作为一位无私奉献的人民教师,时常需要用到说课稿,说课稿可以帮助我们提高教学效果。那么应当如何写说课稿呢?以下是小编整理的数学《3的倍数特征》说课稿,仅供参考,大家一起来看看吧。
数学《3的倍数特征》说课稿 1
一、说教材
首先谈谈我对教材的理解。《3的倍数特征》是西南师范大学出版社小学数学五年级下册第一单元的内容,本节课主要学习3的倍数的特征。在此之前学生已经学习了因数、倍数,为本节课的学习做好了铺垫工作。同时本节课的学习有利于学生很好地找一些数的倍数,是今后判断质数、合数的基础。
二、说学情
新课标指出学生是教学的主体,接下来谈谈学生的实际情况。这一阶段学生的观察能力、推理概括能力都得到了一定的发展。我将针对学生的这些特点进行教学。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解并掌握3的倍数的特征,能快速判断一个数是不是3的倍数。
(二)过程与方法
经历实验探究、观察、猜想、验证、总结的.过程,提升整理数据与逻辑推理的能力。
(三)情感、态度与价值观
通过探究活动,感受数学的趣味性,激发学习数学的兴趣。
四、说教学重难点
重难点是一节课的核心,只有确定了重难点,本节课的知识才能详略得当的呈现。对于本节课,我设置的重点是3的倍数的特征,难点是3的倍数特征的探究过程。
五、说教法和学法
为了突破重点,解决难点,顺利达成教学目标,我结合教材特点和学生思维活跃、求知欲强、乐于表达、乐于交流的心理特点,设置了讲授法、提问法和小组讨论等方法来进行教学。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
课堂伊始,我会创设情境:喜羊羊参加闯关比赛遇到了难题,题目要求快速判断一个数是不是3的倍数。然后引导学生回想2,5的倍数特征可以帮助快速判断一个数是不是2或5的倍数,由此引出本节课探究3的倍数特征。
运用创设情境的导入方式既可以增加课堂的活跃气氛,又可以在上课开始快速吸引学生的注意力,有助于学生学习。
(二)讲解新知
接下来我会发放学具组织学生进行实验探究,活动内容为每人用10个以内的圆片放在只有十位和个位的数位表中表示一位数或两位数,并列表记录所用圆片个数和摆成的数。我会要求学生尽可能用不同数量的圆片摆更多数字,然后判断摆成的数是不是3的倍数。
这样的方式可以增加学生的学习乐趣,并且在活动中初步感受规律,还可以保证数据的多样性,有足够的正例和反例进行对比。
摆数字活动结束后,我会板书简单呈现表格,请学生汇报结果。这样一方面方便学生观察,同时还能活跃课堂气氛。
接着我会组织学生以小组形式观察板书的表格,结合组内成员的表格,讨论有什么发现。学生可能直观得到:
①组成的这些数,各数位上的数字之和等于圆片个数。
②当圆片个数是3的倍数时,组成的数是3的倍数。③当一个数为3的倍数时,调换数位上的数字所形成的新数字依旧为3的倍数。结合这些发现能够得到猜想:如果一个数的个位上与十位上数字之和为3的倍数,那么这个数是3的倍数。
通过实验、观察、分析、猜想,得出初步结论会使学生更加具有成功感,增强学习兴趣。
接下来还需要对猜想进行验证,确立正确性。为了达到更加直观的效果,这里选用百数表。我会下发百数表,组织同桌合作找出表内所有3的倍数并标记。学生可以发现百数表中3的倍数排列在几条斜线上,每条斜线上的数字十位数与个位数之和固定,和分别是3,6,9,12,15,18。由此确定一百以内3的倍数都符合前面的猜想。
确立了正确性,就可以总结结论。学生的总结很可能仅针对个位上和十位上的数字之和,我会规范总结:一个数,如果各数位上的数字之和是3的倍数,这个数就是3的倍数。然后鼓励学生用一百以上的数字加以验证,感受确实如此。
经历了完整的实验探究、观察、猜想、验证、总结的过程,学生能在知识的形成过程中加以理解,同时提升整理数据与逻辑推理的能力。
(三)课堂练习
在课堂练习环节,我会组织学生独立制作写有0,1,2,3,5,7这几个数字的卡片,从中选出两张卡片组成一个是3的倍数的两位数,并说明选取卡片的理由。
这样的游戏可以充分对知识进行复习与应用,使学生及时掌握。
(四)小结作业
最后我会提问学生今天有什么收获,在锻炼学生总结与表达能力的同时获得教学反馈。
关于课后作业,我会让学生思考什么样的数是6的倍数,并查阅资料了解9的倍数的特征。这样的作业可以帮助学生提升分析推理能力,并且开阔视野。
七、说板书设计
数学《3的倍数特征》说课稿 2
一、教材及学情分析
本节课是青岛版教材小学数学四年级下册的内容,它是在学生已经掌握了因数和倍数及2、5的倍数特征的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握3的倍数的特征,具有十分重要的意义。
二、教学目标及教学重、难点
根据以上对教材及学情的分析,为了让每一个学生都能从本节课的研究活动中得到不同的发展,我设计了以下几个教学目标
知识目标:使学生经历探索3的倍数的特征的活动,知道3的倍数的特征,并且能熟练地判断一个数是否是3的倍数。
能力目标:通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。体会探索数的特征的一些方法。
情感目标:让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
基于以上的认识,我确定了本课的
教学重点:理解和掌握3的倍数的特征
正确判断一个数是否是3的倍数。
教学难点:探索并理解3的倍数的特征。
三、教法设计及学法指导
为达到本节课的教学目标,突出教学重点、突破难点,更好的促进每一位学生的发展,本节课主要采用了以下教学法:
1.猜想验证讨论交流
2.自主探究体验感悟
四、教学准备:
1、教师准备:课件,实物展示平台,实验表格
2、学生准备:计数器计算器
五、教学程序
苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的`学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。针对学生的特点,在教学中设计了以下四个与学生的知识基础,个性发展紧密联系的活动。
活动一 复习旧知 引发猜想活动二自主探究合作验证
活动三 应用规律 体验感悟活动四反思总结自我提高
活动一 复习旧知 引发猜想
“3的倍数的特征”属于数论的范畴,离学生的生活较远,而2、5的倍数的特征是学生学习这一课的基础。我从学生的已有基础出发,先复习了2,5的特征,并通过教师的总结与引导把复习和导入有机结合起来,引导学生去作猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”,而有的学生却有与之不同的想法。进而引发认知冲突,创设了探究的问题情境,激发学生的求知欲望,感受新知的产生过程,明确新课要解决的问题。从而引出课题。并板书:3的倍数的特征
活动二自主探究合作验证
本环节意在引导学生通过动手实践、自主探究展示学生不同的学习水平和思维方式,让学生在观察、实验、猜测、验证、推理与交流的数学活动中,初步理解和掌握3的倍数的特征。在这里设计了三个层次的教学:
1、应用《百数表》,否定错误猜想。
在学生得出猜想后,我便引导学生找出百数表中3的倍数去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。消除思维定势,否定旧迁移,以此来激发学生的探究欲望
2、探究实验,发现特征。
学生刚刚学习了2、5的倍数的特征,从观察数的末尾数字到观察这个数的数字和,具有很大的思维跨度。学生很难通过独立的探究得出3的倍数的特征,这时,教师采用的教学策略就显得尤为重要。本节课,教师采用让学生进行拨珠实验的教学策略较好地解决了这个问题。教师引导学生经历拨珠实验,填表观察,思考发现的过程。从而使学生对3的倍数的特征认识随着实验的不断深入而越来越清晰,他们在实验、探究、猜想、验证的过程中,建构起对3的倍数的特征的整体认知。本节课虽然没有生动的教学情境,但这样做巧妙地把学生推上了学习的主体地位,使学生始终沉浸在一种浓厚的探索氛围之中,他们被数学知识本身的魅力所深深吸引。这样的数学学习活动,才是真正的、生动活泼的、富有个性的认知过程。学生通过表象的累积,思维产生了飞跃,脑海中形成了清晰的数学模型。
3、举例验证,总结规律。
让学生在初步发现规律之后,举例验证,体现了从特殊到一般的思维过程。为了验证这一结论,学生用最快的速度算出各位上的数的和是不是3的倍数,并且使用计算器看这个数是不是3的倍数,并让学生汇报验证的过程,尽可能多地提供机会让学生在实践操作中学习,不仅让学生初步学会了举例验证的方法,而且体现了辨证唯物主义的思想。
活动三 应用规律 体验感悟
在这一部分,为使不同层次的学生都能得到不同程度的提高,我设计了四个不同的练习。力争突出重点,突破难点,在遵循学生认知规律的基础上,体现基础性、层次性、灵活性、生活性、趣味性。
第(1)题是基本题,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。有可能的话可以让学生在快速判断中感悟把3的倍数先去掉的判断技巧;
第(2)题以图的的形式出示,引导学生利用所学解决生活中的实际问题;
第(3)题是在每个数的□里填上一个数字,使这个数是 3的倍数。以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。
第(4)题旨在通过灵活的形式发散学生的思维。
活动四反思总结自我提高
这一环节通过师生交流的形式,使学生积极回忆,谈谈这节课的收获。把知识、方法再现的同时,亦体现学生的情感价值观,进一步反思总结,自我提高。
整节课让学生经历“猜想—验证—操作—再次猜想—再次验证—得出结论—解决问题”的探究过程,实现课程、师生、知识等多层次的互动。整个教学是把知识的传授、思维的训练、学习方法的指导、学习能力的培养、数学思想方法的渗透有机结合起来,取得教学效益和生命质量的整体提升。
数学《3的倍数特征》说课稿 3
一、说教材
首先谈谈我对教材的理解。《3的倍数的特征》是人教版小学数学五年级下册第二单元第二节的内容,本节课主要就是探究3的倍数的特征。在此之前学生已经了解了因数、倍数以及2、5的倍数特征,为本节课的学习做好了铺垫工作。同时本节课的学习有利于学生很好地找出一些数的因数,是今后判断质数、合数的基础。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于学生们来讲如何探索得出这个特征就较有难度,需要老师在教学中进行帮助和引导。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解和掌握3的倍数的特征,能熟练判断一个数是否是3的倍数。
(二)过程与方法
经历观察、猜想、推翻猜想、再观察、再猜想、验证的过程,提升逻辑推理能力。
(三)情感、态度与价值观
在猜想论证的过程中,体会数学的严谨性。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:3的倍数的特征,判断一个数是否是3的倍数。教学难点是:3的倍数的特征的归纳过程。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,我将采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)导入新课
我观察到教材是直接出示百数表进行探究的,我认为可能需要先对学生的学习进行一定的铺垫,所以在导入环节我会先提出这样一个问题:我们是如何研究2、5的倍数的特征的.?
