课型:新授课 课时安排:1课时
教学目标:
1、初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。
2、初步理解等式的基本性质,能用等式的性质解简易方程及检验的方法。
3、培养的分析能力应用所学知识解决实际问题的能力。
4、初步学会检验某个数是否是方程的解,培养学生检验的习惯,提高计算能力。帮助养成自觉检验的良好习惯。在教学中渗透环保教育。
教学重点:理解并掌握解方程的方法。
教学难点:理解并掌握解方程的方法。
教学准备:教学课件。
教学流程:
一、复习铺垫:
1、教师:前面我们学了方程的意义,你还记得什么叫方程吗?(含有未知数的等式叫方程。)怎样判断一个式子是不是方程?
2、判断下面哪些是方程吗?
(1)a+24=73 (2)4x<36+17 (3)234÷a>12
(4)72=x+16 (5)x+85 (6)25÷y=0.6
3、教师:上节课我们还通过玩天平游戏认识了等式的基本性质,还记得等式的基本性质吗?
4、新课引入:这节课,我们就来应用等式的基本性质去解简易方程。(板书课题:解简易方程)在学习解简易方程前,我们先来认识两个概念----方程的解和解方程。
二、探究新知:
认识方程的解和解方程:
1、看图写方程。
出示上节课用天平称一杯水的情景图。(100+X=250)
2、求方程中的未知数
教师:那么方程中的x等于多少呢?请同学们同桌交流,说说你是怎么想的?
学生交流后汇报:
方法一:根据加减法之间的关系250-100=150,所以X=150
方法二:根据数的组成100+150=250,所以X=150
方法三:100+X=250=100+150,所以X=150
方法四:假如在方程左右两边同时减去100,那么也可得出X=150
3、引出方程的解和解方程的概念。
教师:使方程左右两边相等的未知知数的值,叫做方程的解。像上面,x=150就是方程100+x=250的解。而求方程的解的过程叫做解方程。
4、辨析方程的解和解方程两个概念。
教师:方程的解和解方程这两个概念有什么区别?
5、完成课本57页做一做:X=3是方程5X=15的解吗?X=2呢?
探究例1:
1、出示例1图,让学生说图意后列出方程。
2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。
3、学生独立完成解方程,并板示,着重强调解方程的步骤和书写格式。
x+3=9
解: x +3-3=9-3
x =6
4、引导学生检验方程的解。
探究例2:
1、引入和出示例2:前面我们利用天平保持平衡的道理求出了方程x+3=9的解,下面我们再利用天平保持平衡的道理来求出方程3X=18的解,同学们有信心吗?
2、课件出示天平图,引导学生利用天平保持平衡的道理理解解方程的方法。
3、学生独立完成解方程。
3x=18
解: 3x÷3=18÷3
x =6
方法总结:
1、交流讨论:如果方程两边同时加上或乘以一个数,左右两边会相等吗?
2、总结:利用天平保持平衡的道理(也就是等式的基本性质)等式两边都加上或减去(乘或除以相同的数),可以求出方程的解。
三、应用巩固:
1、完成课本59页“做一做”的第1题,先找到等量关系,再列出方程并解方程。
2、解方程。
x+3.2=4.6 x-1.8=4 x-2=15
1.6x=6.4 x÷7=0.3 x÷3=2.1
3、我会选
(1)32+χ=76的解是( )
A、χ=42 B、χ=144 C、χ=44
(2) χ-12=4的解是( )
A、χ=8 B、χ=16 C、χ=23
(3)5χ=60的解是( )
A、χ=65 B、χ=55 C、χ=12
(4) χ ÷20 =5的解是( )
A、χ=15 B、χ=100 C、χ=4
4、解决问题。
教师:请同学们认真观察图,你能根据题意列出方程并解方程吗?
四、全课小结、课外延伸:
教师:这节课你有什么收获?请同学们思考生活中哪些问题可以运用解方程和知识帮我们解决问题,把你想到的和同伴一起分享。
五、知识扩展:
1、引出讨论:如果在解方程时,遇到减数或除数是未知数时,利用等式的基本性质如何解呢?
2、解方程。
100- x =15 180÷x=30
课后反思:
学生在解方程的时候都喜欢用等式各部分间的关系来解,很少用到天平原理,不管用什么方法,只要能解对方程就可以了,但用等式各部分间关系解题时,要与学生强调加、减、乘、除各运算在移到数字的时候,符号有什么的变化,学生也常在这些地方出错。