总结是事后对某一阶段的学习或工作情况作加以回顾检查并分析评价的书面材料,它可以帮助我们有寻找学习和工作中的规律,是时候写一份总结了。那么你知道总结如何写吗?以下是小编精心整理的小学数学知识点总结,欢迎阅读,希望大家能够喜欢。
小学数学知识点总结 1
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的`一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
学好数学的方法和技巧总结
主动预习
预习的目的是主动获取新知识的过程,有助于调动学习积极主动性,新知识在未讲解之前,认真阅读教材,养成主动预习的习惯,是获得数学知识的重要手段。
因此,要注意培养自学能力,学会看书。如自学例题时,要弄清例题讲的什么内容,告诉了哪些条件,求什么,书上怎么解答的,为什么要这样解答,还有没有新的解法,解题步骤是怎样的。抓住这些重要问题,动脑思考,步步深入,学会运用已有的知识去独立探究新的知识。
让数学课学与练结合
在数学课上,光听是没用的。自己也要在草稿纸上练。当遇到不懂的难题时,一定要提出来,不能不懂装懂,否则考试遇到类似的题目就可能不会做。听老师讲课时一定要全神贯注,要注意细节问题。应抓住听课中的主要矛盾和问题,在听讲时尽可能与老师的讲解同步思考,必要时做好笔记。每堂课结束以后应深思一下进行归纳,做到一课一得。
单项式书写格式
1、数字写在字母的前面,应省略乘。[5a]、[16xy]等。
2、π是常数,因此也可以作为系数。它不是未知数。
3、若系数是带分数,要化成假分数。
4、当一个单项式的系数是1或—1时,“1”通常省略不写,如[(—1)ab]写成[—ab]等。
5、在单项式中字母不可以做分母,分子可以。
6、单独的数“0”的系数是零,次数也是零。
7、常数的系数是它本身,次数为零。
8、如果是分数的多项式,那么他的系数就是他的分数常数,次数为最高次幂。
小学数学知识点总结 2
(一)数与计算
(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的`加减式题。
(二)量与计量
钟面的认识(整时)。人民币的认识和简单计算。
(三)几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题
比较容易的加法、减法一步计算的应用题。多和少的应用题(抓有效信息的能力)
(五)实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
小学数学知识点总结 3
1、乘法的含义
乘法是求几个相同加数连加的和的简便算法。如:计算:2+2+2=6,用乘法算就是:2×3=6或3×2=6.
2、乘法算式的写法和读法
⑴连加算式改写为乘法算式的方法。求几个相同加数的和,可以用乘法计算。写乘法算式时,可以用乘法计算。写乘法算式时,可以先写相同的加数,然后写乘号,再写相同加数的`个数,最后写等号与连加的和;也可以先写相同加数的个数,然后写乘号,再写相同加数,最后写等号与连加的和。
如:4+4+4=12改写成乘法算式是4×3=12或3×4=12
4 × 3 = 12或3 × 4 = 12
⑵乘法算式的读法。读乘法算式时,要按照算式顺序来读。如:6×3=18读作:“6乘3等于18”。
3、乘法算式中各部分的名称及实际表示的意义
在乘法算式里,乘号前面的数和乘号后面的数都叫做“乘数”;等号后面的得数叫做“积”。
4、乘法算式所表示的意义
求几个相同加数的和,用乘法计算比较简单。一道乘法算式表示的就是几个相同加数连加的和。如:4×5表示5个4相加或4个5相加。
5、加法写成乘法时,加法的和与乘法的积相同。
6、乘法算式中,两个乘数交换位置,积不变。
7、算式各部分名称及计算公式。
乘法:乘数×乘数=积
加法:加数+加数=和
和—加数=加数
减法:被减数—减数=差
被减数=差+减数
减数=被减数—差
8、在9的乘法口诀里,几乘9或9乘几,都可看作几十减几,其中“几”是指相同的数。
如:1×9=10—1 9×5=50—5
9、看图,写乘加、乘减算式时:
乘加:先把相同的部分用乘法表示,再加上不相同的部分。
乘减:先把每一份都算成相同的,写成乘法,然后再把多算进去的减去。
计算时,先算乘,再算加减。
如:加法:3+3+3+3+2=14乘加:3×4+2=14乘减:3×5-1=14
10、“几和几相加”与“几个几相加”有区别
求几和几相加,用几加几;如:求4和3相加是多少?用加法(4+3=7)
求几个几相加,用几乘几。
如:求4个3相加是多少?(3+3+3+3=12或3×4=12或4×3=12)
补充:几和几相乘,求积?用几×几.如:2和4相乘用2×4=8
2个乘数都是几,求积?用几×几。如:2个8相乘用8×8=64
11、一个乘法算式可以表示两个意义,如“4×2”既可以表示“4个2相加”,也可以表示“2个4相加”。
“5+5+5”写成乘法算式是(3×5=15)或(5×3=15),
都可以用口诀(三五十五)来计算,表示(3)个(5)相加
3×5=15读作:3乘5等于15. 5×3=15读作:5乘3等于15
小学数学知识点总结 4
一、百分数的意义:
表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。
注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。