这样可以让学生通过回顾,自行提出用百数表继续探究,也有助于我顺势提出课题。
(二)讲解新知
教材接下来提出了三个问题,其实我认为作为教师不要一口气把问题都提出来,或者并不一定是要全部提出来。要极力引导学生思考,尽可能让学生自主发现规律,那么我会让学生在百数表中先圈出3的倍数,进一步提出可否猜想3的倍数的特征会与什么有关。学生结合已有经验便能够发现之前学习的结论在此并不适用,进而引导出后续学习内容。
经历了猜想失败后我会注重鼓励学生,让学生多做尝试。我会从两个维度提示——我们单纯横着看找不到什么规律,还能怎么看;或是提示我们只看个位不行还能怎么看,逐渐让学生发现“斜着看时,十位依次增大1,个位依次减小1,总和不变”。
此处结合上一部分引导的两个维度,组织学生小组讨论,重点讨论3的倍数对于个位是否还有特殊要求以及十位与个位的和有没有什么规律。之后再组织学生反馈,多次举例验证,便可以得出个位可以是任意数且十位和个位的和均为3的倍数。
但是在这里我观察到学生的感知其实一直都是“十位与个位”上的数,因此进行提问,我们今后可以怎样找3的倍数。可能有学生提出可在已经圈好的百数表中对照找寻,我便顺势提出若为几百几千是否还要准备其他的数表,进一步突出总结特征的便捷性及总结的全面性。
在此基础上便能让学生自己尝试总结,我辅以规范性板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
(三)课堂练习
在课堂练习环节,我便会利用教材中的做一做部分,先让学生判断下面的数是否为3的倍数。
24 58 46 96
然后在此基础上尝试在每个数后面加一个数使这个三位数成为3的倍数。
这样分阶段的练习既能够检查学生对于本节课知识的掌握程度,又能够锻炼学生的开放性思维。
(四)小结作业
最后我会提问学生:今天有什么收获?并带领学生回顾3的倍数的特征,发现研究倍数的特征时方法各有不一,以此体会数学知识的多样性。
关于课后作业,我会让学生思考什么样的数字同时是2、3、5的倍数,并尝试列举1000以内的这种数字。这样的作业能够在夯实本节课学习内容的同时,又兼顾到之前学习的内容,真正达到作业的目的。
数学《3的倍数特征》说课稿 4
一、教材分析
《3的倍数的特征》是人教版实验教材小学数学五年级下册第19页的内容,它是在因数和倍数的基础上进行教学的,是求最大公因数、最小公倍数的重要基础,也是学习约分和通分的必要前提。因此,使学生熟练地掌握2、5、3的倍数的特征,具有十分重要的意义。
教材的安排是先教学2、5的倍数的特征,再教学3的倍数的特征。因为2、5的倍数的特征仅仅体现在个位上的数,比较明显,容易理解。而3的倍数的特征,不能只从个位上的数来判定,必须把其各位上的数相加,看所得的和是否是3的倍数来判定,学生理解起来有一定的困难,因此,本课的教学目标,我从知识、能力、情感三方面综合考虑,确定教学目标如下:
1.使学生通过理解和掌握3的倍数的特征,并且能熟练地去判断一个数是否是3的倍数,以培养学生观察、分析、动手操作及概括问题的能力,进一步发展学生的数感。
2.通过观察、猜测、验证等活动,让学生经历3的倍数的特征的归纳过程。以发展学生的抽象思维和培养相互间的交流、合作与竞争意识。
3.通过学习,让学生体验数学问题的探究性和挑战性,进一步激发学生学习数学的兴趣,并从中获得积极的情感体验。
根据以上的目标,我确定了本课的
教学重点:使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
教学难点:3的'倍数的数的特征的归纳过程。
二、教法和学法。
根据对教材的理解,从学生的自主学习出发,我从三个方面考虑教法和学法:
1、创设情景,激趣导入。
2、尊重学生,相信学生,让学生通过、观察、猜测、验证,动手操作、自主探究、合作交流,使学生成为学习的主人,使课堂变为学堂。
3、采用让学生自主发现的学习方法。
苏霍姆林斯基说:“在小学面临的许多任务中,首要的任务是教会儿童学习”。这里的学习指学习方法,3的倍数的特征,有规律可循,容易上成机械刻板,枯燥无味的课,学生能死套规律判断,但学生的能力没能培养,智力得不到开发。本课的设计旨在扬弃“满堂灌”的教学,取而代之以启发与发现相结合的教学方法,点拨学生大胆猜想,动手实践,去发现规律,使全体学生积极参与,积极思考,激发学生学习的积极性。
下面重点说说本课的教学过程设计,我分以下的六个环节进行教学。
三、教学过程。
一、复习导入。
为了能把新旧知识有机地结合起来,达到温故而知新的目的,我出示了这样一道复习题。
下面的数,哪些是2的倍数?哪些是5的倍数。
364、420、515、736、1028、905
让学生回答并说出判断依据,从而进行小结:我们在判断一个数是否是2、5的倍数,都是从一个数的个位上的情况来判定。而今天,我们将学习新的内容,从而引出课题。(板书:3的倍数的特征)
为了使学生产生探索的兴趣,激发学习动机,形成最佳的学习心理状态,我便充分利用小学生好奇心强这一心理特点,创设了一个《猜一猜》的游戏情境:让学生出题,随意说一个数,老师迅速地作出该数是不是3的倍数的判断,以此来调动学生学习的积极性。
二、猜想验证。
由于学生在《猜一猜》游戏中产生了急于探索的热情,我便让学生去作
猜想“3的倍数可能有什么特征?”,让学生充分表达各种各样的猜想,也许有些学生会不假思索地说出他的猜想:“个位上是3、6、9的数,都是3的倍数”。我便引导学生去验证,并在验证中推翻了刚才的猜想,由此,使学生意识到已经不能用原来的方法(也就是从数的个位上的情况)来判断一个数是否是3的倍数,而应该换个角度去思考。
三、体验新知。
由于学生求知欲空前高涨,学习积极性高。这时我出示了一组这样的数据。
3×1=3、3×2=6、3×3=9、3×4=12、3×5=15、3×6=18、3×7=21……
并引导学生进行观察发现:
3、6、9是3的倍数,但12、15、18个位上的数不是3的倍数,再让学生与同桌合作,动手摆小棒,一人摆,一人记录。顺便提出要求:摆小棒时,每个数位上的数是几,就用几根小棒表示。然后观察各位上的数的和,你发现了什么?此时有的学生可能会说:“12个位上的数不是3的倍数,但1+2=3,3是3的倍数”。同时,学生也发现15、18、21各位上的数相加的和也是3的倍数。于是形成新的猜想:一个数如果是3的倍数,那么它各位上数的和也是3的倍数。为了验证这一猜想我随即说道:“这么简单的数你会了,那么大一点的数是否也有这样的规律呢?”,接着我便又出示一组这样的数据:30、31、46、134、156、296、463、405、384。要求学生用最快的速度算出各位上的数的和,可以使用计算器,并让学生把结果填到各自的练习卡纸上,然后先跟同桌说说,再把结果汇报结果给老师,尽可能多地提供机会让学生在实践操作中学习,这也正应了美国数学教育家波利亚所说的:“学习任何知识的最佳途径都是由学生自己去发现的”。
四、归纳总结。
在学习操作验证完成后,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
五、实践应用。
当学生学会了老师猜数所用的窍门,显然兴致极高,个个跃跃欲试,想一显身手,我便针对小学生的年龄特点和个性差异,以便使不同层次的学生都能得到不同程度的提高,设计了三个不同层次的练习。
练习1:课本P19做一做1。
1,下列数中3的倍数有:
1435451003328767488
(这是一个基本练习,使全体学生都能对新知识有进一步的理解,达到巩固新知的目的。)
练习2:
①P21页(5、6题),在基本练习的基础上我增设了3道发展题。
②把数娃娃送回家。题目如下:
这样设计的目的是通过判断、选择等题目,使学生在判断中明事理,提高找规律的能力,进一步发展数感。)
练习3:P21(7题)
7、在口里填一个数字,使每个数都是3的倍数。
口74口2口4465口12口1
(这是一个综合练习,以检验学生综合运用知识的能力,达到举一反三的效果,提高思维的灵活性。)
六、拓展延伸
为增添课的趣昧性和挑战性,我让学生畅谈整节课的收获,并让学生式写出一些能同时是2、5的倍数,又是3的倍数,和同伴交流,观察它们有什么特点?
纵观整节课的教学流程,体现了数学的教学目标是促进学生全面发展的新课标理念,让学生在实践中学会新知,相信能取得良好的教学效果,让每一个学生都能在数学学习中得到不同程度的提高,促进学生的全面发展。我说课完毕谢谢大家!
数学《3的倍数特征》说课稿 5
一、活动激趣,引发思考
活动:我是小小“设计师”。
1.用5、6、7,设计一个三位数。
(1)使这个三位数一定是2的倍数。
(2)使这个三位数一定是5的倍数。
【设计意图:抓住学生刚学完2、5的倍数特征这个契机,让学生用5、6、7组数,这样既复习了前两节课所学的知识,也与后续要学习的3的倍数特征相互呼应。】
2.设计一个三位数,使它一定是3的倍数。看谁的设计有创意?
预设:学生除了用计算的方法外,还可能会出现以下两种情况(如果不出现,教师可以将其作为自己的设计来展示,并让学生猜猜老师是怎么想的):
(1)利用各位上都是3的倍数来设计数。(2)利用数字和是3的倍数来设计数。首先让学生说说自己的想法,第一种方法结合竖式很容易想明白,而第二种方法需要实际验证。接着引导学生发现:3的倍数并不一定各个数位都是3的倍数。最后围绕第二种关于利用数字和来设计3的倍数的情况,开始追根溯源,使学生明理。
【设计意图:一般教学3的倍数特征时,教师都会让学生进行猜想。如此,孩子们很容易受刚学过的2、5的倍数特征的影响进行负迁移。而这种第一印象的错误烙印,往往不会收到我们想要的“吃一堑、长一智”的效果。再者,这个猜想已经在课前调研的时候做过了,如果这里再重复出现,会让学生感觉老生常谈、枯燥乏味。第三,班里已有一半多的孩子知道了3的倍数特征,这个特征已不再是秘密了,此时也就没有什么猜想的必要了。这时,还不如选择用事实来说话,而且会应用比仅仅知道结论重要得多。】
二、借助直观,探究明理
1.出示百数表:观察圈出的3的倍数的分布情况,感受与2、5的倍数特征的差异。
2.观察下面这些数,你发现了什么?变中有没有不变的?(每一斜行的`数的数字和都不变,而且都是3的倍数。
3.分组检验:出示不是3的倍数的数,观察数字和是否一定不是3的倍数。
4. 100以内3的倍数的数字和有规律,那么100以上的3的倍数是否依然有这样的规律?引导学生发现:逐一研究太麻烦,数也举不尽,可以借用研究2、5的倍数时所用的小方格来研究。
5.揭示“数字和”的秘密。
(1)选取三个数:“12、48、123”,引导学生利用小方格探究明理。
①出示“12”,初步明理,让学生说说想法或自己的发现。
②围绕“48”,深入明理,有层次地展示各种方法,引导学生对这些方法进行筛选优化、分析归纳。学生在实际操作中可能会用弃3法弃尽,也可能不弃尽,但最终都会把剩余的个数加起来除以3,也就是直至弃到不能弃为止。
③对于“123”,可先让学生闭眼想象各位所余,然后再实际验证。
(2)引导学生逐步发现。
①在方格图上不一定要3个3个地圈,十位上可以9个一圈,百位上可以99个一圈……
②可以把每位剩余的方格合起来再弃3,直到不能弃为止,看最后余下几个。
③各位数字恰好是各位上弃9、弃99后所余下的格数(如下图),数字和也就是此时余下小方块的总和,之所以把数字和去除以3,就是要看看余下的这些小方格再3个3个地分,最终是否会有余。
6.小结3的倍数特征。
【设计意图:揭示3的倍数特征是看数字和并不难,难的是数字和的真正含义,本节课的重点和难点也正在于此。】
三、实际应用,拓展提高
1.观察刚上课时,用5、6、7所组的2的倍数:576、756,以及5的倍数:765。这几个数是3的倍数吗?引导学生发现:如果一个数是3的倍数,那么交换各位数字的顺序,所组成的数依然是3的倍数,因为数字和不变(5+6+7=18)。
同时也让学生感知到连续的数字组成的三位数一定是3的倍数,因为5+6+7=18,即6×3=18。
2.369为什么一定是3的倍数,能否联系小方格来说明?
