时光飞逝,时间在慢慢推演,我们的工作又迈入新的阶段,来为以后的工作做一份计划吧。相信大家又在为写计划犯愁了?以下是小编为大家整理的数学学习计划9篇,仅供参考,大家一起来看看吧。
数学学习计划 篇1
1、针对自己的薄弱学科的学习态度、学习方法、学习目标进行反思,调整。
2、在家长的指导下,写好自己切实可行的暑假生活、学习计划。(安排好每天复习进度的明细内容)
3、把练习卷上做正确的题目进行整理,确认自己已经掌握了哪些知识,具备了哪些运用能力,树立自己对本学科的信心。
4、把练习卷上做错的题目进行整理、抄录,打开教科书,逐题进行分析,找到错误的关键之处,进行认真的订正后,再到教材上找到相关类型的题目,进行练习、强化。(尽可能用自己的力量解决问题)
5、遇到无法解决的困难,按教科书的学习顺序进行梳理罗列。了解自己学习问题的共性薄弱点,然后可以请老师一起帮助解决。
6、每周二次带着学科的不懂之处和老师一起分析、解决问题。回家后运用老师解决问题的方法进行自我强化练习,填补自己的学习漏洞。(这一点必须按照教材由浅入深的学习顺序,切不可东一榔头西一棒的无序)
7、每次完成习题的订正,将错题订正的全过程,牢牢地记在脑海里(背出),渐渐地形成解题方法的量的积累。
8、一星期打两次球,游三次泳,增加运动,提高体能。(也可以听音乐等,做自己有兴趣的事)
9、一星期跟着父母学做两次家常菜,如炒茄子,蒸鱼之类,再做一些力所能及的家务。
数学学习计划 篇2
学习教材:高等数学上、下册(同济大学数学系编,第六版),线性代数(同济大学数学系编,第五版),概率论与数理统计(浙江大学盛骤编,第四版)
学习时间:3月份-6月份
学习目的:通过对整个课本的全称学习,掌握考研数学的考点内容
学习方法:参加领航教育的基础导学课程,可以通过导学课程掌握考研复习的学习方法。概念部分:一定要记准了概念,有许多选择题就是由概念引深出来的或者是直接的概念题,并且要理解。公式部分:自己准备个单独的小笔记,把高数、线代、概率里面所有的公式都要整理出来,不是从课本上抄下来,是结合自己的理解来记忆并能灵活的运用。自己要有一个错题集和经典题集,专门用来收集自己错过的经典的题,并标注好知识点。
学习计划:
一、3月24号上午9:00----11:00
不定积分
1.原函数、不定积分的概念;
2.不定积分的基本公式,不定积分的性质,不定积分的换元积分法与分部积分法;
3.会求有理函数和简单无理函数的积分.
定积分
1.定积分的概念和性质,定积分中值定理;
2.定积分的换元积分法与分部积分法;
3.积分上限的函数的概念和它的导数,牛顿-莱布尼茨公式;
4.反常积分的概念与计算;
5.用定积分计算平面图形的面积、旋转体的体积,函数的平均值.
:本章的基础课后习题
二、3月31号上午9:00----11:00
微分方程
1.微分方程及其阶、解、通解、初始条件和特解等概念;
2.变量可分离的微分方程及一阶线性微分方程的解法;
3.齐次微分方程的解法;
4.线性微分方程解的性质及解的结构;
5.二阶常系数齐次线性微分方程的解法;
6.会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.
作业:本章的基础课后习题
三、4月7号上午9:00----11:00
来总部阶段测评
四、4月14号上午9:00----11:00
多元函数微分学
1.二元函数的概念与几何意义;
2.二元函数的极限与连续的概念,有界闭区域上连续函数的性质;
3.多元函数偏导数和全微分的概念,全微分存在的必要条件和充分条件,全微分形式的不变性,会求全微分;
4.多元复合函数一阶、二阶偏导数的求法;
5.隐函数存在定理,计算多元隐函数的偏导数;
6.多元函数极值和条件极值的概念,二元函数极值存在的必要条件、充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值.
作业:本章的基础课后习题
五、4月21号上午9:00----11:00
重积分
1.二重积分的概念和性质,二重积分的中值定理;
2.会利用直角坐标、极坐标计算二重积分.
