四边形的定义及性质

回答
瑞文问答

2024-08-21

定义:
由不在同一直线上的四条线段依次首尾相接围成的封闭的平面图形或立体图形叫四边形,由凸四边形和凹四边形组成。顺次连接任意四边形上的中点所得四边形叫中点四边形,中点四边形都是平行四边形。菱形的中点四边形是矩形,矩形中点四边形是菱形,等腰梯形的中点四边形是菱形,正方形中点四边形就是正方形。

扩展资料

  1、四边形性质

  1.如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

  (简述为“平行四边形的两组对边分别相等”)

  2.如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

  (简述为“平行四边形的两组对角分别相等”)

  3.如果一个四边形是平行四边形,那么这个四边形的邻角互补

  (简述为“平行四边形的邻角互补”)

  4.夹在两条平行线间的平行线段相等。

  5.如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

  2、平行四边形定义

  两组对边分别平行的四边形叫做平行四边形。

  1.平行四边形属于平面图形。

  2.平行四边形属于四边形。

  3.平行四边形属于中心对称图形。

  3、平行四边判定

  1.两组对边分别平行的四边形叫做平行四边形。(定义)

  2.两组对边分别相等的四边形是平行四边形。

  3.对角线互相平分的四边形是平行四边形。

  4.一组对边平行且相等的四边形叫做平行四边形。