四、全课总结
为了检验这次教学效果,我对学生进行了后测:
(1)圈出下列各数中3的倍数:53、69、72、95、108、264。
(2) 417是3的倍数吗?你能说明其中的道理吗?从中可见,学生不仅能应用3的倍数特征进行判断,而且能借助小方格说明道理,真正明白了数字和的含义。
数学《3的倍数特征》说课稿 6
一、学习目标
(一)学习内容
《义务教育教科书数学》(人教版)五年级下册第10页的例2。例2是探究3的倍数特征,教材仍然采用百数表,让学生先圈数,再观察、思考。
(二)核心能力
在探究3的倍数特征的过程中,学会从不同角度去观察和思考,进一步积累观察、猜想、验证、归纳的思维活动经验。
(三)学习目标
1.借助百数表,经历探究3的倍数特征的过程,理解3的倍数的特征,能正确判断一个数是不是3的倍数,并解决生活中的实际问题。
2.在探究3的倍数特征的过程中,学会从不同角度去观察和思考,发展合情推理的能力,积累数学思维活动经验。
(四)学习重点
探索3的倍数的特征。
(五)学习难点
归纳举证3的倍数的特征
(六)配套资源
百数表、计算器
二、教学设计
(一)课前设计
(1)回忆我们研究过的2、5倍数的特征是什么?并能给同学们解释是怎样探究出来的。
(2)自制一张百数表。
(二)课堂设计
1.复习引入
师:谁来给大家介绍一下,2、5的倍数特征是什么?我们是怎样研究出来的?
学生自由发言,重点引导学生回忆知识形成的过程。
小结:我们是利用百数表,先找数,然后观察、猜想,最后进行验证和归纳,得出了2、5倍数的特征。
师:这节课我们来研究“3的倍数的特征”。(板书课题)
【设计意图:通过复习2、5倍数的特征及探求的方法,唤醒学生的.记忆,为探求3的倍数的特征做铺垫。】
2.问题探究
(1)找3的倍数
师:研究“3的倍数的特征”,你们准备怎样研究?
生自由发言。
师:你们准备借助百数表,利用研究2、5倍数特征的方法来研究3的倍数的特征,现在拿出你准备的百数表。同桌合作先找出3的倍数,然后观察圈出的数,看看有什么发现?
(2)全班交流、讨论
①发现问题
学生展示圈好的百数表。
师:说说你们的发现?
预设:只看个位不行。
师:为什么不行?
横着看:个位上的数0-9都有,竖着看:个位上的数也是0-9都有。
②分析问题
师:同学们发现,在百数表中(课件出示),横着、竖着观察3的倍数,只看个位上的数,没有规律可循。横着、竖着看,看不出规律,换个角度思考,我们还可以怎样看?只看个位不行,我们还可以看什么?
学生自由发言,引导学生斜着看。
师:大家认为除了横着、竖着看,我们还可以斜着看,现在请你斜着观察3的倍数,你又有什么新发现?
生独立观察、发现。
【设计意图:因为3的倍数的特征比较隐蔽,根据探究2、5倍数的特征的经验,学生发现不了规律。在学生实在没人看出规律时,教师再提示学生可以换一个角度去观察、去思考,接着重新去探索。】
③解决问题
师:把你的发现和根据发现引发的猜想,在小组内交流一下,并想办法来验证你们的猜想。(可以用计算器)
小组合作交流后全班汇报。
(3)归纳3的倍数的特征
师:你们的发现和猜想是什么?
小组汇报,引导学生评价补充。
引导小结:斜着观察发现,每一行数的个位与十位的和分别是3、6、9、12、15,它们都是3的倍数,各个数位上的和是3的倍数,这个数也是3的倍数。
师:这个猜想对不对呢?你们是怎么验证这个猜想呢?
生汇报验证的过程。
师:举什么样的例子既简单又有代表性?
举的例子包含有两位数、三位数、四位数……,多举几个
师:有没有同学发现反例的,各个数位上的和是3的倍数,但是这个数却不是3的倍数。
师:通过验证,你们得出的3的倍数特征是什么,谁再来说一说?
归纳小结:一个数各个数位上的和是3的倍数,这个数就是3的倍数。
【设计意图:经过引导,学生进行二次探索,发现、猜想、验证并归纳出3的倍数的特征,积累数学探究的活动经验。】
3.巩固练习
(1)课本第11页“练习二的第3题”
圈出3的倍数。
92 75 36 206 65 3051 779 99999
111 49 165 5988 655 131 2222 7203
(2)课本第10页“做一做”
(3)小明拿了5个圆片,小军拿个6个圆片,用他们拿的圆片在数位表上摆数,谁拿的圆片摆出的数一定是3的倍数?谁拿的圆片摆出的数一定不是3的倍数?
请说明理由。
先独立完成,然后同桌合作操作验证。
4.全课总结
师:通过这节课的探究,我们获得了什么新知识?采用了什么样的研究方法?
在探究的过程中我们遇到了什么新问题?
小结:通过找数、观察、猜想、验证、归纳的研究方法,得出了3的倍数的特征。
师:为什么判断一个数是不是2或5的倍数,只要看个位数?而判断一个数是不是3的倍数,要看各位上数的和呢?请大家课下阅读第13页的“你知道吗”我们下节课进行交流。
数学《3的倍数特征》说课稿 7
教学目标:
1、经历在100以内的自然数表中找3的倍数的活动,在活动的基础上感悟3的倍数的特征,并尝试用自身的语言总结特征。
2、在探索活动中,感受数学的微妙;在运用规律中,体验数学的价值。
教学重、难点:是3的倍数的数的特征。
教学过程:
一、提出课题,寻找3的特征。
师:同学们,我们已经知道了2、5的倍数的特征,那么3的倍数会有什么特征呢?谁能猜想一下?
