数学圆柱的体积教案

2023-02-10 数学教案

  作为一名专为他人授业解惑的人民教师,常常要写一份优秀的教案,教案是备课向课堂教学转化的关节点。来参考自己需要的教案吧!下面是小编精心整理的数学圆柱的体积教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

数学圆柱的体积教案1

  教学目标:

  1、知识技能

  运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2、过程方法

  让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。

  3、情感态度价值观

  通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:

  圆柱体体积的计算公式的推导过程及其应用。

  教学难点:

  理解圆柱体体积公式的推导过程。

  教学准备:圆柱体积公式推导演示学具、多媒体课件。

  教学过程:

  一、复习导入

  同学们,我们的图形世界十分丰富,回忆一下,什么叫做物体的体积?我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体

  的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

  二、图柱转化,自主探究,验证猜想。

  (一)猜想。

  1、大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形,推导圆面积公式的过程。)

  [数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师由复习圆面积公式的推导过程入手,实现知识的迁移。]

  2、引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?揭示课题:圆柱的体积。

  (二)操作验证。

  1、请学生拿出圆柱体的演示学具,以小组为单位,联想圆形面积的转化方式,合作探究将圆柱转化为长方体的方法。

  在操作时,学生分组边操作边讨论以下问题:

  ①拼成的近似长方体的体积与原来的圆柱体积有什么关系?

  ②拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?

  ?.拼成的近似长方体的高与原来的圆柱的高有什么关系?

  2、小组代表汇报

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

  3、电脑演示操作

  (1)电脑演示圆柱体转化成长方体的过程:

  仔细观察:圆柱体转化成一个长方体后,长方体的长相当于圆柱的什么?长方体的宽和高又相当于圆柱的什么?

  动画演示:把圆柱的底面平均分成32份、64份,切开后拼成的物体会有什么变化?

  (分的分数越多,拼成的'图形就越接近长方体)

  (2)根据学生的观察、分析、推想,老师完成板书:

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V=Sh

  (3)你的猜想正确吗?学生齐读圆柱的体积计算公式。

  三、练习巩固,灵活应用

  闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少?

  让学生试做,集体反馈。

  闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?

  学生讨论、交流、汇报。

  小结:解决以上问题的关键是先求出什么?(生:底面积)

  闯关3.下面这个杯子能不能装下这袋奶?(杯子的数据是从里面测量得到的。)学生在练习本上独立完成,集体反馈。

  四、课堂小结

  学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获)

  五、布置作业

  教科书第21页练习三第1-4题。

  板书设计:

  圆柱的体积

  长方体的体积=底面积×高

  圆柱的体积=底面积×高

  V= Sh

数学圆柱的体积教案2

  教学内容:

  本内容是六年级下册第8页至第9页。

  教材分析:

  本节内容是在学生了解了圆柱体的特征,掌握了圆柱表面积的计算方法基础上进行教学的,是几何知识的综合运用,为后面学习圆锥的体积打下基础,教材重视类比,转化思想的渗透,引导学生经历“类比猜想——验证说明”的探索过程,掌握圆柱体积的计算方法。

  学生分析:

  学生已掌握了长方体和正方体体积的计算方法以及圆的面积计算公式的推导过程,在圆柱的体积这节课化的体现动手实践,自主探索,合作交流,为突破重、难点。本节课在教法和学法上从以下几方面着手:先利用教具通过直观教学让学生观察,比较,动手操作,经历知识产生的过程,发展学生思维能力;让学生通过“类比猜想——验证说明”的探索过程,主动学习,掌握知识形成技能,合作探究学习成为课堂的主要学习方式。

  学习目标:

  1、使学生理解和掌握圆柱体积的计算方法,在推导圆柱体积计算公式的过程中培养学生初步的空间观念和动手操作的技能。

  2、使学生能够通过观察,大胆猜想和验证获得新知识在教学活动过程中发展学生的推理能力,渗透转化思想。

  3、引导学生积极参与数学学习活动,培养学生的数学意识和合作意识。

  教学过程:

  出示教学情境:一个杯子能装多少水呢?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出相关数据,就能求出水的体积;倒入量筒里直接得到水的体积。

  (设计意图:让学生根据自己已有的知识经验,把圆柱形杯子里的水倒入长方体或正方体容器,使形状转化成自己熟悉的长方体或正方体,只要求出长方体或正方体的体积就知道水的体积。)

  出示第二情境:圆柱形的木柱子的体积是多少?用这种方法还行吗?怎么办?