级数
1.常数项级数收敛、发散以及收敛级数的和的概念,级数的基本性质及收敛的必要条件;
2.几何级数与级数的收敛与发散的条件;
3.正项级数收敛性的比较判别法和比值判别法;
4.交错级数和莱布尼茨判别法;
5.任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;
6.函数项级数的收敛域及和函数的概念;
7.幂级数的收敛半径、收敛区间及收敛域的求法;
8.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数;
9.函数展开为泰勒级数的充分必要条件;
10.,,,及的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.
作业:本章的基础课后习题
六、4月28号上午9:00----11:00
行列式
1.行列式的概念和性质,行列式按行(列)展开定理.
2.用行列式的性质和行列式按行(列)展开定理计算行列式.
3.用克莱姆法则解齐次线性方程组.
作业:本章的基础课后习题
对角行列式、上(下)三角形行列式值的结论需要记住,以后直接使用,熟记范德蒙行列式的特点与计算公式
七、5月5号上午9:00----11:00
矩阵
1.矩阵的概念,单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念和性质.
2.矩阵的线性运算、乘法运算、转置以及它们的运算规律.
3.方阵的幂与方阵乘积的行列式的性质.
4.逆矩阵的概念和性质,矩阵可逆的充分必要条件.
5.伴随矩阵的概念,用伴随矩阵求逆矩阵.
6.分块矩阵及其运算
作业:本章的基础课后习题
八、5月12号上午9:00----11:00
总部考试
九、5月19号上午9:00----11:00
向量与线性方程组
1.齐次线性方程组有非零解的充分必要条件,非齐次线性方程组有解的充分必要条件.
2.齐次线性方程组的基础解系、通解及解空间的概念,齐次线性方程组的基础解系和通解的求法.
3.非齐次线性方程组解的结构及通解.
4.用初等行变换求解线性方程组的方法.
5.维向量、向量的线性组合与线性表示的概念
6.向量组线性相关、线性无关的概念,向量组线性相关、线性无关的有关性质及判别法.
7.向量组的极大线性无关组和向量组的秩的概念和求解.
8.向量组等价的概念,矩阵的秩与其行(列)向量组的秩之间的关系.
作业:本章的基础课后习题
十、5月26号上午9:00----11:00
矩阵的特征值和特征向量
1.内积的概念,线性无关向量组正交规范化的施密特(Schmidt)方法.
2.规范正交基、正交矩阵的概念以及它们的性质.
3.矩阵的特征值和特征向量的概念及性质,求矩阵的特征值和特征向量.
4.相似矩阵的概念、性质,矩阵可相似对角化的充分必要条件,将矩阵化为相似对角矩阵的方法.
5.实对称矩阵的特征值和特征向量的性质.
作业:本章的基础课后习题
二次型
1.二次型及其矩阵表示,二次型秩的概念,合同变换与合同矩阵的概念,二次型的标准形、规范形的概念以及惯性定理.
2.正交变换化二次型为标准形,配方法化二次型为标准形.
3.正定二次型、正定矩阵的概念和判别法.
作业:本章的基础课后习题
十一、6月2号上午9:00----11:00
考试
十二、6月9号上午9:00----11:00
随机事件和概率
1.样本空间(基本事件空间)的概念,随机事件的概念,事件的关系及运算.
2.概率、条件概率的概念,概率的基本性质.
3.会计算古典型概率和几何型概率.
4.概率的五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯(Bayes)公式.
5.事件独立性的概念与计算.
作业:本章的基础课后习题
随机变量及其分布
1.随机变量的概念,分布函数的概念及性质.
2.独立重复试验的概念与有关事件概率的计算.
3.离散型随机变量及其概率分布的概念,几种常见的离散型随机变量:0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson)分布.
4.连续型随机变量及其概率密度的概念,几种常见的连续型随机变量:均匀分布、正态分布、指数分布.
5.随机变量函数的分布.
作业:本章的基础课后习题
十三、6月16号上午9:00----11:00
多维随机变量及分布
1.多维随机变量的概念,多维随机变量的分布的概念和性质.
2.二维离散型随机变量的概率分布、边缘分布和条件分布.
3.二维连续型随机变量的概率密度、边缘密度和条件密度.
4.随机变量的独立性及不相关性的概念,随机变量相互独立的条件.