生1:个位上是3、6、9的数是3的倍数。
生2:不对,个位上是3、6、9的数不定是3的倍数,如l 3、l 6、19都不是3的倍数。
生3:另外,像60、12、24、27、18等数个位上不是3、6、9,但这些数都是3的倍数。
师:看来只观察个位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们一起来研究。(揭示课题)
师:先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学人手一张。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)
二、自主探索,总结3的特征师:
先请在下表中找出3的倍数,并做上记号。(教师出示百以内数表,同学利用p18的表。在同学的活动后,教师组织同学进行交流,并出现同学已圈出3的倍数的百以内的数表。)(如下图)
师:请观察这个表格,你发现3的倍数什么特征呢?把你的发现与同桌交流一下。
同学同桌交流后,再组织全班交流。
生1:我发现10以内的数只有3、6、9是3的倍数。
生2:我发现不论横的看或竖的看,3的倍数都是隔两个数出现一次。
生3:我全部看了一下,刚才前面这位同学的猜测是不对的,3的倍数个位上0~9这十个数字都有可能。
师:个位上的数字没有什么规律,那么十位上的`数有规律吗?
生:也没有规律,1~9这些数字都出现了。
师:其他同学还有什么发现吗?
生:我发现3的倍数按一条一条斜线排列很有规律。
师:你观察的角度与其他同学不同,那么每条斜线上的数有规律吗?
生:从上往下观察,连续两数都是十位数增加1,而个位数减少1。
师:十位数加1、个位数减1组成的数与原来的数有什么相同的地方?
生:我发现“3”的那条斜线,另外两个数12和21的十位和个位上的数字加起来都等于3。
师:这是一个重大发现,其他斜线呢?
生1:我发现“6”的那条斜线上的数,两个数字加起来的和都等于6。
生2:“9”的那条斜线上的数,两个数字加起来的和都等于9。
生3:我发现另外几列,除了边上的30、60、90两个数字的和是3、6、9,另外的数两个数字的和是12、15、18。
师:现在谁能归纳一下3的倍数有什么特征呢?
生:一个数各个数位上数字之和等于3、6、9、12、15、18等,这个数就一定是3的倍数。
师:实际上3、6、9、12、15、18等数都是3的倍数,所以这句还可以怎么说呢?
生:一个数各个数位上数字之和是3的倍数,这个数就一定是3的倍数。
师:刚才是从100以内数中发现了规律,得出了3的倍数的特征,假如是三位数甚至更大的数,3的倍数的特征是否也相同呢?请大家再找几个数来验证一下。
同学先自身写数并验证,然后小组交流,得出了同样的结论。
全班齐读书上的结论。
三、巩固练习:
完成p19做一做
四、课堂小结:
这节课你有什么收获
数学《3的倍数特征》说课稿 8
教学内容:
教材19页内容,能被3整除的数的特征。
教学要求
使学生初步掌握能被3整除的数的特征,能正确判断一个数能被3整除的数的特征,培养学生抽象、概括的能力。
教学重点:
能被3整除的数的特征。
教学难点:
会判断一个数能否被3整除
教学方法:
三疑三探教学模式
教具学具:
课件等。
教学过程
一、设疑自探(10分钟)
(一)基本练习
1、能被2、5整除的数有什么特征?
2、能同时被2 和5整除的数有什么特征?
(二)揭示课题
我们已经知道了能被2、5整除的数的特征,那么能被3整除的数有什么特征呢?这节课我们就来研究能被3整除的数的特征(板书课题)
(三)让学生根据课题提问题。
教师:看到这个课题,你想提出什么问题?(教师对学生提出的问题进行评价、规范、整理后说明:老师根据同学们提出的问题,结合本节内容归纳、整理、补充成为下面的自探提示,只要同学们能根据自探提示认真探究,就能弄明白这些问题。)
(四)出示自探提示,组织学生自探。
自探提示:
自学课本19页内容,思考以下问题:
1、观察3的倍数,你发现能被3整除的数有什么特征?举例验证。
2、能被2、3整除的.数有什么特征?
3、能被2、3、5整除的数有什么特征?
二、解疑合探(15分钟)
1、检查自探效果。
按照学困生回答,中等生补充,优等生评价的原则进行提问,遇到中等生解决不了的问题,组织学生合探解决。根据学生回答随机板书主要内容。
2、着重强调;
一个数各个数位上的数字之和能被3整除,这个数就能被3整除。
三、质疑再探(4分钟)
1、学生质疑。
教师:对于本节学习的知识,你还有什么不明白的地方,请说出来让大家帮你解决?
2、解决学生提出的问题。(先由其他学生释疑,学生解决不了的,可根据情况或组织学生讨论或教师释疑。)
四、运用拓展(11分钟)
(一)学生自编习题。
1、让学生根据本节所学知识,编一道习题。
2、展示学生高质量的自编习题,交流解答。
(二)根据学生自编题的练习情况,有选择的出示下面习题供学生练习。
1、判断下列各数能不能被3整除,为什么?