注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“%”。
(2)小数化百分数:小数点向右移动两位,添上“%”。
(3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000等的.分数再化简。
(6)分数化小数:分子除以分母。
二、百分数应用题
1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
求甲比乙多百分之几:(甲-乙)÷乙
求乙比甲少百分之几:(甲-乙)÷甲
3、求一个数的百分之几是多少。一个数(单位“1”)×百分率
4、已知一个数的百分之几是多少,求这个数。
部分量÷百分率=一个数(单位“1”)
5、折扣、打折的意义:几折就是十分之几也就是百分之几十
折扣、成数=几分之几、百分之几、小数
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八点五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半价
6、利率
(1)存入银行的钱叫做本金。
(2)取款时银行多支付的钱叫做利息。
(3)利息与本金的比值叫做利率。
利息=本金×利率×时间
税后利息=利息-利息的应纳税额=利息-利息×5%
注:国债和教育储蓄的利息不纳税
7、百分数应用题型分类
(1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几
(2)求甲比乙多百分之几——(甲-乙)÷乙×100%
(3)求甲比乙少百分之几——(乙-甲)÷乙×100%
小学数学知识点总结 5
1、用竖式计算两位数加法时:
①相同数位对齐,加号写在高位下行之前。
②用尺子画横线。
③从个位加起
④如果个位满10,向十位进1,写在个位、十位之间,不进位不写1
用竖式计算两位数减法时:
①相同数位对齐,减号写在高位下行之前。
②用尺子画横线。
③从个位减起
④如果个位不够减,从十位退1,到个位作10再减(借一要在头上写点),计算时十位要记得减去退掉的1。不借位不写点
⑤得数写在横式上
2、估算:把一个接近整十整百的数看作整十整百来计算。
方法:个位小于5的少看,个位等于或大于5的多看,看成最为接近的整十或整百数。“四舍五入”
如:49+42≈9028+45+24≈10098—17≈80
50 4030 50 20100 20更深一步的估计是能够估出比80大
注:当问题里出现“大约”两个字时,就需要估算。
3、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算,用“比”字两边的较大数减去较小数。
4、多几、少几已知的问题。比谁少几,就用谁减去几;未知数比谁多几,就用谁加上几。
方法:
①根据已知,判断出与要求的未知,谁多谁少
②求多的用加法,求少的用减法
基数和序数的区别
一、意思不同
基数是集合论中刻画任意集合大小的一个概念。两个能够建立元素间一一对应的集合称为互相对等集合。例如3个人的集合和3匹马的集合可以建立一一对应,是两个对等的集合。序数是在基数的基础上再增加一层意思。
二、用处不同
基数可以比较大小,可以进行运算。
例如:
设|A|=a,|B|=β,定义a+β=|{(a,0):a∈A}∪{(b,1):b∈B}|。另,a与β的积规定为|AxB|,A×B为A与B的笛卡儿积。
序数,汉语表示序数的`方法较多。通常是在整数前加“第”,如:第一,第二。也有单用基数的。如:五行:一曰水,二曰火,三曰木,四曰金,五曰土。
三、写法
基数:1、2、3
序数:第1、第2、第3
数与计算知识点
1、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2、分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零。
3、分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4、分数乘整数:数形结合、转化化归
5、倒数:乘积是1的两个数叫做互为倒数。
小学数学知识点总结 6
(一)口算除法
1、整十数除整十数或几百几十的数的口算方法。
(1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60
(2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。
2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。
(二)笔算除法
1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的.前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。
2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。
3、商一位数:
(1)两位数除以整十数,如:62÷30;
(2)三位数除以整十数,如:364÷70
(3)两位数除以两位数,如:90÷29(把29看做30来试商)