5.二维均匀分布,二维正态分布的概率密度,求理解其中参数的概率意义.
6.两个随机变量简单函数的分
作业:本章的基础课后习题
十四、6月23号上午9:00----11:00
考试
十五、6月30号上午9:00----11:00
随机变量的数字特征
1.随机变量数字特征:数学期望、方差、标准差、矩、协方差、相关系数的概念.
2.会运用数字特征的基本性质,并掌握常用分布的数字特征.
3.随机变量函数的数学期望.
4.切比雪夫不等式.
作业:本章的基础课后习题
大数定律和中心极限定理
1.切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理)
作业:本章的基础课后习题
样本及抽样分布
1.总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.
2.分布、分布和分布的概念及性质,上侧分位数的概念并会查表.
3.正态总体的常用抽样分布.
作业:本章的基础课后习题
矩估计和最大似然估计
1.参数的点估计、估计量与估计值的概念.
2.矩估计法(一阶矩、二阶矩)和最大似然估计法.
作业:本章的基础课后习题
7月1号到20号,自己将学习过程中得重点难点整理到笔记上,然后把练习时做过的错题重新做一遍,并把对应的知识点复习一遍,以便暑期能跟上强化班的进度。
7月底到8月中旬:暑假强化班
学习难点:可能第一遍复习完,老师刚讲过的题当时听明白了,课下回去做得时候还是没有思路或者出错,这是很常见的现象,这时候要把知识点定位,然后回想老师对知识点的解说,或者看看课本例题,一定不要浮躁,要理解知识点,不只是套公式,灵活的运用。
数学学习计划 篇3
学生主要是以预习七年级第二学期内容为主,以便对下个学期进一步的学习数学知识有一个更明确的把握,了解数学学习的连贯之处。通常七年级学生刚刚从小学进入初中,还不太适应初中的学习方式。小学阶段,学生主要以模仿式学习为主,而进入中学后则完全不一样,要求学生必须要学会自己独立学习,独立思考。
七年级学生往往不善于课前预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出什么问题和疑点。那到底该如何预习呢?预习的步骤有哪些呢?
一、粗读。
先粗略课文浏览教材的有关内容,大致了解相关内容,掌握本书知识的基本框架,同时了解新课的重点和难点。
二、细读。
对重要概念、公式、法则、定理反复阅读、仔细体会、认真思考,注意知识的发展形成过程,对难以理解的概念作出标记,以便新学期上课时带着问题听课效率更高。通过课前预习能够使学生知道那些地方容易,哪些地方难,会使今后的听课变得更有针对性,注意力更集中,从而提高了听课的效率。大量的事实证明,养成良好的预习习惯,能使孩子从被动学习转为主动学习,同时能逐步培养孩子的自学能力。有了自学能力,就好比掌握了打开知识宝库的钥匙,就能源源不断的获取新知识,汲取新的营养。
三、细心地挖掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:
一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在单项式的概念(数字和字母积的代数式是单项式)中,很多同学忽略了“单个字母或数字也是单项式”。
二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。
三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。
如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?那就要求你做到:
一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;
二列:列出相关的知识点,标出重点、难点,列出各知识点之间的网络关系,这相当于写出总结要点;
三做:在此基础上有目的、有重点、有选择地解一些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。
四归:归纳出体现所学知识的各种题型及解题方法。