  (设计意图:创设问题情境,引起学生认知冲突,激起学生求知欲望,使学生带着积极的思维参与到学习中去,从而产生认知的飞跃。)

  探究新知:怎样计算圆柱的体积?(板书课题:计算圆柱的体积)

  大胆猜想:你觉得圆柱体积的大小和什么有关?圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (设计意图:在新知识的探索中,合理的猜测能为探索问题,解决问题的思维方向起到导航和推进作用。)

  验证:能否将圆柱转化为学过的.立体图形?

  让学生利用学具动手操作来推导圆柱体积公式(小组合作探究:给学生提供充分的时间和空间),引导学生把圆柱体底面平均分成多个小扇形,沿着高切开,拼成一个近似的长方体。

  思考:圆柱体转化成长方体为什么是近似的长方体?怎样才能使转化的立体图形更接近长方体?

  (设计意图:让学生明确圆柱体的底面平均分成的扇形越多拼成的立体图形就越接近于长方体,渗透“极限”的思想。)

  用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。

  学生讨论交流:

  1、把圆柱拼成长方体后,什么变了,什么没变?

  2、拼成的长方体与圆柱之间有什么联系?

  3、通过观察得到什么结论?

  得到:圆柱的体积=底面积×高

  V=Sh=πr2h

  (设计意图:在数学活动中通过观察比较培养学生抽象概括能力,及逻辑思维能力。)

  练习设计:

  1、计算下面各圆柱的体积。

  (1)S=60cm2 h=4cm(2)r=1cm h=5cm(3)d=6cm h=10cm

  2、算一算:已知一根柱子的底面半径为0。4米,高为5米,你能算出它的体积吗?

  (设计意图:使学生达到举一反三的效果,从而训练学生的技能,灵活掌握本课重点。)

  3、试一试:

  (1)一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个桶的容积是多少升?

  (2)一根圆柱形铁棒,底面周长是12。56厘米,长是100厘米,它的体积是多少?

  (设计意图:运用圆柱的体积计算公式解决生活实际问题,切实体验到数学源于生活,身边处处是数学。)

  4、拓展练习:

  (1)填表:

  填表后观察:你发现了什么?先独立思考,再小组交流,最后汇报。

  (设计意图:在教学时应找出知识间存在着的密切联系,帮助学生建立一个较为完整的知识系统,为以后“比例”的教学作了孕伏)

  (2)一个柱形容器的底面直径是10厘米,把一块铁块放入这个容器后,水面上升2厘米,这块铁块的体积是多少?

  (设计意图:体会测量不规则物体体积的方法,认识到数学的价值体验,使学生的思维处于积极的状态,培养学生思维灵活性,提高学生创造性解决问题的能力。)

  课堂小结:谈谈这节课你有哪些收获?

  (设计意图:采用提问式小结,让学生畅谈本节课的收获,包括知识,能力,方法,情感等,通过对本节课所学知识的总结与回顾,培养学生的归纳概括能力,使学生学到的知识系统化,完整化。)

  教学反思:

  本节课采用新的教学理念,创设情境导入渗透转化思想,让学生在兴趣盎然中径历自主探究,独立思考、合作交流从而获得新知。

  情境导入渗透转化思想激发学生的学习欲望,课的开始让学生想方法测量出圆柱形水杯中水的体积,学生想出把水倒入长方体容器中转化成长方体的体积来计算出水的体积,初步引导学生把圆柱体的体积转化为长方体的体积。教会学生数学方法,注重让学生在操作中探究,动手操作能展示学生个体的实践活动,在动手过程中易于激发兴趣,积累知识,发展思维,利于每一位学生自主,独立,创造性的学习知识,发展他们的能力,课中让学生经历知识产生的过程,理解和掌握数学基础知识,让学生在体验和探索过程中不断积累知识,逐步发展其空间观念,促进学生的思维发展。

数学圆柱的体积教案3

  探究目标:

  1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。

  2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。

  3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。

  4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。

  教学重难点:

  学生会应用圆柱体积公式解决实际问题。

  探究过程:

  一、迁移引入

  提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。

  提问:如果已知的`是底面半径和高,该怎么求呢?

  二、自主探究

  1、出示长方体鱼缸。

  要计算这个长方体鱼缸能装多少水,就是求什么?

  怎样求这个长方体的容积呢?

  2、出示圆柱形鱼缸。

  ⑴估测。这个圆柱形鱼缸的容积大约是多少?

  ⑵操作、汇报。如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。

  学生可能的回答有:

  生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)

  生2:我们小组测量的是底面直径和高。底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)

  生3:我们测量的是底面半径和高。3.14×152×12=8478(立方厘米)

  ⑷评价。

  组织学生间进行评价。你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。

  ⑸反思。引导学生将实际计算结果与自己的估测结果进行对比。自己矫正偏差。

  ⑹延伸。如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?