(4)三位数除以两位数,如:324÷81(把81看做80来试商)
(5)三位数除以两位数,如:104÷26(把26看做25来试商)
(6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)
(7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)
4、商两位数:(三位数除以两位数)
(1)前两位有余数,如:576÷18
(2)前两位没有余数,如:930÷31
5、判断商的位数的方法:
被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。
(三)商的变化规律
1、商变化:
(1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。
(2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。
2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。
(四)简便计算:
同时去掉同样多的0,如9100÷700=91÷7=13
小学数学知识点总结 7
1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。
2.结合自己的生活经验和已经掌握的.100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。
3.体会数概念与现实生活的密切联系。
4.认识各种面值的人民币,并会进行简单的计算。
5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。
6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。
小学数学知识点总结 8
生活中的数
(一)本单元知识网络:
(二)各课知识点:
可爱的校园(数数)
知识点:
1、按一定顺序手口一致地数出每种物体的个数。
2、能用1-10各数正确地表述物体的数量。
快乐的家园(10以内数的认识)
知识点:
1、能形象理解数“1”既可以表示单个物体,也可以表示一个集合。
2、在数数过程中认识1-10数的符号表示方法。
3、理解1~10各数除了表示几个,还可以表示第几个,从而认识基数与序数的联系与区别:基数表示数量的多少,序数表示数量的顺序。
玩具(1~5的认识与书写)
知识点:
1、能正确数出5以内物体的个数。
2、会正确书写1-5的数字。
小猫钓鱼(0的'认识)
知识点:
1、认识“0”的产生,理解“0”的含义,0即可以表示一个物体也没有,也可以表示起点和分界点。
2、学会读、写“0”。
文具(6~10的认识与书写)
知识点:
1、能正确数出数量是6-10的物体的个数。
2、会读写6—10的数字。
小学数学知识点总结 9
1、上、下
(1)在具体场景中理解上、下的含义及其相对性。
(2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。
(3)培养学生初步的空间观念。
2、前、后
(1)在具体场景中理解前、后、最×的含义,以及前后的相对性。
(2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的'相对位置。
(3)培养学生初步的空间观念。
加减法
(一)本单元知识网络:
(二)各课知识点:
有几枝铅笔(加法的认识)
知识点:
1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;
2、初步尝试选择恰当的方法进行5以内的加法口算。
3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。
有几辆车(初步认识加法的交换律)
4、左、右
(1)在具体场景中理解左、右的含义及其相对性。
(2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。
(3)培养学生初步的空间观念。
5、位置
(1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。
(2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。
(3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。
小学数学知识点总结 10
第一单元 数据整理与收集
1.学会用“正”字记录数据。
2.会数“正”,知道一个“正”字代表数量5。
3.根据统计表,会解决问题。
4.数据收集---整理---分析表格。
第二单元 表内除法(一)
1.平均分的含义:把一些物品分成几份,每份分得同样的多,叫做平均分。
除法就是用来解决平均分问题的。
2.平均分里有两种情况:
(1)把一些东西平均分成几份,求每份是多少;用除法计算,
总数÷份数=每份数
例:24本练习本,平均分给6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一个数里面有几个几)把一个数量按每份是多少分成一份,求能平均分成几份;用除法计算,总数÷每份数=份数
例:24本练习本,每人4本,能分给多少人?