五编:根据所总结的内容编一些顺口溜;如:总结不等式组解集时,“大大取大,小小取小,大小小大中间找,大大小小找不着。”证明成比例线段时,可总结为“遇等积化等比,横看竖看定相似,不想死,别生气,等线等比来代替;遇等比化等积,想到射影与圆幂” 。
总之,七年级是学生知识奠定的根基时期,对学生数学学习方法的指导,要力求做到转变思想与传授方法结合,学法与教法结合,课堂与课后结合,教师指导与学生探求结合,家长督导和学生自觉学习相结合,建立纵横交错的学法指导网络,促进学生掌握正确的学习方法,为日后进一步进行数学学习打下良好的基础。
数学学习计划 篇4
今年我很荣幸成为了宁蒗县小学数学名师工作室的一名学员,我希望通过一年的学习,能使自己的数学教学水平得到一定的提高,教研能力在实践中得到培养和锻炼,通过学习提高自己的理论水平,同时不断更新和丰富自己的知识面,努力提高自己的综合素质,以便在以后的工作中更好地服务学生,更好地服务教学。因此,特定以下学习计划:
一学习目标:
1、加强数学学科知识的学习,提高自己的理论知识。
2、加强教学研究,提高自身的教学水平。
3、开展课堂展示,提高实践能力。
二 对个人的学习工作要求
1、不断丰富自己的理论知识。多读有关教育学、心理学的文章及书籍,理解新课标的理念,数学课程标准的基本理念、目标和各阶段的要求,多读有关教育教学的杂志和报刊,如《云南教育 》、《中国教育报》等,经常关注就教育教学动态,提高自身的数学教学素养。
2、努力形成自己的教学风格。在实践教学中,认真上好每堂课,钻研教材,勤写教学反思,主动承担公开课的教学任务,每年最少承担两次学校组织的公开课
教学任务,加强“设疑导学”教学法的实践与探索,学习名师的教学经验和教学特色,努力形成自己独特的教学风格。
3、勤于钻研。积极参加学校组织开展的教育科研活动,把握基础教育改革的动态,特别是小学数学学科研究的动态,善于用教育理论来指导教学实践,在学校教学改革中发挥带头、示范和辐射作用,逐步提高自身和学校的教育科研能力。
4、学会观察、评价、改进课堂教学的技术和策略,有效提高课堂教学效率,打造优质高效课堂,有效减轻学生课业负担,使学生会学、乐学、好学。
三 计划完成的主要工作内容
1、深入研究自己所教的新课标人教版的小学数学教材体系,研究其编排的特点、内容及方法等,能博采众长,正确把握教材的编排意图,提高自己的教学水平。
2、了解小学数学教学的新成果与新视点,明确数学改革的方向,自觉更新知识结构,改变课堂教学模式,灵活运用教学方法,建立新型师生关系,有效提高课堂教学效率。
3、积极参与工作室组织的各项研究,学习活动,根据工作室的要求积极收集,上传与工作室研究课题有关的教学资源。
四本年度的工作安排:
1、积极参加工作室的常规活动。
2、建立业务学习,工作交流例会笔记。
3、进行教育理论的学习和教育教学前沿信息的收集和处理工作,关注教育改革和发展的动态和趋向,提高自己实施新课程的能力。
4、积极参与小组学习的课例分析、课题交流、专题研讨等活动。
xxx
20xx年9月25日星期三
数学学习计划 篇5
一、指导思想
以现代教育理念思想为指导,以校本培训为依托,加大课题研究力度,深入开展小学课堂教学素质化研究,加强对中青年教师的培养,从而形成一种教师积极探索,学生自主、合作的学习氛围,实现人人学习有价值的数学,人人在数学上得到发展。
二、工作目标
1、积极参加校外专家学者的讲座辅导。并认真听取、认真记、认真思考,通过专家的引领,密切结合自身教学实际,查找自身的不足。把专家学者的理论与自己的工作实际想结合,努力探讨研究教学工作,不断提升自身的业务水平。
2、充分利用现代教育技术的教育资源。学习一些先进的教育理念,教学技能。在接受新理念、新知识的同时,不断进行自我反思,吸取别人的长处,弥补自己的不足。查找自己教学中存在的问题,虚心听取别人的指教,积极开展学习研修,有针对性地解决教学中的一些实际问题。
3、积极参加学校组织的各项活动,积极投身于校本研修中去。坚持做到不迟到、不缺勤,认真听取主讲领导的讲座,并认真做好笔记,对每一个教研专题都要密切联系教学工作实际,撰写教研体会。不断提升自我的教研能力和业务水平。
4、在校本教研中,以《怎样进行分数应用题的教学》、《几何的初步认识》为内容进行组内研修。