  3、自学例题。

  组织学生自学课本例5。同桌的两名同学结合例5的解答过程提出相关的数学问题,进行互问互答。

  三、巩固练习

  做教科书第80页“做一做”中的第2题、练习二十一的第5题。

  学生独立完成,指名板演,集体评讲。

  四、创意作业

  学生综合运用所学的知识,进行计算、绘图、裁剪、粘贴等多项操作活动。

  在一张长30厘米,宽20厘米的长方形纸上进行合理的裁剪,做一个无盖的圆柱形笔筒。比一比,谁做的笔筒容积最大?

数学圆柱的体积教案4

  教学内容:

  北师大版教学六年级《圆柱的体积》

  教学目标:

  1、结合具体的情境和实践活动,理解圆柱体体积的含义。

  2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3、培养学生初步的空间观念和思维能力;

  教学重点:

  理解和掌握圆柱的体积计算公式,会求圆柱的体积。

  教学难点:

  理解圆柱体积计算公式的推导过程。

  教具准备:

  圆柱体积演示教具。

  教学过程:

  一、旧知铺垫

  1、谈话引入

  最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)

  2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)

  这节课我们就来学习圆柱的体积。

  二、自主探究,解决问题

  (一)认识圆柱体积的意义。

  圆柱的体积到底是指什么?谁能举例说呢?

  (二)圆柱体积的计算公式的推导。

  1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)

  2、回忆圆面积的推导过程。

  3、教具演示。

  (1)取圆柱体模型。

  (2)将圆柱体切成两半。

  (3)分别将两半均分成若干小块。

  (4)动手拼成一个近似的长方体。

  (三)归纳公式。

  (板书:圆柱的体积=底面积高)

  用字母表示:(板书:V=Sh)

  三、巩固新知

  1、这个杯子的'底面半径为6厘米,高为16厘米,它的体积是多少?

  审题。提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。

  现在这个杯子装了2/3的水,装了多少水呢?

  2、完成试一试

  3、跳一跳:统一直柱体的体积的计算方法。

  四、课堂总结、拓展延伸

  这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?

  五、布置作业

  练一练1-5题。

数学圆柱的体积教案5

  教学目标

  圆柱的体积(1)

  圆柱的体积(教材第25页例5)。

  探索并掌握圆柱的体积计算公式,会运用公式计算圆柱的体积,体会转化的思想方法。

  教学重难点

  1.掌握圆柱的体积公式,并能运用其解决简单实际问题。

  2.理解圆柱体积公式的推导过程。

  教学工具

  推导圆柱体积公式的圆柱教具一套。

  教学过程

  复习导入

  1、口头回答。

  (1)什么叫体积?怎样求长方体的体积?

  (2)怎样求圆的面积?圆的面积公式是什么?

  (3)圆的面积公式是怎样推导的?在学生回忆的基础上,概括出“转化图形——建立联系——推导公式”的方法。

  2、引入新课。

  我们在推导圆的面积公式时,是把它转化成近似的长方形,找到这个长方形与圆各部分之间的联系,由长方形的面积公式推导出了圆的面积公式。今天,我们能不能也用这个思路研究圆柱体积的计算问题呢?

  教师板书:圆柱的体积(1)。

  新课讲授

  1、教学圆柱体积公式的推导。

  (1)教师演示。

  把圆柱的底面分成16个相等的扇形,再按照这些扇形沿着圆柱的高把圆柱切开,这样就得到了16块体积相等,底面是扇形的立体图形。

  (2)学生利用学具操作。

  (3)启发学生思考、讨论:

  ①圆柱切开后可以拼成一个什么立体图形?

  学生:近似的长方体。

  ②通过刚才的实验你发现了什么?

  教师:拼成的近似长方体和圆柱相比,体积大小变了没有?形状呢?

  学生:拼成的近似长方体和圆柱相比,底面的形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方体的高就是圆柱的高,没有变化。故体积不变。

  (4)学生根据圆的面积公式推导过程,进行猜想:

  ①如果把圆柱的底面平均分成32份,拼成的形状是怎样的?

  ②如果把圆柱的底面平均分成64份,拼成的形状是怎样的?

  ③如果把圆柱的底面平均分成128份,拼成的形状是怎样的?

  (5)启发学生说出:通过以上的观察,发现了什么?

