加法交换律和结合律 教学案例

发布时间:2016-3-17编辑:互联网数学教案

 教学内容:

青岛版小学数学四年级下册第一单元信息窗三13页至14页的内容。

教学目标:

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

3.让学生在数学学习过程中获得探究的乐趣、成功的喜悦,进一步增强对数学学习的兴趣和信心。

4.初步形成独立思考、合作交流的意识和习惯。

教学重点:

理解掌握加法的交换律和结合律,并会用字母表示他们。

教学难点:

引导学生通过讨论,计算从而自己发现并总结出加法交换律、加法结合律的过程。

教学准备:课件、投影仪、卡片

教学过程:

一、拟定导学提纲,自主预习

(一)创设情境

1.谈话:同学们,长江,黄河就像两条长龙盘卧在中国大地,特别是黄河被称为我们的“母亲河”。这几天我们一直在学习有关黄河的知识,了解到了许多有关黄河的信息,除了我们学过的,你还了解到那些有关黄河的知识?(学生根据课前调查回答)想不想再多了解一些? 

课件展示情境录像:(课件展示的关键是让学生从中知道黄河流域的小知识,例如上游:青藏高原 黄土高原 内蒙古高原 中游:黄土高原 下游:华北平原等小知识)最后大屏幕定格在信息窗三的情境图。

以上展示在大家面前的就是黄河流域图。教师板书:黄河流域

请同学们仔细观察,你能获得了哪些数学信息?

 

学生观察汇报,

生汇报:根据黄河流域图我了解到黄河分为上游、中游和下游(1、黄河上游长3472千米,中游长1206千米,下游长786千米;2、黄河上游流域面积是39万平方千米,中游是34万平方千米,下游是2万平方千米;) 

教师适时板书相应的信息条件。

2.你能根据这些信息提出哪些数学问题呢?学生口答。教师板书出问题。 

问题(1)黄河流域的面积是多少万平方千米?

问题(2)黄河全长多少千米?

(二)出示学习目标

同学们提出了这么多有价值的问题,那么今天我们将解决那些问题呢?请看本节课的学习目标: 

1.让学生经历探索加法运算律的过程,理解并掌握加法交换律和结合律,会用字母来表示,能够运用所学的运算定律进行简算。

2.在探索运算律的过程中,发展学生的观察、比较、抽象、概括能力,培养学生的符号感。

(三)出示自学指导

为了能够更好地解决今天的学习目标,老师给大家提供了一些指导意见,请看自学指导。

(自学指导:请同学们认真看教科书第13-14页的信息窗3的第一个红点和小电脑的内容,重点看解决问题的过程,思考:(1)怎样解答同学们提出的问题?哪种方法简单?(2)什么是加法的结合律?怎样用字母式表示?(3)什么是加法交换律?怎样用字母式表示?

(5分钟后,比一比谁汇报得最清楚。)

(四)学生自学

师:下面请同学们根据“自学指导”开始自学,比一比谁看书最认真,谁自学效果最好!(师目光巡视每一个学生,特别要关注特困生。)

二、汇报交流,评价质疑

(一)调查

师:看完的同学请举手?

(二)全班汇报

1.问题一:黄河流域的面积是多少万平方千米? 

学生在列式解答时,可能会出现两种情况:

(1)39+34+2和34+2+39

(2)(39+34)+2和39+(34+2)。

2.问题二:黄河全长多少千米?

学生可能出的情况:

(1)、3470+1210+790和1210+790+3470

(2)(3470+1210)+790和3470+(1210+790)。

今天我们要学的知识就在这两组算式中。

(设计意图:充分运用教材情境图,引导学生获取信息,提出加法问题。在此基础上让学生列出算式。通过这两组算式学习今天的新知识,为下面学习埋下了伏笔。学生会马上把精力投入到这两个算式的研究中,激发了学生探究的兴趣。)

3.观察、比较、发现规律 

(1)观察这些算式,你们发现了什么?