列式:24÷4=6
3、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
除法算式的读法:从左到右的顺序读,“÷”读作除以,“=”读作等于,其他数字不变。
例如:12÷4=3读作(12除以4等于3)
例:42÷7=6 42是(被除数),7是(除数),6是(商;这个算式读作(42除以7等于6 )。
4、除法算式各部分名称:在除法算式中,除号前面的数就被除数,除号后面的数叫除数,所得的数叫商。
被除数÷除数=商。变式:被除数÷商=除数(如何求被除数,想:除数×商=被除数。)
5.用2~6的乘法口诀求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘的被除数。
一句口诀可以写四个算式。(乘数相同的除外)。
例:用“三八二十四”这句口诀
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
计算方法:12÷4=( )时,想:( )四十二,所以商是( ).
6.解决问题
1、解决有关平均分问题的方法:
总数÷每份数=份数、总数÷份数=每份数、
因数×因数=积、一个因数=积÷另一个因数
2、用乘法和除法两步计算解决实际问题的方法:
(1)所求问题要求求出总数,用乘法计算;
(2)所求问题要求求出份数或每份数,用除法计算。
(3)8个果冻,每2个一份,能分成几份?求8里有几个2,用除法计算。
(4)24里面有( )个4,,20里面有( )个5。(用除法计算。)
(5)最小公倍数问题:一堆水果,3个人正好分完,4个人也正好分完,问这堆水果最少有几个?
第三单元 图形的运动
1、轴对称图形:沿一条直线对折,两边完全重合。对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:
一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,春,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。只有形状、大小、方向完全相同的图形通过平移才能互相重合。
(记住:平移只能上下移动或左右移动)
3、旋转:体绕着某一点或轴进行圆周运动的现象就是旋转。(例如:旋转木马、转动的风扇、转动的车轮等)
填空
1、汽车在笔直的公路上行驶,车身的运动是( )现象
2、教室门的打开和关闭,门的运动是( )现象。
A、平移 B、旋转 C、平移和旋转
3、下面( )的运动是平移。
A、旋转的呼啦圈 B、电风扇扇叶 C、拨算珠
第四单元 表内除法(二)
这单元主要是考口算题。有以下几种形式:
1、用7、8、9的乘法口诀求商
求商方法:想“除数×( )=被除数”,再根据乘法口诀计算得商。
例.直接口算:28÷4 8÷8
2、解决问题
求一个数里有几个几,和把一个数平均分成几份,求每份是多少,都用除法计算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );还表示( )里有( )个( );
第五单元 混合运算
一、混合计算
混合运算,先乘除,后加减,有括号的'要先算括号里面的。
只有加、减法或只有乘、除法,都要从左到右按顺序计算。
二、解决两步计算的实际问题
1、想好先解决什么问题,再解决什么问题。
2、可以画图帮助分析。
3、可以分布计算,也可以列综合算式。
请画出先算哪一步,再算哪一步(并标上1和2)
1、同级运算的类型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同级运算的类型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、带小括号运算的类型:方法:算式里有括号的,要先算括号里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4、把两个算式合并成一个综合算式。(重点)。
弄清楚哪个数是前一步算式的结果,就用前一步算式替换掉那个数,其他的照写。当需要替换的是第二个数,必要时还需要加上小括号。
例:15+9=24 24÷3=8 (强调括号不能忘)_____________________________
5、解决需要两步计算解决的问题。(要想好先算出什么,在解答什么)
例:妈妈买回3捆铅笔,每捆8支,送给妹妹12支后,还剩多少支?
先算____________________再算____________________
例:学校买来80本科技书,分给六年级35本,剩下的分给其它5个年级,平均每个年级分到多少本?
6、练习十三 第4题 (重点)
1.我们一共要烤90个面包,每次能烤9个,已经烤了36个,剩下的还要烤几次?
2.我们家原来有25只兔子,又买了15只,一共有8个笼子,平均每个笼子放几只?
3.小明有4套明信卡,每套8张,他把其中的5张送给了好朋友,还剩下几张?