  ①平均分的份数越多,拼起来的.形状越接近长方体。

  ②平均分的份数越多,每份扇形的面积就越小,弧就越短,拼起来的长方体的长就越接近一条线段,这样整个立体形状就越接近长方体。

  (6)推导圆柱的体积公式。

  ①学生分组讨论:圆柱的体积怎样计算?

  ②学生汇报讨论结果,并说明理由。

  教师:因为长方体的体积等于底面积乘高,而近似长方体的体积等于圆柱的体积,近似长方体的底面积等于圆柱的底面积,近似长方体的高等于圆柱的高,所以圆柱的体积=底面积×高。

  2、教学补充例题。

  (1)出示补充例题:一根圆柱形钢材,底面积是1250px2,高是2.1m。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ①这道题已知什么?求什么?

  ②能不能根据公式直接计算?

  ③计算之前要注意什么?

  学生:计算时既要分析已知条件和问题,还要注意先统一计量单位。

  (3)出示下面几种解答方案,让学生判断哪个是正确的。

  ①50×2.1=105(cm3)答:它的体积是2625px3。

  ②2.1m=5250px 50×210=10500(cm3)

  答:它的体积是262500px3。

  ③1250px2=0.5m2 0.5×2.1=1.05(m3)

  答:它的体积是1.05m3。

  ④1250px2=0.005m2

  0.005×2.1=0.0105(m3)

  答:它的体积是0.0105m3。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第①、③种解答要说说错在什么地方。

  (4)引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?

  教师板书:V=πr2h。

  课堂作业

  教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

  答案:“做一做”:1. 6750(cm3)

  2. 7.85m3

  第1题:(从左往右)

  3.14×52×2=157(cm3)

  3.14×(4÷2)2×12=150.72(cm3)

  3.14×(8÷2)2×8=401.92(cm3)

  课堂小结

  通过这节课的学习,你有什么收获?你有什么感受?

  课后作业

  完成练习册中本课时的练习。

  第4课时圆柱的体积(1)

  课后小结

  1.“圆柱的体积”是学生在掌握了圆柱的基本特征以及长方体、正方体体积计算方法等基础上学习的。它是今后学习圆锥体积计算的基础。

  2.采用小组合作学习,从而引发自主探究,最后获取知识的新方式来代替教师讲授的老模式,能取得事半功倍的效果。

  3.推导公式时间过长,可能导致练习时间少,练习量少,要注意把控。

  课后习题

  教材第25页“做一做”和教材第28页练习五的第1题。学生独立做在练习本上,做完后集体订正。

  答案:“做一做”:1. 6750(cm3)

  2. 7.85m3

  第1题:(从左往右)

  3.14×52×2=157(cm3)

  3.14×(4÷2)2×12=150.72(cm3)

  3.14×(8÷2)2×8=401.92(cm3)

数学圆柱的体积教案6

  教学内容:

  P19-20页例5、例6及补充例题,完成做一做及练习三第1~4题。

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、长方体的体积公式是什么?正方体呢?(长方体的体积=长宽高,长方体和正方体体积的统一公式底面积高,即长方体的体积=底面积高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

  二、新课

  1、圆柱体积计算公式的'推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

  长方体和圆柱体的底面积和体积有怎样的关系?

  学生说演示过程,总结推倒公式。

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积高,所以圆柱的体积=底面积高,V=Sh)

数学圆柱的体积教案7

  教学内容:北师大版数学六年级下册5——6页。

  教学目标:

  1、使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。

  2、根据圆柱表面积和侧面积的关系,使学生学会运用所学的知识解决简单的实际问题。

  教学重点:目标1。

  教学难点:目标2。

  教学过程:

  活动一:复习旧知,巩固学过的公式。

  1、一个直径是100毫米的圆,求周长。

  2、一个半径3厘米的圆,求周长和面积。

  3、一个长为3米,宽为2米的长方形,它的`面积是多少?

  4、出示圆柱体的模型,说说它有什么特征?

  活动二;探究新知。

  1、做一个圆柱形纸盒,至少需要多大面积的纸板?(接口处不计)

  要解决这个问题,就是求什么?

  2、圆柱的表面积包括哪几部分?

  3、圆柱的表面积的计算关键在哪一部分?

  4、探索圆柱侧面积的计算方法。

  1)圆柱的侧面展开后是一个怎样的图形呢?用一张长方形的纸,可以卷成圆柱形。

  2)圆柱侧面展开图的长和宽与这个圆柱有什么关系?怎样求圆柱的侧面积呢?

