为学生掌握数学学习能力的导火线。我们教数学的老师,要是能看到学生在课余总是在读数学书,在做数学题,在思考数学问题;要是能听到学生说,“我最喜欢数学了”,“数学玩最有意思”。那么这个时候,说明学生已经对数学产生了浓厚的兴趣,并且他的数学学习能力也在不知不觉中增长。例如,在教学三年级上册《可能性》的时候,我和学生一起做“击鼓传花”的游戏,让学生在活到中体会确定性与不确定性事件,学生表现出了极大的兴趣,就连平时不爱活动不动脑筋的学生也都勇跃参与,而且也很好地掌握了“一定”、“不可能”、“可能”这些个用语。这一课我感觉很成功,因为在学生的兴趣中教学会让教师身心愉悦。

  培养学生数学学习能力,还得注重学生的亲身体验。

  外在的知识,要转化成自身的一种能力,那就得让知识参与我们的生活,并共同构建我们的生活世界。对于小学数学知识的学习,也就应当让学生感受到数学就在我们的生活之中,我们就生活在数学世界里,我们无时无刻不在用数学知识建构我们的生活。例如,在教学三年级上册《分数的初步认识》时,我先出示一些物品,水,柑子,饼子,让学生来分一分,要求做到公正公平。学生在这种亲手操作活动中,会自然而然地运用数学思想——平均分。当分到饼子的时候,学生会说分成两半或四份等,那么这个一半或四份等怎么用数字来表示呢,从而引出课题。学生便会对这门课程产生浓厚的兴趣,因为是通过自己亲手操作产生的数学问题,他们就会有强烈的探究愿望。

  三年级上册数学知识点总结 15

  两位数乘两位数

  1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

  2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

  3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  4、有大约字样的一般要估算。

  5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

  6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

  7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

  除数是一位数的除法

  1、只要是平均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商??余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数-余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的.数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  斜率k知识点

  斜率,数学、几何学名词,是表示一条直线(或曲线的切线)关于(横)坐标轴倾斜程度的量。它通常用直线(或曲线的切线)与(横)坐标轴夹角的正切,或两点的纵坐标之差与横坐标之差的比来表示。

  斜率又称“角系数”,是一条直线对于横坐标轴正向夹角的正切,反映直线对水平面的倾斜度。一条直线与某平面直角坐标系横坐标轴正半轴方向所成的角的正切值即该直线相对于该坐标系的斜率。如果直线与x轴互相垂直,直角的正切值为tan90°,故此直线不存在斜率(也可以说直线的斜率为无穷大)。当直线L的斜率存在时,对于一次函数y=kx+b(斜截式),k即该函数图像的斜率。

  数学学习方法总结

  课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.

  让数学课学与练结合.在数学课上,光听是没用的当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.

  课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.

【三年级上册数学知识点总结】相关文章:

初二数学上册知识点总结01-05

初三数学上册的知识点总结12-20

初三数学上册知识点总结06-19

初三数学上册的知识点总结10-29

初三数学上册知识点总结03-19

初三数学上册知识点总结08-07

初二数学上册知识点总结(经典)10-21

三年级上册数学知识点总结11-06

数学三年级上册知识点总结(精选10篇)06-19