4.工人叔叔要挖总长60米的水沟,已经挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六单元 有余数的除法
有余数的除法
1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。
2、余数与除数的关系:在有余数的除法中,余数必须比除数小。
最大的余数小于除数1,最小的余数是1。
3、笔算除法的计算方法:
(1)先写除号“厂”
(2)被除数写在除号里,除数写在除号的左侧。
(3)试商,商写在被除数上面,并要对着被除数的个位。
(4)把商与除数的乘积写在被除数的下面,相同数位要对齐。
(5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。
4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。
(1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。
(2)乘:把除数和商相乘,将得数写在被除数下面。
(3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。
(4)比:将余数与除数比一比,余数必须必除数小。
5、解决问题
根据除法的意义,解决简单的有余数的除法的问题,要根据实际情况,灵活处理余数。
(1)余数比除数小。
例:43÷7=()…( )余数可能是( )或者余数最大是( )
(2)至少问题(进一法):商+1
例:有27箱菠萝,王叔叔每次最多能运8箱。至少要运多少次才能运完这些菠萝。
(3)最多问题(去尾法)
例:小丽有10元钱,买3元一个的面包,最多能买几个?
课例:
22个学生去划船,每条船最多坐4人,他们至少要租多少条船?
22÷4=5(条)……2(人)
答:他们至少要租6条船。
第七单元 万以内数的认识
一、1000以内数的认识
1、10个一百就是一千。
2、读数时,要从高位读起。百位上是几就几百,十位上几就几十,个位上是几就读几中间有一个0,就读“零”,末尾不管有几个0,都不读。【例如:20xx读作二千零三,2300读作二千三百】
3、写数时,要从高位写起,几个百就在百位写几,几个十就在十位写几,几个一就在个位写几,哪一位上一个数也没有就写0占位。 【例如:三千五百写作3500,三千零六十九写作3069】
4、数的组成:看每个数位上是几,就由几个这样的计数单位组成。例:2369由( )个千、( )个百、( )个十和( )个一组成的。
二、10000以内数的认识
1、10个一千是一万。
2、万以内数的读法和写法与1000以内的数读法和写法相同。
3、最小两位数是10,最大的两位数是99;最小三位数是100,最大的三位数是999;最小四位数是1000,最大的四位数是9999;最小的五位数是10000,最大的五位数是99999。
三、整百、整千数加减法
1、整百、整千加减法的计算方法。
(1)把整百、整千数看成几个百,几个千,然后相加减。
(2)先把0前面的数相加减,再在得数末尾添上与整百、整千数相同个数的0。
2、估算
把数看做它的近似数再计算。
四、10000以内数的大小比较的方法:
(1)位数多的数就大,例如453 < 1000
(2)如果位数相同,就比较最高位上的数字,数字大的这个数就大,反之就小;例如 357 < 978
(3)如果最高位上的数字相同,就比较下一位上的数,依次类推。246 > 219
补充:
1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。
2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。
3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。
例:2647=( )+( )+( )+( )
4、用估算策略解决问题。
96页 例13(估大)
练习19 第8题(估小)
第八单元 克、千克
1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。
2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。
3、一个两分的硬币约是1克。两袋500克的盐约是1千克。
4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10两、1两=50克)
5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。
估计物品有多重,要结合物品的大小、质地等因素。
小学数学知识点总结 11
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)
(2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的.方法是:分子、分母同时除以它们的公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数混合运算
1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、求比一个数多(或少)几分之几的数是多少的解题方法
(1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;
(2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。
小学数学知识点总结 12
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的'图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π=周长÷直径≈3.14
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径=πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。
周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小学数学知识点总结 13
第一单元 小数乘法