生汇报:每组算式运算的数相同,运算的结果相同,运算的顺序不同。

例如:

(39+34)+2=39+(34+2)

(3470+1210)+790=3470+(1210+790)。

(2)是不是所有的三个数相加都符合这些规律呢? 举例验证一下吧:(每个学生在练习本上写出几组这样的算式,看结果怎样)

生汇报:   

(35+63)+15=35+(63+15)

(325+82)+18=325+(82+18)…

(3)把你的发现告诉大家?(将学生的举例用实物投影展示)

(三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。)

师指出这条规律叫做加法结合律。

(4)你能用你喜欢的方法表示这加法结合律吗?

学生用各种符号、字母表示这个运算定律。最终教师指出,在数学上,我们统一用a、b、c来表示三个加数,因此加法结合律可以写作(a+b)+c=a+(b+c)。学生齐读,教师板书在黑板上

小结:刚才我们通过解决两个问题发现并归纳出了加法结和律。

(设计意图:本环节经历了猜测-举例-验证-得出结论的过程,无形之中培养了学生一种数学思想。)

4.学法迁移,探索加法交换律。

那么,加法运算中还有其他的规律吗?想不想知道?我们先来做个游戏吧。

 (1)游戏:找朋友。

在每个小组中都有一个算式卡片,请同学们小组合作,仔细想一想,算一算,它应该是屏幕上哪个算式的好朋友?为什么?

(2)同学们真棒,很快就为自己的算式找到了合适的朋友,还有谁的算式没有找到朋友?你能根据刚才同学们的方法给他介绍一个合适的好朋友吗? 

同学们你们为什么认为它们是一对算式好朋友呢?(因为它们的得数相同)

(3)观察比较:

请同学们再仔细观察这几组等式,你又有什么发现?

 

(等号两边算式的加数相同,得到的和是一样的,只是加数的位置变了。)

师指出:这是加法的另一个规律----加法交换律。(板书)

(4)你能用字母式表示出这个运算律吗?

(a+b=b+a )

其实加法交换律我们早就会用了,想想看,什么时候我们用过?(在验算加法的时候)

师指出其实我们从一年级上学到现在一直在用这种规律,只是不知道叫什么名字现在大家记住,它叫加法交换律。

谁能结合这个字母算式在说说什么是加法交换律? (两个数相加,交换两个加数的位置,和不变)

(设计意图:加法交换律是一个比较简单的知识点,学生一直以来比较熟悉,所以只要学生猜测之后,再去验证总结就可以了,学生体会到了新旧知识之间的联系。)

三、抽象概括,总结提升

这节课我们通过解决问题,发现并认识了两个运算律:

(一)加法结合律:三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。用字母式表示:(a+b)+c=a+(b+c)

(二)加法交换律:两个数相加,交换两个加数的位置,和不变。用字母式表示:a+b=b+a。

四、巩固应用,拓展提高

过度语:同学们这节课表现的非常聪明,探索出了加法中那么有价值的两个运算规律。相信你一定能够灵活的解答下列各题。

1.在    里填上合适的数字或字母。

 

本题是直接巩固加法运算律的练习题,练习时指四名“学困生”上台板演,其余同学独立填空,然后交流订正,并说明填空的理由。(教师台下巡视有无典型错误)

2.小游戏

 

游戏规则:让学生拿出课前准备好的卡片,同位之间互相问答,并说明理由,看哪组说的有对又快。

(设计意图:本题是以游戏的方式巩固加法运算律的练习题,一方面放松了学生探索问题的紧张情绪,又巩固了所学知识。)

3.网络链接

 

教师指一名学困生到黑板连线,其余学生在练习本上完成。

①观察。师:做完的同学认真看黑板上同学做的和你是否一样。

②纠错。师:和黑板上不一样的同学请举手!点名让学生上台用不同颜色的粉笔在原题旁边更正,不要擦去原来的)下面的同学,如果发现自己错了,在下边要及时改正过来。

③讨论。订正时引导学生对比分析,运用了哪种运算定律?为什么运用运算定律?

