圆柱体表面积和体积复习 教案教学设计(北师大版六年级下册)

发布时间:2016-3-2编辑:互联网数学教案

 教学内容:

教科书第98页例4及做一做。

教学目标:

1.学生在整理、复习的过程中,进一步熟悉圆柱体的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。

2.在学生对圆柱体的认识和理解的基础上,进一步培养空间观念。

3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神

重点、难点:

1.灵活运用圆柱体的表面积和体积的计算方法解决实际问题。

2.圆柱体表面积和体积计算方法之间的联系。

教学准备:

课件

教 学 过 程

一、回忆旧知,揭示课题一

1、谈话揭示课题。

师:昨天我们对圆柱体的认识进行了整理和复习,今天我们来走入圆柱体的表面积和体积的整理与复习。(板书:圆柱体表面积和体积的整理与复习)

2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法)

二、回顾整理、建构网络

1、圆柱体的表面积和体积的意义。

(1)提问:什么是圆柱体的表面积?你能举例说明吗?

(2)提问:什么是圆柱体的体积?你能举例说明吗?

(3)教师小结:圆柱体的表面积就是指一个圆柱体所有的面的面积总和,圆柱体的体积就是指一个圆柱体所占空间的大小。

2、小组合作,整理――圆柱体的表面积和体积的计算方法。

(1)独立整理。

刚才我们已经对圆柱体的表面积和体积的意义进行了整理。下面,请同学们用自己喜欢的方式,将对圆柱体的计算方法进行整理。

(2)整理好的同学请在小组中说一说你是怎样进行整理的?

3、汇报展示,交流评价

哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价)

4、归纳总结,升华提高

(1)公式推导。

刚才,我们已经对圆柱体表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?

(2)教师小结:从圆柱体的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。

(3)整理知识间的内在联系

①同学们。我们已经对圆柱体的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些圆柱体的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。

②反馈学生交流情况,明确其内在联系:

a、圆柱体的表面积计算公式的内在联系:圆柱体的侧面积就是长方形的面积,它的表面积都可以用侧面积加两个底面积;

b、圆柱体的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的 ,等体积等底的圆柱体的高是圆锥的 。

随着学生的回答,展示课件

三、重点复习、强化提高

同学们,我们对圆柱体的表面积和体积的意义和计算方法进行了整理和复习,而整理复习的最终目的就是要运用。(板书:运用)运用相关知识去解决问题。

1、判断。(对的打“√” ,错误的打“×”)

① 正方体的棱长扩大2倍,体积就扩大6倍。( )

② 一个圆柱体底面半径缩小3倍,高扩大9倍,它的体积不变。( )

③ 因为求体积与求容积的计算公式相同,所以物体的体积就是它的容积。( )

④ 一个正方体与一个圆柱体的底面周长相等,高也相等。那么,它们的体积也相等。( )

⑤ 圆柱和圆锥等底等高,则圆锥的体积比圆柱少 ,圆柱的体积比圆锥多200%。( )

2、选择正确答案的序号填在括号里。

① 把一个棱长6厘米的正方体切成棱长2厘米的小正方体,可以得到(  )个小正方体。

A、3      B、9      C、12       D、27

② 一个圆锥和一个圆柱的体积相等,底面积也相等。这个圆锥的高是圆柱的高的(  )。

A、3倍     B、        C、        D、 

③ 把两个棱长5厘米的正方体木块粘合成一个长方体,这个长方体的表面积是(   ),体积是(    )。

A、250平方厘米    B、200平方厘米   C、250立方厘米     D、200立方厘米

④ 一个圆柱的底面半径是2厘米,高是2厘米,列式为(3.14×2×2×2)平方厘米,是求(    )。

A、侧面积     B、表面积     C、体积    D、容积

⑤ 681.2用进一法取近似值,得数保留整十数约是(    )。

A、681     B、680      C、690     D、700

3、解决问题。

我朋友买了一套新房,他告诉了我他家客厅的一些数据(长6米,宽4米,高3米)。请同学们帮老师算一算装修时所需的部分材料。

(1)客厅准备用边长是(100×100)平方厘米规格的方砖铺地面,需要多少块?

(2)准备粉刷客厅的四周和顶面,除去门、电视墙等10平方米不粉刷外,实际粉刷的面积是多少平方米?

(3)朋友装修新房时,所选的木料是直径40厘米,长是3米的圆木自己加工,大约需要5根。求装修新房时所需木料的体积?

(板书:认清图形、单位对应、明白问题、认真计算、反复检验)

四、自主简评、完善提高

自主检测

(一)仔细思考、明辨是非

1、一个正方体的棱长扩大2倍,它的体积就会扩大8倍。(    )

2、长方体比长方形大。(    )

3、油桶的容积就是油桶的体积(    )

4、一个正方体和一个圆柱体的底面周长和高都相等,那么它们的体积也相等。(   )

5、把一个圆柱削成最大的圆锥,圆锥的体积是削去部分的一半。(   )

(二)你能解决下面生活中的问题吗?

