比和比例2(人教版六年级教案设计)

发布时间:2017-10-24编辑:互联网数学教案

 教学目标 

  1.理解比和比例的意义及性质.

  2.理解比例尺的含义.

  教学重点

  整理比和比例、求比值及比例尺.

  教学难点

  正、反比例概念和判断及应用.

  教学步骤

  一、基本训练.

  43-27        

  5.65+0.5 4.8÷0.4 1.25÷  100×1%

  0.25×40   2-    

  二、归纳整理.

  (一)比和比例的意义及性质.

  1.回忆所学知识,填写表格【演示课件“比和比例”】

 

  2.分组讨论:

  比和分数、除法有什么联系?

  比的基本性质有什么作用?比例的基本性质呢?

  3.总结几种比的化简方法.【继续演示课件“比和比例”】

比 前项 ∶(比号) 后项 比值

除法            

分数            

  (1)整数比化简,比的前项和后项同时除以它们的最大公约数.

  (2)小数比化简,一般是把前项、后项的小数点向右移动相同的位数(位数不够补零),使它成为整数比,再用第一种方法化简.

  (3)分数比化简,一般先把比的前项、后项同时乘上分母的最小公倍数,使它成为整数比,再用第一种方法化简.

  (4)用求比值的方法化简,求出比值后再写成比的形式.

  解比例:12 :x=8 :2

  4.巩固练习.

  (1)李师傅昨天6小时做了72个零件,今天8小时做了96个零件.写出李师傅昨天和今天所做零件个数的比和所用时间的比.这两个比能组成比例吗?为什么?

  (2)甲数除以乙数的商是1.4,甲数和乙数的比是多少?

  (3)解比例:  ∶  =8∶2 

  (二)求比值和化简比.【继续演示课件“比和比例”】

  1.求比值:4∶  

  化简比:4∶  

   2.比较求比值和化简比的区别.

   一般方法 结果

求比值 根据比值的意义,用前项除以后项 是一个商,可以是整数、小数或分数

化简比 根据比的基本性质,把比的前项和后项都乘以或者除以相同的数(零除外) 是一个比,它的前项和后项都是整数

  3.巩固练习.

  (1)求比值.

  45∶72    ∶3

  (2)化简比.

    ∶    0.7∶0.25

  (三)比例尺.【继续演示课件“比和比例”】

  1.出示中国地图.

  教师提问:

  (1)这幅地图的比例尺是多少?(比例尺是  )

  (2)什么叫做比例尺?这个比例尺的含义是什么?(表示实际距离是图上距离的6000000倍)

  (3)比例尺除了写成  ,以外,还可以怎样表示?

  2.巩固练习.

  在一幅地图上,用3厘米长的线段表示实际距离900千米.这幅地图的比例尺是多少?

  在这幅图上量得A、B两地的距离是2.5厘米,A、B两地的实际距离是多少千米?一条长480千米的高速公路,在这幅地图上是多少厘米?

  (四)正比例和反比例.【继续演示课件“比和比例”】

  1.回忆正、反比例意义.

  2.巩固练习.

  (1)判断下面各题中的两种量是不是成比例.如果成比例,成什么比例.

  ①收入一定,支出和结余

  ②出米率一定,稻谷的重量和大米的重量.

  ③圆柱的侧面积一定,它的底面周长和高.

  (2)木料总量、每件家具的用料和制成家具的件数这三种量

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成正比例;

  当( )一定时,( )和( )成反比例.

  (3)如果  =8  ,  和  成( )比例.

  如果  =  ,  和  成( )比例.

  (4)在一幅地图上,比例尺一定,图上距离和实际距离是不是成比例?成什么比例?

  三、全课小结.

  这节课我们复习了什么?通过这节课的复习你有什么收获?还有哪些不清楚的

 

上一篇 下一篇