梯形面积的计算 教案教学设计(北师大版五年级上册)

发布时间:2016-9-19编辑:互联网数学教案

                第一课时   总第       课时

教学内容:梯形面积计算公式的推导。(课本80-81页)练习十九第1-4。

教学目标:理解和掌握梯形面积公式,并能运用梯形的面积公式正确地计算梯形的面积。

通过实际操作,掌握梯形面积公式的推导过程,理解公式的来源。

教具准备:三个大小完全一样的梯形。

教学过程:

一、复习:

⒈平行四边形的面积公式是什么?

⒉三角形的面积公式是什么?它是通过怎样的转换推导出来的?为什么要÷2?

⒊求下列图形的面积(只列式)

⑴已知平行四边形的底3米,高2.4米,求面积。

⑵已知三角形的底2.5米,高0.8米,求它的面积。  

二、新授

⒈问题导入。

左图是一个梯形。它的上底3厘米,下底5厘米,高 是4厘米,想一想:你能依照求三角形面积的办法,把梯形也转化成已学过的图形,计算出它面积吗?

板书课题:梯形面积的计算

⒉指导操作实验,推导梯形面积公式。

⑴拿出两个完全相同的梯形看课本第80页图示,按照与三角形转化类似的方法旋转平移。

指导:①把两个完全相同的梯形重叠。②怎样旋转上面一个梯形?③再怎样移动?

按①重合②旋转③平移的步骤边设问、边操作,指名口述。

⑵观察分析。

A.拼成的是什么图形?这个图形的面积与原梯形的面积是什么关系?为什么有这种倍数关系存在?

B.深入比较:

①拼成的平行四边形的底跟原梯形的两底是什么关系?

②平行四边形的高与原梯形的高又是什么关系? 

导出公式:

平行四边形的面积=底×高

梯形的面积=(上底+下底)×高÷2

⑶自我梳理:

①填写教材80页中横线上的内容。

②联系三角形的面积公式,分析理解:为什么两个公式都有一个÷2?

③全班齐记公式两遍,计算前面的问题,把计算过程填写在课本上。

⒊引导学生用字母公式表示梯形的面积公式。

S=(a+b)h÷2

三、巩固练习

⒈求梯形的面积:

①上底13米,下底15米,高4米。

②上底13分米,下底2.7米,高1.5米。

③上底25米,下底14.5米,与两底垂直的一腰10米。

⒉完成做一做中的二小题。

⒊练习十九第4题。

四、总结

⒈这节课又解决了什么新问题?

⒉梯形的面积公式是什么?与三角形比较,有什么共性?解题时要特别注意什么?

五、作业

练习十九第1、2、3题

六、板书设计:

                                                      梯形面积的计算 

 

七、教后感:

          梯形面积的计算            第二课时   总第       课时

教学内容:梯形面积计算的应用(第81页的例题,练习十九第5-10题)

教学目标 :进一步熟练掌握梯形的面积计算公式,并能正确解答有关的实际应用问题。

教具准备;沟渠的实物模型

教学过程:

一、复习

⒈梯形的面积计算公式是什么?它为什么与三角形的面积公式类似,也要÷2?

⒉面积常用的计量单位有哪些?相邻两个面积单位之间的进率是多少?

填写课本第84页第6题。

⒊口答:

⑴求梯形的面积。

①a=3    b=6    h=4         ②a=9   b=10    h=0.4

⑵求三角形的面积。

①a=2.1      h=5     ②a=49     h=10

⑶求 平行四边形的面积。

①a=5      h=8     ②a=49     h=10

二、新授

⒈例题教学:

一条新挖的渠道,横截面是梯形。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?

⑴出示渠道实物模型,帮助学生理解;渠道横截面面积就是梯形的面积,渠口宽就是梯形的上底,渠底宽就是梯形的下底,渠深就是梯形的高。

⑵学生独立完成例题,教师巡视、指导。

⑶指名板演,再评讲。

(2.8+1.4)×1.2÷2

=4.2×1.2÷2=2.52( 平方米)

⒉学生质疑。

三、巩固练习

⒈完成练习十九第7题,先计算,再填表。

⒉完成练习十九第8、9、10题。

教师讲评并作全课总结。

四、板书设计:

                                         梯形面积的计算 

五、教后感:

       梯形面积的计算            第三课时   总第       课时

教学内容:混合练习(课本第84-85页,练习十九第11-18题)

教学目标:⒈通过混合练习,理清多边形的面积计算公式,能够熟练地运用公式求面积和解答有关的应用问题。

⒉在复习与梳理中学会联系,进而提高综合分析解题能力。

教学过程:

一、复习梳理

⒈公式的复习

我们已经学过各种多边形的面积计算公式,谁来说说这些公式各是什么?它们是怎样推导出来的?

师生共同进行:边回顾、边画图、边讨论;

⒉教师指出:多边形的面积公式是互相联系,彼此相关的,我们 必须以长方形的面积公式为基础,以平行四边形的面积为重点,清楚地把握它们之间的同在联系和区别。

二、练习巩固

⒈独立完成练习十九的第12题--看谁正确率最高!

要求:开列已知条件;写出相应的面积公式;列式解答。

⒉完成第14题

先议:⑴左图是什么图形?求面积需要哪些条件?怎么取得?⑵右图是什么图形?为什么?求它的面积需要量几个量?把它们分别量出来。

⒊完成第13和15题

在求得面积之后,怎样选择算法求解。

三、综合提高:

讨论:

⑴平行四边形的底扩大3倍,高不变,面积怎样变化?如果高也扩大2倍呢?

⑵三角形的底不变,高缩小2倍,面积怎样变化?如果高缩小2倍,底扩大2倍,情况又怎样呢?

⑶一个三角形与一个平行四边形等底等面积,那么三角形底边上的高一定是这个平行四边形高的2倍,为什么?

四、总结:

多边形的面积计算,关键是公式的理解与熟练,同时在选用公式时,尤其注意哪些图形求面积时要÷2。

五、板书设计:

                                    梯形面积的计算 

 

六、教后感:

 

 

 

 

 

上一篇 下一篇