第六课时:比的意义/第七课时:比的基本性质 教案教学设计(人教新课标六年级上册)

发布时间:2017-10-12编辑:互联网数学教案

 

教学内容:课本第43~44页的内容,完成练习十一的第1、3题。

教学目的:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

重点难点:比的意义,求比值.理解并灵活掌握比与分数、除法的关系。

教学过程:

一、 展示学习目标:掌握比的意义和写法

二、 展示学习指导:

1、自学课本43页内容,

2、杨利伟展示的两面旗都是长15cm,宽10cm。怎样用算式表示它们的长和宽的关系?

生:15÷10  表示长是宽的几倍

    10÷15   表示宽和长的比是什么?

3、怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

生:42252÷90   表示飞船速度

我们可以用比来表示路程的时间的关系。

路程和时间的比是42252比90

4、什么是比?

总结,两个数相除又叫做两个数的比。

比的书写形式:

板书:    15比10   记作:15:10

          10比15    记作:10:15

       42252比90    记作:42252:90

         “:”   是比号

1、 比值

师,在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  板书:      15:10=15÷10=3/2

   强调:因为比值是比的前项除以后项所得的商,所以比值是一个数。比值通常用分数表示,也可以用小数或整数表示。

求比值

15:25      1/2÷1/3   0.5÷0.05

 学生独立计算,求出比值

 说说计算方法和结果

2、 分数、除法和比有什么样的关系?

生总结,师板书:

      

比 前项 比号“:” 后项 比值

除法 被除数 除号:“÷” 除数 商

分数 分子 分数线“-” 分母 分数值

师强调补充:根据比与除法、分数的关系,可以理解比的后项不能为0

五:当堂训练:

完成课本“做一做”

独立完成练习十一第1、3题。

教学内容:

比的基本性质,化简比。课本第45页的内容及第46页例1,完成“做一做”题和练习十一的第2、4~6题。

教学目的:

使学生理解比的基本性质,掌握化简比的方法。

重难点:

比的基本性质理解比与除法 分数的关系.

教学过程:

一、 展示学习目标:理解比的基本性质

二、 提出问题

1、分数约分根据什么性质?说一说分数的基本性质

2、把被除数和除数转化为整数,根据什么,说一说商不变的性质.  

三 、教学比的基本性质。

  1. 我们刚才复习了除法中商不变规律和分数的基本性质,又知道比和除法、分数有着密切的联系,比的前项相当于被除数,比的后项相当于除数;比的前项也相当于分数的分子,比的后项相当于分母。

问:在比中有什么样的规律?

(1) 求比值 

6:8    12:16

(2) 观察求比值的过程

6:8=6÷8=6/8=3/4

12:16=12÷16=12/16=3/4

从上面可以看出:

6:8=12:16

那么这里的前项和后项都有什么变化?

6:8=(       )=12:16

学生不难发现:6:8=(6×2):(8×2)=12:16

(3) 说一说你的发现

比的前项和后项同时乘相同的数(0除外),比值不变

(4) 观察算式。(将前一个等式倒过来)

12:16=6:8

师:如果这样看,前项和后项又有什么变化?

学生不难发现其中的变化

演示:

12:16=(                )=6:8

12:16=(12÷2):(16÷2)=6:8

(5) 说一说你的发现

比的前项和后项同时除以相同的数(0除外),比值不变

(6) 规纳规律

师:你能不能把上面两句话合成一句话?

学生交流后得出结果,教师板书

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这就是比的基本性质。

问:为什么这里要同时乘以或除以相同的数不能是0?(因为如果乘以0,比的后项就变成了0,没有意义。且0不能作除数,更不能同时除以0)

2. 教学化简比。

利用比的基本性质,我们可以把比化成最简单的整数比。

出示例1:把下面各比化成最简单的整数比。

(1)       

问:这道题的前项和后项都是什么数?怎样才能使它化成最简整数比?(引导学生得出:这道题前项、后项都是整数,要把它化成最简整数比,就必须根据比的基本性质把前、后项同时除以它们最大公约数7)

(2)

问:这是一道分数比,怎样才能使它转化成整数比?(引

导学生说出:要根据比的基本性质,把它的前后项同时乘以它们的分母的最小公倍数18,才能转化成整数比。)

  化成整数比以后,如果不是最简的整数比,还要应用(1)题的方法继续化简。

(3)

问:这道是小数比,怎样化成整数比?(启发学生说出:可根据比的基本性质,把它的前后项同时乘以相同的数,使它们转化成整数比。如果这时还不是最简整数比,要再除以前后项的最大公约数,使它化为最简整数比。)

1. 小结:

问:这节课我们学习了什么新知识?它的内容是什么?还学会了什么?

三、巩固练习。

1. 完成“做一做”的题目。

让学生说一说化简的方法。

2. 练习十一第2、4、6题。

 

上一篇 下一篇