  3)师;圆柱的侧面积就是求长方形的面积。用长乘宽。

  4)长就是圆柱的底面圆的周长,宽就是圆柱的高。

  5)请你来总结一下圆柱侧面积的计算方法。

  6)圆柱的侧面积用2∏rh,求圆柱的表面积要用侧面积加两个底面积。

  活动三:新知识的运用。

  1、求底面半径是10厘米,高30厘米的圆柱的表面积。

  2、教师板书:

  侧面积:2╳3.14╳10╳30=1884(平方厘米)

  底面积:3.14╳10╳10=314(平方厘米)

  表面积:1884+314╳2=2512(平方厘米)

  要求按步骤进行书写。

  2、试一试。

  做一个无盖的圆柱形铁皮水桶,底面直径围分米,高为5分米,至少需要多大面积的铁皮?

  求至少需要多少铁皮,就是求水桶的表面积。

  这道题要注意什么?无盖就只算一个底面。这种题如果求整数,一般用进一法。

  3、练一练。书第6页第1题。

  3个小题:已知底面直径或底面周长和高,求圆柱的表面积。重点讨论:已知底面周长,求表面积。

数学圆柱的体积教案8

  《数学课程标准》指出“数学教学要让学生经历知识的形成过程,能够初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活和学科学习中的问题,增加应用数学的意识”。新课标注重的不只是让学生掌握学习中的结论,更关注的是个性的体验,让学生在活动中体验 、在实践中运用即让学生主动参与、实践交流、合作探究中去经历知识形成的过程,通过不断地发现问题、提出问题、分析问题、解决问题,积累生活中的经验,培养应用数学的能力,体验数学的乐趣,感受数学在生活中的应用价值。

  圆柱的体积这节课是在学生已经初步理解体积和容积的.含义、掌握了长方体和正方体体积计算方法的基础上学习的。本节内容包括圆柱的体积计算公式的推导,利用公式计算圆柱的体积,能运用圆柱的体积解决生活中的实际问题。

  教学情境如下:

  一:情境引入,感性认识

  师:(拿出橡皮泥)你知道它的体积吗?你用什么方法知道的,说给大家听一听。

  生:捏成长方体或正方体,量出长、宽、高后再用公式:长×宽×高计算出体积。

  师:你还能捏成我们学过的其他图形吗? (学生操作:捏成圆柱)

  师:现在你会计算它的体积吗?猜一猜,怎么办呢?(学生操作:圆柱捏成长方体)

  师:你发现了什么?

  生:形状变,体积不变.

  师:我们曾经学过可以把什么图形通过什么方法转化成什么图形求面积呢?

  生:圆切割拼成一个近似的长方形。

  师: 圆柱形橡皮泥的体积会求了, 如果要求圆柱体容器里水的体积该怎么办?

  生:把水倒入长方体容器中,再测量计算。

  师:要求圆柱体铁块的体积呢?

  生:把它浸入水中,求出排出水的体积。

  师:要求商场门口圆柱体柱子的体积呢?(生面面相觑,不知所措)。

  二:自主探究,迁移转化

  1、引导

  师:有的同学把圆柱转化成我们已学过的立体图形,来计算它的体积。

  (让学生互相讨论,应如何转化,然后组织全班汇报)

  生:把圆柱的底面分成许多相等的扇形,然后把圆柱切开,再把它拼起来,就转化成近似的长方体了。

  2、 操作

  学生拿出事先准备好的萝卜(圆柱体模具)和小刀,让学生动手切一切,拼一拼。

  3、感知:将圆柱体模具(已切好)当场演示。

  ①让一位学生把切割好的一半拿上又叉开;

  ②另一位学生将切割好的另一半拼合上去;

  ③观察得到一个什么形体?同时你发现了什么?

  以四人小组为单位进行探索、讨论、总结。

  小组汇报:

  生:拼成的长方体和圆柱体不变的有:体积、底面积、高等;变了的有:侧面积、表面积、底面周长。

  4、课件演示,让学生明白:分成的扇形越多,拼成的立体图形就越接近于长方体。

  5、讨论:圆柱与所拼成的近似长方体之间的有什么联系?你发现了什么?

  6、汇报:

  圆柱→近似长方体

  ①体积相等②底面积相等③高相等④表面积不相等,

  根据学生的回答板书如下:

  长方体的体积=底面积×高

  ↓ ↓ ↓

  圆 柱 体 的 体 积 =底面积×高

  引导学生用字母表示计算公式:V=Sh

  师:要用这个公式计算圆柱的体积必须知道什么条件?

  生:底面积和高。

  师:如果给你圆柱的直径(半径或者周长)和高,如何求圆柱的体积呢?