72 5679 518 90 1111 20373
2、58 115 207 210 45 1008
有因数3的数:( )
有因数2和3的数:( )
有因数3和5的数:( )
有因数2、3和5的数:( )
让学生说说怎么找的。
(三)全课总结。
1、学生谈学习收获。
教师:通过本节课的学习,你有什么收获?请说出来与大家共同分享。
2、教师归纳总结。
学生充分发表意见后,教师对重点内容进行强调,并引导学生对本节内容进行归纳整理,形成系统的认识。
板书设计:
能被3整除的数的特征 一个数各个数位上的数字之和能被3整除,
这个数就能被3整除。
数学《3的倍数特征》说课稿 9
一、教学内容:
五年级下册教科书p19。
二、教学目标:
1.通过观察、猜想、验证,理解并掌握3的倍数的特征。
2.引导学生学会判断一个数是不是3的倍数。
3.培养学生分析、判断、概括的能力。
三、教学重点:
理解并掌握3的倍数的特征。
四、教学难点:
探究能被3整除数的特征。
五、教法要素:
1.已有的知识和经验:
⑴猜想。
⑵ 2、5的倍数特征。
2.原型:3的倍数图表。
3.探究的问题:
⑴一个数的特征的研究方法。
⑵能被3整除的数的特征。
六、教学过程:
(一)唤起与生成
从1、2、3、4、5、6中任选3个数字组成三位数,要求:
(1)是2的倍数;
(2)是5的倍数。
生说师记录,并让学生说说2和5的倍数的特征。
引入:有没有能组成3的倍数的.三位数?3的倍数有什么特征呢?今天我们就来研究3的倍数的特征。
(二)探究与解决
经历“猜想--验证--观察探究--验证”的全过程,探究3的倍数的特征。
1.猜想。
激励学生大胆猜想,分小组交流,然后全班汇报。教师根据学生的汇报进行归纳。
学生根据学过的2、5的倍数特征,可能猜测个位上是3、6、9的数是3的倍数。
2.验证。
我们用什么方法来验证大家的猜想是不是正确呢?
让学生举出一些个位上是3、6、9的数字,小组内进行验证。小组验证中发现2种情况:个位上是3、6、9的数字不一定是3的倍数;而另一些数如12、18、21等个位上不是3、6、9的数,却是3的倍数。从而断定猜想是错误的。
小结:看来3的倍数和一个数的个位上的数无关,那与什么有关呢?
3.一个数的特征可以从哪些方面进行研究。
同学们你们知道研究一个数有什么特征,可以从哪些方面入手吗?让学生明白研究一个数的特征可以从以下几方面入手:
(1)从一个数的个位去研究。
(2)从一个数的十位去研究
(3)把各个数位上的数加起来研究。
4.根据3的倍数,探究3的倍数的特征。
(1)投影出示百以内数表,学生利用p18的表。要求:在表中找出3的倍数,并做好标记。
(2)观察这些3的倍数,根据我们了解的研究方法,寻找3的倍数的特征。
学生先独立思考,再小组讨论,然后全班交流。小组之间相互补充、质疑。
汇报1:我们组发现个位上的数字没有什么规律,十位上的数字也没有什么规律。
汇报2:我们组发现像12、18、27、36、39 ……,这些数他们个位和十位上的数字加起来的和都是3的倍数。
5.验证。
是不是所以的数都符合呢?我们来验证一下吧。
(1)找3的倍数来验证。
找几个3的倍数(两、三位的数),看各个数位上数的和是不是都是3的倍数。
(2)找不是3的倍数来验证。
找几个不是3的倍数的数(两、三位的数),通过计算看看各个数位上数的和是不是3的倍数。
6.归纳小结。
引导学生小结:一个数各个数位上数的和如果是3的倍数,这个数就是3的倍数,如果各个数位上数的和不是3的倍数,这个数就不是3的倍数。
(三)训练与应用
1.完成“做一做”第1题。
学生独立完成,集体订正。
2. 练习三第4题。
让学生逐题判断,再说说理由。
3.再方框里填上合适的数字,使这个数是3的倍数。
5 20 1 4 35
4.做一做第2题。
独立完成,并说明理由。
5.出示385
(1)改一个数使它变成3的倍数。
(2)改两个数使它变成3的倍数。
(四)小结与提高
小结学到的知识、方法以及学习的过程等,评价学习的表现。
课外延伸:根据乘法分配律,你能分析2453,732是不是3的倍数吗?课下试一试。
数学《3的倍数特征》说课稿 10
学习内容:
3的倍数的特征
学习目标:
通过观察、猜测、验证等活动,让学生经历探索3的倍数的特征的过程,能判断一个数是不是3的倍数。
学习重点:
使学生理解和掌握3的倍数的特征,并能熟练地去判断一个数是否是3的倍数。
学习难点:
3的倍数的数的特征的归纳过程。
教学准备:
计数器、数位表
学习过程:
自主学习(我能行)
一、知识链接:
下面的数,哪些是2的`倍数?哪些是5的倍数。
364、420、515、736、1028、905
我们在判断一个数是否是2、5的倍数,都是从一个数的位上的情况来判定。
二、新知学习
(一)设疑引入:探索活动:3的倍数的特征
师:如果用3、4、5这三个数字,你们能否组成是3的倍数的数吗? 请同学们试一试。
个位上是3的数,它就一定是3的倍数吗?
(二)探索数位表
用红色笔把是3的倍数的数圈起来,观察它们的特点
温馨提示:
(1)从个位看,这些数有什么共同特征吗?
(2)将各个数位上的数加起来,你能发现什么?
(三)用计数器:在计数器上拨一个3的倍数的数,观察所拨珠子的个数与3的关系。
小组交流
我发现:一个数各个数位上的数字的( )是3的倍数,这个数就是3的倍数
三、巩固新知
1、下面哪些数是3的倍数?
46 24 75 104 304 108 111
2、填空
在□中填上一个数字,使这个数是3的倍数。
1□ 2□6 52□ 36□
3、看谁最聪明?
用你的方法判断下列数是不是3的倍数?