5、积极开展教学研究活动。除参加学校组织的专家学者等讲座报告外,还应经常在教研组内组织听课、评课,组织组内教师积极开展校本教研活动。特别是要从自己工作的需要出发密切结合教学中的一些难点问题,有针对性的进行教学研究。以教研带动教学,以教学促进教研,真正形成教师之间互相学习,互相研究,互相促进的校本研修氛围。通过活动不断开拓自己的视野,提高自身的综合素质。
三、主要工作及措施
1、全面实施新课程标准,切实转变教育观念。组织广大教师进一步研读《数学课程标准》,把握其精神实质,以新课标指导平时的数学课堂教学和课题研修。
2、加大校本研修的力度,深入开展教学研究。
(1)、我组将按照“备课→上课→摩课→评课”的程式,开展一条龙教研活动,将自主探究型课堂教学研究成果应用于平时的课堂教学,以此来提高教育教学质量。
(2)、开展对年轻教师的“传—帮—带”活动,安排经验丰富、精力充沛的教师与刚参加工作的年轻教师结成对子,促进年轻教师在听课、上课、评课中迅速成长。形成教学“一帮一”互动的模式,让它成为一个良性的循环。
(3)、教研组以叙事、反思为切入点,每位数学教师做到重视叙事的撰写、及时反思和善于反思,学期末每位教师交一份教案,出一份试卷,写遗篇教学反思后案例分析。
3、加大课题研究力度,努力提高教育科研水平。教研组将在原课题《新课程分数应用题教学模式的探究》的基础上继续研修,以新课程、新理念、新技术为内容,加强对该课题的理论学习,组织教师收集有关的素材,及时反思,撰写教育教学论文。每位年轻教师每学期要撰写一篇教学论文上交教科室。
4、扎实做好学科教研工作,将每学期的考核落实到实处。加强数学教研组教学的评价研究,并对表现优秀的教师给予表扬,认真对待学校每学期 “学习型教师”的评选。
数学学习计划 篇6
第一步:基础夯实阶段
基础夯实阶段从时间上讲,大致是从二月份到六七月份,复习内容是考试大纲涉及到的各个知识点,复习方式是地毯式的逐点攻克,包括所有的基本概念、基本定理、基本公式、基本方法、基本思想,这是后续复习阶段的基础,也是考试的基础,因为考研数学考试不是奥数竞赛,不考怪题、偏题,主要是考基本知识和基本方法。
在基础夯实阶段,要以知识点为复习主线,全面地复习考纲内所有的知识点,不管是年年都考的核心知识点,还是偶尔考一下的次要知识点,都不放过,之所以要这样做,主要有两个原因:一是因为数学知识是体系化的、相互联系的一个整体,只有全面地复习 才能对知识有一个整体的把握和透彻的理解,在考试时才能做到心中有数、沉着应战,另一方面,某个次要知识点虽然不是年年都考,但多个次要知识点加在一起就有可能考其中的若干个,其分值之和也不小。
在基础夯实阶段,不要一开始就沉浸在题海之中,否则会因为基础知识没掌握好而导致做题效果差,并且到复习后期会越来越艰难,越发不易提高。当然,适当结合各个知识点的复习做一定量的习题是必要的,毕竟考试是以做题形式进行的。
在基础夯实阶段,可以选用内容比较全面的复习全书。
第二步:强化提高阶段
在经过前一阶段的全面的基础知识复习之后,接下来就应该通过做题来进行强化提高——提高自己解题的能力,包括解题的正确率和速度,提高知识的灵活应用能力,同时对第一阶段的'复习进行查漏补缺。
在做题的过程中,要注意不断地进行归纳总结,对不同的题型进行归纳总结,总结出各种有效的解题方法、思路、规律,不能盲目地做题,不能为做题而做题。
强化提高复习阶段在时间上大致是七月至10月左右。
第三步:考前冲刺阶段
考前大约2个月时间,即11月和12月,为考前冲刺阶段。在经过前二个阶段的全面和强化复习后,这时就应该做一些往年的考研数学真题和今年的模拟题,一方面可以进一步巩固所学各方面知识,提高解题能力,另一方面可以提高自己面临正式考试时的适应能力,使自己不至于怯场。
在后期做模拟题时,应注意控制答题时间和答题方式,在答题顺序上,一般按照先易后难、先前再后、先熟后生、先小后大的原则答题,切忌在某个棘手的问题上纠缠不休,以至于到最后后面会做的题也没有时间做。
数学学习计划 篇7
常言道:“凡事预则立,不预则废”,新的一个学期的到来,几门新功课来到了我们的面前,需要我去探索去研究,为了更好地学习贯彻新知识,获得长足的进步,我特此制定一份数学学习计划。