  生:根据公式先求出半径,再求出底面积即可…

  教学反思:

  教学中充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、实践、比较找两个图形之间的关系,推导出圆柱的体积计算公式。直观有效的教学过程不需要教师繁复的讲解,学生在自主动手探索,互动交流讨论的学习空间里思维的火花自然而然地爆发出来。教学内容和重难点不仅得到实施和解决,更重要的是学生的综合能力得到提高。

  实际教学中教师只有不断诱发学生主动思维的愿望,营造无拘无束的思维空间,让学生经历知识发现、探索、创造的过程,才能更有效地培养学生的创新能力,还要使学生在学习中发现数学知识“从生活中来到生活中去”的理念。

数学圆柱的体积教案9

  教学内容:

  人教版小学数学六年级下册《圆柱的体积》P25-26。

  教学目标:

  1.经历探究和推导圆柱的体积公式的过程。

  2.知道并能记住圆柱的体积公式,并能运用公式进行计算。

  3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。

  4.激发学生的学习兴趣,让学生体验成功的快乐。

  5.培养学生的转化思想,渗透辩证法和极限的思想。

  教学重点:掌握和运用圆柱体积计算公式

  教学难点:圆柱体积公式的推导过程

  教具学具准备:教学课件、圆柱体。

  教学过程:

  一、复习导入

  1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

  2.回忆一下圆面积的计算公式是如何推导出来的?

  (结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的`一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。

  3.课件出示一个圆柱体

  我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?

  二、探索体验

  1.学生猜想可以把圆柱转化成什么图形?

  2.课件演示:把圆柱体转化成长方体

  ①是怎样拼成的?

  ②观察是不是标准的长方体?

  ③演示32等份、64等份拼成的长方体,比较一下发现了什么?引出课题并板书。

  3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。

  课件出示要求:

  ①拼成的长方体与原来的圆柱体比较什么变了?什么没变?

  ②推导出圆柱体的体积公式。

  学生结合老师提出的问题自己试着推导。

  4.交流展示

  小组讨论,交流汇报。

  生汇报师结合讲解板书。

  圆柱体积=底面积×高

  ‖ ‖ ‖

  长方体体积=底面积×高

  用字母公式怎样表示呢? v、s、h各表示什么?

  5.知道哪些条件可以求出圆柱的体积?

  6.计算下面圆柱的体积。

  ①底面积24平方厘米,高12厘米

  ②底面半径2厘米,高5厘米

  ③直径10厘米,高4厘米

  ④周长18.84厘米,高12厘米

  三、课堂检测

  1.判断

  ①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。( )

  ②圆柱的底面积扩大3倍,体积也扩大3倍。( )

  ③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。( )

  ④圆柱体的底面直径和高可以相等。( )

  ⑤两个圆柱体的底面积相等,体积也一定相等。( )

  ⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。( )

  2.联系生活实际解决实际问题。

  下面的这个杯子能不能装下这袋奶?

  (杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)

  学生独立思考回答后自己做在练习本上。

  3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?

  4.生活中的数学

  一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。

  ①覆盖在这个大棚上的塑料薄膜约有多少平方米?

  ②大棚内的空间大约有多大?

  独立思考后小组讨论,两生板演。

  四、全课总结

  这节课你有什么收获?

  五、课后延伸

  如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?

  六、板书设计

  圆柱体积= 底面积×高

  长方体体积=底面积×高

数学圆柱的体积教案10

  教材简析:

  本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。例4是圆柱的体计算公式的直接运用,是圆柱体积计算的基本,但这题又给学生设置了单位不统一的障碍,让学生在直接应用公式计算的同时注意计量单位的统一。例5是圆柱体积计算公式的扩展练习,意在让学生加深理解容积的概念,使之明确求水桶的容积就是求水桶内部的体积。例5除了在意义上扩展外,公式的运用中也有加深,水桶的底面积没有直接给出,因此要先求出水桶的底面积,再求出水桶的体积。

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  教 具圆柱体、长方体彩图各一张,圆柱的体积公式演示教具。

  学 具:小刀,用土豆做成的一个圆柱体。

  教学过程:

  一、复习铺垫

  1.说说长方体的体积计算公式,正方体的体积计算公式,把这两个体积公式统一成一个又是怎样的?这个公式计算体积的物体有什么特征?

  2.指出圆柱各部分的名称。说一说圆柱有多少条高?有几个底面?每个1自由的面积如何计算?这个计算公式是怎样推导出来的?

