第二课时
数的改写数的大小比较
教学要求:
使学生进一步理解数的改写方法,能正确熟练地把一个较大的多位数改写以“万”或“亿”作单位的数和求近似数;能正确熟练地进行分数改写以及分数、小数、百分数之间的互化。
进一步理解整数、小数、分数比较大小的方法,能正确熟练地进行这些数的大小比较。
教学过程:
1.讲述复习内容,提出目标要求
2.复习数的改写
(1)读出下列各数:235800345000345000000
当学生读出来以后,让学生思考:
如何将这两个数分别改写成以万、亿作单位的数?
如何求一个整数近似数?
把一个数改写成以万或亿作单位的数与求一个整数的近似数人什么联系和区别?
235800=23.58万345000000=3.45亿
235800≈24345000000≈3亿
应使学生明确,把一个数改写成以万、亿或其它单位的数,得到的是准确值时,用等号联接两个数,而求近似数,得到的是近似值,用约等号联接两个数。
(2)复习求小数近似数的方法,并比较与求整数近似数人何相同点?
让学生讲清求小数近似数的方法,然后,找出二者相同点:
一般都是用四舍五入法。
“舍”或“入”都是由规定位数的下一位数值决定的。
完成教材76页下的“做一做”
复习分数之间的改写和分数、小数、百分数之间的互化。
先让学生举例说说分数有哪几种,然后做练习,
2)
分数小数百分数
1/20
0.75
45%
举例说说怎样判断一个分数能不能化成有限小数?
复习数的大小比较
练习教材77页的“做一做”
巩固练习
教材78页第2题中(2)题、79页3题、4题。
教材79页5题、6题。
第三课时
数的整除;分数、小数的基本性质。
教学要求:
使学生进一步理解整除、约数、倍数、公约数、公倍数、最大公约数、最小公倍数、质数、合数、互质数、质因数、分解质因数、能被2、3、5整除数的特征等概念,并进一步理解它们之间的联系与区别。
进一步理解分数、小数、的基本性质;小数点移动引起小数大小变化的规律。
教学过程:
今天我们复习有关数的整除的知识和分数、小数的基本性质。这部分知识的要领较多,它又是有关运算和解决这些概念,掌握有关概念的联系。
复习数和整除
由“整除”这个基本概念引出有关概念。
举例说说什么叫整除,什么叫约数和倍数。
如24÷6=436÷12=3
24能被6整除36能被12整除
思考:3÷2=1.56÷1.5=4这两个式是否表示整除关系?为什么?
总结整除的概念:
应注意两点:1)被除数和除数(不等于0)必须是整数:
2)商也是整数且没有余数。
进一步理解质数、合数、互质数、质因数、分解质因数的概念,以及它们之间的关系。
(把24、36分解质因数,通过分解来进一步理解上述概念)
举例说说能被2、3、5整除数的特征,以及偶数与奇数。
通过上述分析过程,逐步形成下列板书:
教材81页上的“做一做”
复习分数、小数的基本性质
在括号里填上合适的数,并说出根据。
1/2=()/4=6/()=()/206/18=()/6=3/()=1/()
在()里填“>”“<”或“=”
12.05()12.0501.402()1.4200.03()0.03000.08()0.8
举例说说小数点移动位置后,小数大小会发生什么变化?
完成81页下的“做一做”
巩固练习
完成教材练习十六中第1、2题。
写出能同时被2、3、5整除的最小两位数。
完成教材练十六中第3、4、5、6题。
练习十六第7~12题。
三、课题:四则运算的意义和法则
教学目标
1.归纳整理四则运算的意义.
2.归纳整理整数小数和分数计算法则的异同点,进一步总结计算时应遵循的一般规律.
3.总结四则运算中的一些特殊情况.
4.总结验算方法.
教学重点
整理四则运算的意义及法则.
教学难点
对四则运算算理本质规律的认识和理解.
教学步骤
一、复习旧知识,归纳知识结构.
(一)四则运算的意义.【演示课件“四则运算的意义和法则”】
1.举例说明四则运算的意义.
根据下面算式,说一说它们表示的四则运算的意义.
2+3 0.6-0.4 2×3 6÷2100-15 2×0.3 0.6÷0.20.2+0.3
2.观察图片.
教师提问:看一看,整数、小数、分数的哪些意义相同?哪些意义有扩展?
(加法、减法和除法意义相同,乘法意义在小数和分数中有所扩展.)
3.你能用图示的形式表示出四则运算的意义之间的关系吗?
(二)四则运算的法则.【继续演示课件“四则运算的意义和法则”】
1.加法和减法的法则.
(1)出示三道题,请分析错误原因并改正.
错误分别是:数位没有对齐,小数点没有对齐,没有通分.
(2)三条法则分别是怎样要求的?
整数:相同数位对齐
小数:小数点对齐
分数:分母相同时才能直接相加减
思考:三条法则的要求反映了一条什么样的共同的规律?
(相同计数单位上的数才能相加或相减)
2.乘法和除法的法则.
(1)出示两道题:
口述整数乘法和除法的计算法则.
改编成小数乘除法计算:1.42×2.34.182÷1.23
(要求:学生在整数计算的结果上确定小数点的位置)
(2)教师提问.
通过上面的计算,你发现小数乘法和除法与整数乘法和除法有什么相似的地方?
(小数乘除法都先按整数乘除法法则计算)
有什么不同?
(小数乘、除法还要在计算结果上确定小数点的位置.)
(3)说一说分数乘法和除法的法则.
分数乘法和除法比较又有什么相似和不同?
相似:分数除法要转化成分数乘法计算.
不同:分数除法转化后乘的是除数的倒数.
(三)练习.【继续演示课件“四则运算的意义和法则”】
计算后说一说各题计算时需要注意什么?
73.06-3.96 (差的百分位是0,可以不写)
37.5×1.03(积是三位小数)
8.7÷0.03(商是整数)
3.13÷15 (得数保留三位小数)
(四)法则中的特殊情况.【继续演示课件“四则运算的意义和法则”】
请同学们根据a与0,a与1和a与a的运算分类.(a作除数时不等于0)
分类如下:
第一组:a+0=aa-0=aa×0=00÷a=0
第二组:a×1=aa÷1=a
第三组:a-a=0a÷a=1
(五)验算.【继续演示课件“四则运算的意义和法则”】
1.根据四则运算的关系,完成下面等式.
2.思考:怎样应用这些关系对加、减法或乘、除法的计算进行验算?
(加法可用减法验算;减法可以用加法或减法验算;乘法可以用除法验算;除法可以用乘法或除法验算.)
3.练习:先说出下面各算式的意义,再计算,并进行验算.
4325+379 47.5-7.65 18.4×75
84× 587.1÷0.57 ÷
二、全课小结.
这节课我们对四则运算的意义和法则进行了整理和复习,总结了在四则运算中的一些特殊情况及注意的问题,希望同学们在计算时一定要细心、认真,养成自觉验算的好习惯.
三、随堂练习.
1.根据43×78=3354,直接写出下面各题的得数.(复习积的变化规律和商不变的性质)
43×0.78=0.43×7.8=
33.54÷0.78=3354÷0.43=
2.在○里填上“>”“<”或“=”.
3.思考:7.6÷0.25的商与7.6×4的积相等吗?为什么?
四、布置作业.
计算下面各题,并且验算.
五、板书设计