1.小数乘整数:意义——求几个相同加数的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2.小数乘小数:意义——就是求这个数的几分之几是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法
4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
5.小数四则运算顺序跟整数是一样的。
6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)
7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
8.小数除以整数的'计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点
11.除法中的变化规律:
①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
②除数不变,被除数扩大,商随着扩大。
③被除数不变,除数缩小,商扩大。
12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
15.在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
16.a×a可以写作a?a或a2,读作a的平方。 2a表示a+a
17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。
18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
20.所有的方程都是等式,但等式不一定都是等式。
21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】
22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。
23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。
26.长方形框架拉成平行四边形,周长不变,面积变小。
27.组合图形:转化成已学的简单图形,通过加、减进行计算。
28.平均数=总数量÷总份数
29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
30.数不仅可以用来表示数量和顺序,还可以用来编码。
31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局
32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。
小学数学知识点总结 14
第一单元长度单位
1、常用的长度单位:米、厘米。
2、测量较短物体通常用厘米作单位,测量较长物体通常用米作单位。
3、测量物体长度的方法:将物体的左端对准直尺的“0”刻度,看物体的右端对着直尺上的刻度是几,这个物体的长度就是几厘米。
4、米和厘米的关系:1米=100厘米100厘米=1米
5、线段
⑴线段的特点:
①线段是直的;
②线段有两个端点;
③线段有长有短,是可以量出长度的。
⑵画线段的方法:先用笔对准尺子的’0”刻度,在它的上面点一个点,再对准要画到的长度的厘米刻度,在它的上面也点一个点,然后把这两个点连起来,写出线段的长度。
⑶测量物体的长度时,当不是从“0”刻度量起时,要用终点的刻度数减去起点的刻度数。
6、填上合适的长度单位。
小明身高1(米)30(厘米)
练习本宽13(厘米)
铅笔长17(厘米)
黑板长2(米)图钉长1(厘米)
一张床长2(米)一口井深3(米)
学校进行100(米)赛跑
教学楼高25(米)宝宝身高80(厘米)
跳绳长2(米)一棵树高3(米)
一把钥匙长5(厘米)
一个文具盒长24(厘米)
讲台高90(厘米)
门高2(米)教室长12(米)
筷子长20(厘米)
一棵小树苗高1(米)
小朋友的头围48厘米
爸爸的身高1米75厘米或175厘米
小朋友的身高120厘米或1米20厘米
第二单元100以内的加法和减法
一、两位数加两位数
1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。
2、两位数加两位数进位加法的计算法则:
①相同数位对齐;
②从个位加起;
③个位满十向十位进1。
3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。
4、和=加数+加数
一个加数=和-另一个加数
二、两位数减两位数
1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减
2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。
3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。
4、差=被减数-减数
被减数=减数+差
减数=被减数+差
三、连加、连减和加减混合
1、连加、连减
连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。
①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。
②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。
2、加减混合
加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。
3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。
四、解决问题(应用题)
1、步骤:
①先读题
②列横式,写结果,千万别忘记写单位(单位为:多少或者几后面的那个字或词)③作答。
2、求“一个已知数”比“另一个已知数”多多少、少多少?用减法计算。用“比”字两边的.较大数减去较小数。
3、比一个数多几、少几,求这个数的问题。先通过关键句分析,“比”字前面是大数还是小数,“比”字后面是大数还是小数,问题里面要求大数还是小数,求大数用加法,求小数用减法。
4、关于提问题的题目,可以这样提问:
①…….和……一共…….?
②……比……..多多少/几……?
③……比……..少多少/几……?