  二、设疑揭题

  我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。

  [评析:复习抓住教学重点,瞄准学习新知识所必须的旧知识,、旧方法进行铺垫,沟通了知识之间的内在联系,衔接自然。新课引入教师引出了学习新知识的思路,导出了解决问题的方法,从而调动了学生学习的积极性,激发了学生探求新知识的欲望。

  三、新课教学

  1.探究推导圆柱的体积计算公式。

  (l)自学第43页第二自然段,然后按照书中要求,两人一组将于中的圆柱切开拼一拼,再说一说你拼成三个近似什么形状的立方体?

  (2)请学生演示教具,学生边演示边讲解切割拼合过程。

  (3)根据学生讲解,出示圆柱和长方体的彩图。

  (4)学生观察两个立体图,找出两图之间有哪些部分是相等的?

  (5)依据长方体的体积计算公式推导出圆柱的体积计算公式。板书:V=sh

  (6)要用这个公式计算圆柱的体积必须知道什么条件?

  [评析:在教学中充分让学生动手、动脑、动口,让学生在操作中感知,在观察中理解,在比较中归纳。教师的导、放、扶层次分明,充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力]

  2.教学例4

  (1)出示例4。

  (2)默读题目,看题目告诉了什么条件?要求什么?想一想你将如何计算?谁愿意试一试?

  (3)请一名同学板演,其余同学在作业本上做。

  (4)板演的同学讲解自己的解题方法,说一说在做这道题的过程中遇到了什么问题,是怎样解决的?

  (5)教师归纳学生所用的解题方法。强调在解题的过程中要注意单位统一。

  3.教学例5

  (1)请同学们想一想,如果已知圆柱底面的'半径r t和高h,怎样求圆柱的体积?请学生自学并填写第44页第一自然段的空白部分。

  (2)出示例5,指名读题。请同学们思考解题方法。

  (3)请学生讲解题思路讨论、归纳统一的解题方法。

  (4)让学生按讨论的方法做例5。

  (5)教师评讲、总结方法。

  (6)学生讨论。比较例4、例5有哪些相同和不同点。

  [评析:引导学生通过实际操作,由观察、分析、比较,再进行计算,达到运用新知、巩固新知的目的。]

  四、新知应用

  1.做第44页下面做一做的题目。两人板演,其余在自己作业本主做,做完后及时反馈练习中出现的错误,并加以评讲。

  2.刚才同学们在做例4时,还有下面几种解法,请大家仔细思考,这些解法是对还是错?试说明理由。

  (1)V=sh=5O2.1=105

  答:它的体积是105立方厘米

  (2)2.l米=210厘米

  V=sh=50210=10500

  答:它的体积是10500立方厘米。

  (3)50立方厘米=0.5立方米

  V=sh=0.52.1=1.05(立方米)

  答:它的体积是l.05立方米。

  (4)50平方厘米=0.005平方米。

  V=0。00521=0.01051

  答:它的体积是0.01051(立方米)。

  五、全课总结

  问:这节课里我们学到了哪些知识?根据学生回答教师总结。

  六、学生作业

  练习十一的第l 、2题。

  [总结实:本节课的教学体现了三个主要特点:一、利用迁移规律引入新课,为学生创设良好的学习情境;二、遵循学生的认知规律,引导学生操作、观察、思考、说理,调动多种感观参与学习;三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好。总之,本节课教师引导得法,学生学得灵活,体现了重在思,贵在导,导思结合的原则,体现了教是为了不教,学会是为了会学的素质教育思想]

数学圆柱的体积教案11

  设计说明

  本节课是在学生已经了解了圆柱的特征,掌握了长方体体积的计算方法以及圆的面积计算公式的推导过程的基础上进行教学的。根据学生的认知水平和已有经验,本节课在教学设计上体现了以下几个特点:

  1.创设问题情境,点燃探索激情。

  基于“数学来源于生活,又应用于生活”这一理念,教学过程中通过呈现身边圆柱的体积问题,使学生感受到数学与现实生活的密切联系,认识到学习圆柱的体积计算公式的必要性,从而激发了学生的探究兴趣,使学习成为学生自觉的需求。

  2.注重直观教学,引导合作迁移。

  数学理论的表述往往是抽象的,它影响了学生数学思维的发展,而引导学生从观察和分析有关具体实物入手,就比较容易理解概念的本质特征。所以,教学中不但设计了通过排水法理解圆柱体积的实验,而且还借助教具演示、课件演示等直观教学手段帮助学生推导出圆柱体积的计算公式,使学生从感性认识上升到理性认识,体会到知识的由来。

  3.渗透数学思想,发展数学思考。

  在本节课的教学中,充分利用教材内容,对学生有效地进行转化思想的渗透,使学生在体会运用转化思想可以化难为易、化复杂为简单、化生疏为熟悉等作用的.同时,参与数学活动,提高解决问题的能力。

  课前准备

  教师准备 PPT课件

  学生准备 圆柱形实物

  教学过程

  ⊙情境引入

  1.操作感知体积的意义。

  通过出示一个装了半杯水的烧杯,引导学生猜测:在烧杯中投入一个圆柱形物体,会有什么现象发生?