369639693、13693692、121212127
四、学习小结:
闯关达标(我最棒)
轻松第一关:
1、3的倍数的特征是( );请把3的倍数圈起来:
11 12 13 14 15 16 17 18 19 20
91 92 93 94 95 96 97 98 99 100
2、.小小法官
(1)同是2、5和3的倍数的数的个位一定是0.( )
(2)个位上是3、6、9的数,都是3的倍数( )
(3)75既是5的倍数,又是3的倍数( )
跨越第二关:
1、在1——20自然数中,找出3的倍数:( ) 找出5的倍数( );找出既是2的倍数又是5的倍数( ),找出同时是2、3、5的倍数的数( )
2、任意两个数字组成符合下面要求的数
6、 0、 9、 5
(1)3的倍数:( )
(2)既是2的倍数又是3的倍数:( )
(3)既是3的倍数又是5的倍数:( )
数学《3的倍数特征》说课稿 11
教学目标:
1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。
2、培养分析、比较及综合概括能力。
3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。
教学重点:
掌握3的倍数的特征,正确判断一个数是否是3的倍数。
教学难点:
探索3的倍数的特征。
教学过程:
一、创设情景,明确目标(3分钟)
(一)创设情景,反馈预习
1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?
P:16、24、85、102、138、170、
2 的倍数:16、24、102、138、170
5的倍数:85、170
即是2的倍数又是5的倍数:170
师:说一说,你是怎么想的?
生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.
2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。
师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。
3、教师板书课题:3的倍数的特征。
(二)明确目标,引领方法
1、出示学习目标(见学案),生自读目标。
2、同伴说说自己的理解,谈谈如何实现目标。
设计意图交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。
二、自主学习,同伴合作(15分钟)
(一)自主学习,自我感知
1、小棒游戏,探究规律
师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?
师:你来!
师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。
学生摆出:51
师:51是3的倍数。我算的比计算器快吧?
师:能摆一个三位数吗?
学生摆出:312
师:312是3的倍数。
师:再来一个难点的。
学生摆出:1123
师:1123不是3的倍数。
师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。
2、小组合作探究
(1)用3根小棒摆一个数,这些都是3的倍数吗?
师:我们一探究要求:用相应根数的小棒在数位表上各摆出3个数。
小组内合理分工,请大家看一下导学案的合作要求
①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。
②用计算器算一算,将3的倍数圈出来。
③仔细观察表格,从中你发现了什么?
(2)用4根再摆出一些数,这些都是3的倍数吗?
(3)用6根再摆出一些数,这些都是3的倍数吗?
(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?
预设
第一组:用3根小棒摆:2、12、102,都分别是3的倍数。
第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。
第三族,用6根小棒摆:都是3的倍数。
问题:你发现了什么?
生:我们发现了3根、6根小棒摆出来的数都是3的倍数。
师:关键要看小棒的根数,了不起的发现。
生:只要小棒的根数是3的倍数,这个数就是3的倍数。
师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。
生: 9根、12根、15根……都行——
(5)真的是这么回事吗?以9为例摆摆看。
师:来,说说你们小组摆出了哪个数,它是不是3的倍数?
生:我用9根小棒摆出了36,36是3的倍数。
师:哪个小组还想出三位数、四位数或是更大的数?
生:我用9根小棒摆出了216,216是3的倍数。
生:我用9根小棒摆出了3015,3015是3的倍数。
师:说得完吗?
生:说不完。
师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?
生:很合理。
师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。
师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。
3、提升
师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?
师:小组内交流一下。
小组活动。
师:谁来说说?
生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。
生2:各个数位上数的和是3的.倍数,这个数就是3的倍数。
生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。
师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。
4、探究原因,区别理解
(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?
研究16
师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)
但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)
用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)
看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。
通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。
(2)问:为什么3的倍数特征要看各个数位相加的和呢?
举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?
一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,
138分一分,试一试,看看是不是3的倍数
一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。
(2):梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。
P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)
三、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基础
1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、圈出3的倍数的数:42、78、111、165、655、5988
3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?
(预设:生1:1。
师:可以吗?还有其他答案吗?
生2:1,4,7都可以。
师:理由呢?
生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。
师:恭喜你,三种可能都被你们猜中了!
师:如果它既是2的倍数,又是3的倍数呢?
生:24。
师:为什么只有24可以呢?
生:因为只有24既是2的倍数,又是3的倍数。)
(二)拓展训练,灵活创新
以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)
13689362754、123456789
老师:如果用各个数位之和是3的倍数,比较麻烦。
但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……
后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。
教师巡视,个别辅导。
(二)同伴讨论,互助共进
完成学案中“同伴合作,互助共进”内容。
重点交流学生所举的例子。
教师巡视,个别辅导。
设计意图这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。
四、师生共学,交流分享(5分钟)
(一)小组展示,彰显风采
指名小组进行汇报。
(二)师生完善,共同提高
1、学生纠正、补充、质疑
2、教师精讲、点拨、
在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。
设计意图通过教师的点拨完善学生对比的认识。
五、巩固拓展,形成能力(10分钟)
(一)巩固训练,夯实基础
先由学生自主完成学案中相应的内容,再同桌交流,完善答案。
1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?
把一个数各个数位上的数相加是3的倍数……
2、看一看哪些是3的倍数:42、78、111、165、655、5988
原来判断是用除法,现在用加法。改革了
3、不用计算,能快速算出来那个式子有余数吗?
802、3;342、3
4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数
5、下面都是吗?789、345、654
都是,有什么特点?相邻、连续三个自然数。
是不是所有都是呢?举例:123.为什么呢?
654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。
6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。
【数学《3的倍数特征》说课稿】相关文章:
小学数学 《3的倍数的特征》说课稿11-08
小学数学 《3的倍数的特征》说课稿12-25
《3的倍数的特征》说课稿04-20
小学数学 《3的倍数的特征》说课稿3篇11-08
3的倍数的特征优秀说课稿03-12
《3倍数特征》说课稿12-29
【实用】《3的倍数的特征》说课稿11篇08-16
3的倍数特征反思03-09