争取获得优良成绩,能切实在大学里学到丰富的专业知识和基础常识。增加文化素养,提升自身能力,端正学习态度,培养积极勤奋的学风。做学习计划来自我敦促,自我勉励。
一、具体安排
1、坚持预习,坚持在上课前先预习一遍课文,在上课之前对所上的内容有所了解,能提高听课效率。并且在老师上完一章的内容后,能够主动复习。温故而知新。
2、每周早上起来背公式。
3、每周坚持在家里自习。
4、坚持去校图书馆借书阅书,坚持完成老师布置的作业,并且做好读书笔记,时时复习。
5、对于课程知识,要多想多问,并且把其中有收获的部分记入笔记之中,常常翻阅。
6、每个月进行一次数学学习清算,反思自己这个月是否达成了学习计划,有哪一些做得不足的地方,下个月要注意改进。
1、注意力完全集中的状态是否只能保持10至15分钟。
2、学习时,身旁是否常有小说、杂志等使我分心的东西。
3、学习时是否常有想入非非的体验。
4、是否常与人边聊天边学习。
三、学习兴趣问题
(1)是否一见数学书头就发胀。
(2)是否只喜欢自己喜欢的课,而不喜欢数学。
(3)是否常需要强迫自己学习。
(4)是否从未有意识地强化自己的学习行为。
这都是要靠自己自觉的,也许很多人都会因此放纵自己,但是我们要坚信,如果在高一中没有养成好的学习习惯,那么我们的时间就等于是浪费了的,这是人生的黄金时光,我们应该努力多学点东西。因此坚决执行此计划,鼓励自己,学有所成!
数学学习计划 篇8
一、整体思路
以《数学课程标准》为下限,以《考试说明》为上限,以人教版教材为载体,以学案教学为主要教学形式(为与高中教学衔接,将在九年级竞赛中考查分式、二次根式、因式分解、函数等)。复习分三轮进行,第一轮以知识立意,突出 基础性 ,追求数学内容的本质理解,全面梳理知识,侧重双基(基础知识、基本技能),所选素材难度以中档以下为主,时间为3月中旬到5月上旬,约两月时间;第二轮时间以能力立意,突出 发展性 ,追求数学素养的全面提升,侧重数学思想方法、数学基本活动经验,适当加强综合,所选题难度以中档为主,时间为5月中旬至六月上旬。第三轮以状态为立意,突出 综合性 ,追求数学水平的有效发挥,侧重培养学生应试技能,训练应试心理,时间为6月中旬,约一周时间。
二、第一轮复习的具体想法
(一)、教研组的集体教研的效度影响了中招复习的方向。
1、集体教研首先应解决 研 的问题,即①《数学课程标准》的基本理念是什么?对教师的教学建议是什么?具体到每一模块、每一节的目标要求是什么?②《考试说明》的命题指导意见又是怎样理解基本理念的?对课程标准的目标是怎样定位的,是体验、感悟还是了解、理解、掌握、灵活运用?③河南省近四年课改试卷的特点是什么?对每一部分考查了哪些知识点,具体定位是什么,考查形式是什么?考生的答题情况是什么样的?(这一点可参考《改革实践创新20xx-2007河南省中招学业评价回顾》)④本校学生的情况是什么样的?在知识、思想、学法上优势和不足是什么?在学法上应给予哪些具体指导?⑤每一部分的复习过程中,从教材中必选例习题有哪些?意图是什么?(在两种版本的使用上,可考虑两个原则: 目标定位上取共同点,素材选取上取不同点)
2、集体教研接着要解决 教 的策略,即①根据《息县中学数学教学达标评价表(复习课)》的要求,课堂有哪些环节?每一个环节在操作时应注意什么问题?②对学案中重点要求的例题,教师与学生的角色各应怎样体现?提什么样的问题?学生怎样参与?反思什么?
3、集体教研要把计划做 真 做 实 ,即①第一轮复习划分多少课题(可参考xxxx年县教研室编写的学案)?结合本校实际又应该分为多少课时?把考试评讲安排在内,必须具体到天,每周可以有机动时间供各位教师根据本班情况调整。②学案的编写应以骨干教师为主,必须经组长审核,必须要做到杜绝超标题、错题,重点突出,层次清晰。学案中的习题部分必须分A组、B组,应赋分,必须有批改。③安排的校内测试必须考前 三有 : 有命题人及审核人,有考试目的及难度预测,有备用的平行测试试卷;考后 二有 : 有数据统计(三率、重点题的得分情况),有跟踪补缺题组。三次大考后还应在数据分析中加入与同类学校的对比及调整措施。
(二)、课堂教学的效率关键在教师的专业素养。
1、教师对学情了解情况。所要复习的内容哪些是学生已掌握的,哪些是断裂的,是什么原因导致的?通过什么手段可以弥补?