(设计意图:此题为下节课学习运用加法运算律进行简便运算做了铺垫。)

④同位互改,调查统计。师:下面的同学同位之间互相批改一下。做全对的同学请举手;做错的同学请举手,说一说你怎么错的?(指名说一说)请做错的同学抓紧时间订正一下。

4.全课小结

今天这节课,你都有哪些收获?

本节课发现并认识了两个运算律:加法结合律(a+b)+c=a+(b+c)和加法交换律a+b=b+a。

5.当堂达标题(课件出示)

同学们真棒,通过大家的猜测、举例、验证探索出了加法的结合律和加法交换律,还能够解答出这么多的问题,还有没有勇气继续接受挑战呢?(有)

我们继续奋斗吧!

(1)用字母表示加法的结合律:(       ),加法的交换律:(           )。

(2)根据运算定律在下面的   里填上数或字母。

 a+b=   +                    140+(25+a)=(    +25)+      

a+28+72=   +(28+72)         24+(a+b)=(   +    )+b

学生独立完成,并让学生计算第三道题等号左右两边的算式,比较哪个计算简便?订正时让学生说说是根据什么填写的?

(3)判断下列式子是否符合加法运算定律。

① m+n=n+m                      (    )

② 423+324=424+323              (    )

③ a+b+c=(a+c)+b                (    )

④(125+48)+75=(125+75)+48       (    )

学生以抢答的方式完成此题,重点说出对与错的理由,并说出运用了哪种加法运算定律?

(4)下课后动脑筋想一想,加法运算律有什么作用?

使用说明:

本节课的学习内容是在学生学习用字母表示数的基础上进行学习的。是一节探索加法交换律和结合律的新授课,回顾从教学设计到课堂实施整个过程,自己收获很多。我想从以下几个方面说一说:

1. 课后反思

本节课的教学是通过引导学生观察阅读分析图片,提取数学信息,提出并解决问题,展开对加法交换律和结合律的学习。让学生在解决问题的过程中理解并掌握加法结合律和加法交换律,并能用字母表示加法的交换律和结合律。

探索问题情境的创设,极大的调动起学生学习、探究、发现、解决问题的欲望,独立观察比较的设计,较充分地发挥了学生的主体作用,提高了学生独立探索的能力。针对本年级学生的心理和认知特点,采用学生喜欢的形式进行教学的双边活动,结构合理紧凑。此外,在练习的过程中,我特别注意培养了学生独立解决问题以及小组的合作意识。运用灵活多变的题目,不断地吸引着学生的探索好奇心,让学生在学习活动中能够手脑并用,始终保持较浓的学习兴趣,积极投入到练习活动中,较顺利地完成了学习任务,并不断的体会着成功的喜悦。

2.使用建议

(1)在教学中应开放性的引导学生观察、比较和分析,找到实际问题不同解法之间的共同点,初步感受运算律。

(2)培养学生猜测-举例-验证-得出结论的数学学习方法。

3.急需解决的问题

培养学生善于发现,善于思考的习惯。

板书设计:

黄河流域

 加法的交换律和结合律

黄河流域的面积是多少万平方千米?

(39+34)+2     39+(34+2)

=73+2            =39+36    

=75(万平方千米)=75(万平方千米)

答:黄河流域的面积是75万平方千米。 黄河全长多少千米?

3470+1210+790   3470+(1210+790)

=4680+790           =3470+2000

=5470(千米)       =5470 (千米)

答:黄河全长5470千米。

加法结合律:三个数相加时,先把前两个数相加,或先把后两个数相加,和不变。

用字母式表示:(a+b)+c=a+(b+c)

加法交换律:两个数相加,交换两个加数的位置,和不变。

用字母式表示:a+b=b+a

   

上一篇 下一篇