第三单元元角的初步认识
1、角的初步认识
(1)角是由一个顶点和两条边组成的;
(2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。
(3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。
2、直角的初步认识
(1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。
(2)画直角的方法:
①先画一个顶点,再从这个点出发画一条直线
②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线
③再从这点出发沿着三角尺上的另一条直角边画一条线
④最后标出直角标志。
(3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。
(4)所有的直角都一样大
(5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。
小学数学知识点总结 15
角:
(1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
(2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
角的'符号:∠
角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。
在动态定义中,取决于旋转的方向与角度。
角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。
以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
(1)锐角:大于0°,小于90°的角叫做锐角。
(2)直角:等于90°的角叫做直角。
(3)钝角:大于90°而小于180°的角叫做钝角。
乘法:
乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。
乘法算式中各数的名称:
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
例:10(因数)×(乘号)200(因数)=(等于号)2000(积)
平行:
在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。
垂直:
两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
平行四边形:
在同一平面内有两组对边分别平行的四边形叫做平行四边形。
梯形:
梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。
除法:
除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。
小学数学知识点总结 16
一、知识框架
一级知识点数与代数二级知识点数的运算三级知识点
1、列竖式计算除法。
2、两位数除以一位数;
除法的验算
3、一步计算的问题
4、两步计算的问题
1、质量单位千克、克数与代数常见的量
2、千克、克之间的换算,简单的实际问题
3、24时计时法空间与图形空间与图形统计与概率图形的认识
从三个方向观察用小正方体搭成的立体图形形状
1.周长的认识
2.长方形、正方形的周长计算描述事件发生的可能性。
二、期末知识点
第一单元除法(除法是乘法的逆运算)
两位数除以一位数(商是两位数)的除法。是在二年级(上册)表内除法和二年级(下册)有余数除法的基础上安排的。
1.计算:列竖式计算除法。
2.口算:被除数十位和个位上的数分别除以除数都没有余数的除法,包括整十数除以一位数商是整十数。
3.笔算:两位数除以一位数;除法的验算(用乘法验算)。
4.估算:估计两位数除以一位数的商是几十多。
5.一步计算的问题:在解决的'实际问题中体会数量关系。总价÷单价=数量总价÷数量=单价
6.两步计算的问题:先求总和或剩余是多少,再平均分的实际问题。
练习:
(1)用竖式计算,并验算:62÷266÷672÷347÷7
(2)口算:36÷360÷268÷290÷3
(3)列竖式计算:39÷389÷467÷274÷3
(4)你能估算下面各题的商各是几十多吗?64÷584÷395÷481÷3
(5)王老师用72元买笔记本,如果每本单价是2元,那么能买多少本?李老师用60元买了20本笔记本,那么每本笔记本多少钱?
(6)一副乒乓球拍26元,一个乒乓球2元,用50元买一副乒乓球拍,剩下的钱能够买几个乒乓球?第二单元认数1.认数、读数、写数。
整千数:数位与顺序,认、读、写数,口算整千数的加、减法,解决实际问题。非整千数:认、读、写数,口算整千数加整百数及相应的减法,按顺序整理数。
练习:
(1)口算:201+4000800030006000201000+100
(2)写一写:两个千加两个百加一个十是多少?
(3)三千零二是由几个千和几个一组成?
(4)9670是()位数,它的最高位是()位,7在()位上,个位上是()。
2.大小比较
比较大小时的数学思考,比较大小的实际应用,非整千数最接近几千。
练习:
比较大小:3650和2520,7890和8790第三单元千克和克
千克和克都是质量单位,物体含有物质的多少是它的质量。我国人民在生活中习惯以“物体有多重”代替“质量是多少”,因此没有使用“质量”这个词,仍然讲“有多重”。
1.称一个物体有多重,一般用千克为单位。
2.净含量是指包装袋内物品实际有多重。
3.千克可以用KG表示,又叫公斤。
4.从秤上读出物品的重量。
5.称比较轻的物品,一般用克为单位。
6.认识天平。
7.千克和克之间的关系。1千克=1000克。
练习
(1)一袋盐重500克,两袋盐重()克?
(2)2千克=()克
(3)9000克=()千克第四单元加和减
1.口算两位数加、减。解决与“倍”或“差”有关的两步计算实际问题。
练习
口算:44+2532+5714+6876642.画线段图解决问题。
练习
手套的价格是12元,帽子的价格是手套的3倍,你能用线段画出来并算出帽子是多少钱吗?第五单元24时记时法。
1.24时记时法及它与普通记时法(12时记时法)的联系
2.联系实际问题求经过时间的基本思路与方法。包括:求整时到整时的经过时间,求非整点时刻间的经过时间。(利用线段图)。
求经过时间:
记忆:结束时刻开始时刻=经过时间到达的时刻出发的时刻=经过时间3.两种计时方式的转化。
普通记时法与24时记时法的互相转化普通记时法24时记时法凌晨1时1时
早晨5时5时上午8时8时中午12时12时下午1时13时下午2时14时晚上6时18时晚上7时19时晚上8时20时晚上9时21时
深夜12时24时(也是第二天的0时)
记忆:中午12时以后的时刻,用24时记时法表示,就用钟面上的时刻加上12时。中午12时以后的时刻,用普通记时法表示,就用时刻减去12时。
练习
(1)图书馆的的公告牌上面写着:借书时间:12:0013:30,15:4017:00。图书馆每天的借书时间是多长?