2、第一轮复习要全面,但全面面面俱到;要抓主干,但核心简单;要记忆,但记忆机械记忆,更强调通过再现知识发生发展过程,创新问题情境,从而引导学生理解本质特征;要训练,但训练题海战,反复强调一节课有三四个典型例题、三四个习题,课后有10个左右的习题就够了;要变式,但变式乱变,要做到万变不离其中。要反思,但反思什么教师心中有数吗?教师只有对数学有一定的认识,才能落实 精 字;强调重点不回避,题目不过于求新,不必题题来自中考,教材尤其是北师大教材、改编都是不错的试题来源。
3、做好分层教学。如基础题多看看学困生,对优生要让他们在思考 怎么想的 有什么收获 中发展,课后习题哪些是必做题,哪些是选做题应当明确。
(三)学生学的效果决定了复习的成败。
1、学生对知识网络要能自己梳理,用好 错题本 ;
2、学生要在理解算理的基础上做到规范;
3、学生要在掌握通法的前提下去一题多解,淡化特殊技巧;
4、学生要在具体的知识、题上去感悟思想方法;
5、学生要在限时练中提高解题速度;要在提高阅读能力的基础上完成数学建模,分析解决问题;要通过三种语言的转换,对空间形式的观察、分析、抽象,对图形的处理与变换都与推理相结合来发展空间想象能力。
6、学生需要在教师不同形式的指导下获得 动力加油 。
三、大考范围
第一次大考 : 数与代数 与中考难度相当
第二次大考: 数与代数 空间与图形,比中考难度略高
第三次大考验: 全部,比中考难度略低
数学学习计划 篇9
新课标数学教材在内容安排上有如下的特点:
初一知识点多,初二难点多,初三考点多。同时,新课标数学突出考查学生的“数学思维能力”和“数学应用能力”的考核。因此,同学们在学习的过程中抛弃只做题不思考,一定要养成边学边练边想的习惯。
根据多年的教学经验,利用丰富的教研资源,编写了初二辅导班四个阶段的内部讲义。讲义结合北师大版教材,进一步理顺知识框架结构;根据新课标要求适当扩充相关知识点、解题思路和解题方法,达到培养数学分析能力、解题能力,运用创新能力的目的。讲课高屋建瓴、注重数学思维和方法的讲解,以“三七二十一思维定势法”、“三十六技”为主线,培养学生学数学用数学的意识来来学习数学,让学生达到醍醐灌顶的学习境界。
初二数学四个学习阶段环环相扣,结合整个讲义体系,暑假课程主要内容有如下:
专题一、由三角形六大元素到全等的本质,探究直角三角形(三大定理)、等腰三角形(三线合一定理推广)专题二、由三角形全等到辅助线的作法,探讨共线、共点问题
专题三、由平行四边形,学习定义法证明的经典思路,探讨三角形全等在初中几何中的地位
专题四、从四边形一般化到特殊化,探讨数学定义在数学学习中的作用
专题五、由三角形全等到多边形元素的探究,学习面积法、中位线法解题的技巧
专题六、由a2+a到数与式、绝对值,学习恒等式的证明
专题七、由勾股定理到二次根式,学习二次根式的计算
专题八、由ax=b到方程解的实质,探究一元一次方程组的解
专题九、由变量之间的关系,探究应变量的实质,学习一次函数
专题十、从一次函数到数学建模思想的初步培养开放性、自主性学习的能力。
【【精品】数学学习计划集合9篇】相关文章:
【精品】数学学习计划集合八篇04-22
【精品】数学学习计划模板6篇05-03
【精品】数学学习计划汇总8篇04-25
【精品】数学学习计划合集五篇03-28
【精品】学习计划模板集合6篇04-19
【推荐】数学学习计划集合5篇05-02
关于数学学习计划集合6篇04-18
有关数学学习计划集合九篇04-17
【精品】个人学习计划集合10篇04-25
【精品】学习计划小学模板集合五篇04-09