一个圆柱形水池,直径是20米,深2米.

①这个水池占地面积是多少?

③在池内四周和池底抹一层水泥,水泥面的面积是多少平方米?

(三)活用知识、解决问题

一个水池的排水管内直径是2分米,水在管内的流速是每秒4分米。一小时可以排水多少升?

(四)我是生活小能手

一个装满稻谷的粮囤,高2米,它的上面是圆锥形,下面是圆柱形,底面半径是3米,圆柱和圆锥一样高,这囤稻谷大约有多少立方米?(得数保留整数)

评价完善

1、 通过这节课的整理和复习,你最大的收获是什么?

2、 关于圆柱体的表面积和体积你还有什么问题?

板书设计:

“圆柱体的表面积和体积”的整理和复习

(图形、单位、问题、计算、检验)

意义  

                  应用

计算方法

作业设计:

基础:

1.填一填:

(1)如果我想给房屋进行粉刷,需要刷(  )个面?(    )面不刷?

(2)甲乙两人分别利用一张长20厘米,宽15厘米的纸用不同的方法围成一个圆柱体,那么,围成的圆柱(    )一定相等。

(3)把一个圆柱在平坦的桌面上滚动,那滚动的路线是一条(    )。

(4)把一个边长1分米的正方形纸围成一个最大的圆柱体,这个圆柱体的体积是(    )。

2.选择题。(将错误的答案划掉)。

(1) 一只铁皮水桶能装水多少生升是求水桶的(侧面积、表面积、容积、体积)。

(2) 做一只圆柱体的油桶至少要用多少铁皮,是求油桶的(侧面积、表面积、容积、体积)。

(3) 做一节圆柱形的铁皮通风管,要用多少铁皮,是求通风管的(侧面积、表面积、容积、体积)。

(4) 求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)。

3.判一判:

(1) 两个圆柱体侧面积相等,它们的体积一定相等。( )

(2) 两个圆柱体底面积和高分别相等,它们的体积一定相等。( )

(3) 圆柱体底面积和高都扩2倍,体积就扩4倍。( )

(4) 一个圆柱底面周长和高都扩2倍,体积就扩4倍。( )

(5)一个正方体的棱长是6厘米,它的表面积和体积相等。 (    )

(6)容器的容积和容器的体积大小不一样。                    (    )

(7)两个圆柱体的侧面积相等,那么,它们的底面周长一定相等。   (    )

(8)一个圆柱体,它的高缩小2倍,底面半径扩大2倍,体积不变。 (    )

(9)一段圆柱体木头,把它制成一个最大的圆锥体,削去部分的体积是圆柱体积的2/3,是圆锥体积的2倍。

综合:

4.只列式、不计算:

(1)我们学校的一间教室长9米,宽6米,高3米。在四周墙壁和顶部抹水泥,扣除门窗以及黑板面积共20平方米后,需抹水泥的面积是多少平方米?

(2)李师傅要做一个无盖的圆柱形铁皮水桶,高6分米,底面半径4分米,做这个水桶至少要用铁皮多少平方分米?(得数保留整十平方分米)

(3)大厅里有十根圆柱形柱子,它的底面直径是10分米,高是6米,在这些柱子的表面涂漆,1千克能涂2平方米,共需油漆多少千克?

(4)一个圆柱的侧面展开图是一个边长6.28厘米的正方形,这个圆柱的表面积是多少?

(5)将两个棱长是10厘米的正方体拼成一个长方体,这个长方体的表面积是多少?

拓展提升:

   5.解决问题

(1)把一个棱长6分米的正方体木块削成最大的圆柱形,要削去多少立方分米?

(2)一个底面直径是40厘米的圆柱容器中,水深12厘米,把一块石头沉入水中完全浸没后,水面上升了5厘米。这块石头的体积是多少立方厘米?

(3)一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下), 这时酒深20厘米,你能算出酒瓶的容积是多少毫升来吗?

(4)一个圆柱体,底面半径3分米,切拼成一个近似的长方体后,表面积增加了60平方分米,这个圆柱体的高是多少分米?

(5)一个长方体,底面是个正方形,高每减少2厘米,长方体的表面积就减少32平方厘米,这个长方体的的底面边长是多少?

(6)一根圆柱体木料,长2米,直径4分米,要把它等分成二份,表面积增加了多少?

(7)有一个近似圆锥的小麦堆,测得其底面周长是12.56米,高1.5米。如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?将这些小麦装入底面积是3.14平方米的圆柱形粮囤里能装多高? 

(8)一间教室长10米,宽8米,高4米,门窗面积21.5平方米,粉刷教室的四壁和顶面要用水泥多少千克?(按每平方米用水泥15千克计算)

教学反思:

 

上一篇 下一篇