(2)用二十四小时计时法表示,:下午2:00,晚上9:00第六单元长方形和正方形
1.认识长方形和正方形。掌握长方形、正方形的边与角有什么特点。(长方形对边相等,四个角都是直角。正方形每条边都相等,四个角都是直角。通常把长方形的长边叫做长,短边叫做宽。把正方形的每一条边都叫做边长。)
2.探索、理解周长的含义及计算方法。计算长方形和正方形的周长。(物体某个面上一周边线的长度就是该物体某个面的周长)。
练习
(1)篮球场长26米,宽14米,求篮球场的周长。
(2)操场长150米,宽70米,小强绕操场跑一周,小强一共跑了多少米?
第七单元乘法
1.三位数乘一位数的基本方法。(在二年级下册已经学习了两位数乘一位数)
2.三位数的中间或末尾是0时的乘法计算。3.连乘计算。练习:
(1)200×3152×4261×3224×5(2)124×3×2115×2×4
(3)一头牛一天吃20千克草,两头牛两天吃多少千克草?
第八单元观察物体
安排过一次“观察物体”,从物体(玩具、茶壶、汽车等)的前面、后面、左面、右面观察,并选择适宜的图形表示看到的物体的形状。本单元学习“观察物体”,从物体的正面、侧面和上面观察,并用视图表示看到的形状。
1.在知道物体的前面、后面、左面、右面的基础上,认识物体的正面、侧面和上面。
2.在不同的位置观察,看到的物体的面的个数往往是不相同的。
3.进行简单几何体与其三视图之间的转化。
第九单元统计与可能性
学习简单的统计知识。
练习
在一个口袋里放3个红球,一个黄球,从袋子里任意摸一个球,摸到红球的可能性大还是摸到黄球的可能性大?
第十单元认识分数
理解分数的意义,认、读、写简单的分数,同分母分数(分母小于10)的加减计算。
1.分数的表示:分子、分母、分数线。
2.同分母分数比较大小。
3.同分母分数的加减。
小学数学知识点总结 17
一、认识数
(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。
(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。
二、数一数
(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。
(二)、数复杂图形数复杂图形时可以按大小分类来数。
(三)、数数按条件的要求去数。
三、比较数列
比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。
四、动手做
(一)、摆一摆要善于寻找不同的方法。
(二)、移一移
五、找规律
(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。
(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。
(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。
六、填一填
(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的解答。
(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。
七、比较2个算式的.大小的方法是:
(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;
(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;
(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;
(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。
八、总结
应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。
小学数学知识点总结 18
(一)数与计算
(1)20以内数的认识。加法和减法。数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合式题
(2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。
(二)量与计量
钟面的认识(整时)。人民币的认识和简单计算。
(三)几何初步知识
长方体、正方体、圆柱和球的直观认识。
长方形、正方形、三角形和圆的直观认识。
(四)应用题
比较容易的加法、减法一步计算的'应用题。多和少的应用题(抓有效信息的能力)
(五)实践活动
选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。
小学数学知识点总结 19
1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的'计算。
2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。
3.体会数概念与现实生活的密切联系。
4.认识各种面值的人民币,并会进行简单的计算。
5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。
6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。
【小学数学知识点总结】相关文章:
小学数学知识点总结10-27
小学数学备考知识点总结11-18
小学的数学知识点总结07-31
小学数学知识点总结06-30
小学数学知识点总结12-05
北京小学数学知识点总结04-24
小学数学必备知识点总结整理03-01
小学数学知识点总结优秀05-18
小学数学知识点总结15篇04-02
小学生数学知识点总结06-08