  (水面升高或者水会溢出来)

  师:为什么会有这种现象发生?

  预设

  生1:圆柱占有一定的空间。

  生2:圆柱占据了原来水占有的空间。

  生3:圆柱是立体图形,它具有一定的体积。

  2.讨论、概括圆柱的体积的意义。

  师:你认为什么是圆柱的体积?

  (圆柱所占空间的大小,叫做圆柱的体积)

  3.引入:这节课我们就一起来探究圆柱体积的计算方法。

  (板书课题:圆柱的体积)

  设计意图:通过操作、演示,使学生在猜测、观察、讨论中加深对抽象的“体积”概念的理解,自主概括出圆柱的体积的意义,为下面的探究活动做好充分的准备。

  ⊙自主探究

  1.探究影响圆柱的体积大小的相关因素。

  (1)课件出示两个大小不等的圆柱。

  师:哪个圆柱的体积比较大?为什么?

  预设

  生1:左面的圆柱的体积比较大,因为它高一些。

  生2:右面的圆柱的体积比较大,因为它粗一些。

  生3:不好比较。因为左面的圆柱虽然高,但比较细;右面的圆柱虽然粗,但比较矮。

  (2)讨论、概括。

  师:圆柱的体积的大小与哪些因素有关?

  (圆柱的体积的大小与圆柱的高及圆柱的底面积的大小有关)

数学圆柱的体积教案12

  教学目标:

  1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。

  2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。

  教学重点:

  理解和掌握圆柱的体积计算公式,会求圆柱的体积

  教学难点:

  理解圆柱体积计算公式的推导过程。

  教学用具:

  圆柱体积演示教具。

  教学过程:

  一、复述回顾,导入新课

  以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。2题同桌互说。说完后坐好。)

  1、说一说:(1)什么叫体积?常用的体积单位有哪些?

  (2)长方体、正方体的体积怎样计算?如何用字母表示?

  长方体、正方体的体积=()×()用字母表示()

  2、求下面各圆的面积(只说出解题思路,不计算。)

  (1)r=1厘米;(2)d=4分米;(3)C=6.28米。

  (二)揭示课题

  你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的体积”。(板书课题)

  二、设问导读

  请仔细阅读课本第8-9页的内容,完成下面问题

  (一)以小组合作完成1、2题。

  1、猜一猜,圆柱的体积可能等于()×()

  2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。这个长方形的面积就是圆的面积。圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。(用自己手中的'学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系

  (1)圆柱的底面积变成了长方体的()。

  (2)圆柱的高变成了长方体的()。

  (3)圆柱转化成长方体后,体积没变。因为长方体的体积=()×(),所以圆柱的体积=()×()。如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()

  [汇报交流,教师用教具演示讲解2题]

  (二)独立完成3、4题。

  3、如果已知课本第8页左上方柱子的底面半径为0.4米,高5米,怎样计算柱子的体积?

  先求底面积,列式计算()

  再求体积,列式计算()

  综合算式()

  4、要想知道“一个圆柱形杯子能装多少水?”可以用杯子的“()×()”(杯子厚度忽略不计)

  【要求:完成之后以小组互查,有争议之处四人大组讨论。】

  教师根据学生做题情况挑选一些小组进行汇报、交流,并对小组学习情况进行评价。

  三、自我检测

  1、课本9页试一试

  2、课本9页练一练1题(只列式,不计算)

  【要求:完成后小组互查,教师评价】

  四、巩固练习

  课本练一练的2、3、4题

  【要求:组长先给组员讲解题思路,然后小组内共同完成】

  教师进行错例分析。

  五、拓展练习

  1、课本练一练的5题

  2、有一条围粮的席子,长6.28米,宽2.5米,把它围成一个筒状的粮食囤,怎样围盛的粮食多?最多能盛多少立方米的粮食?

  【要求:先组内讨论确定解题思路,再完成】

  六、课堂总结,布置作业

  1、总结:这节我们利用转化的方法,把圆柱转化为长方体来推导其体积公式,切记用“底面积×高”来求圆柱的体积。

  2、作业:课本练一练6题

数学圆柱的体积教案13

  教学内容:

  北师大版小学数学教材六年级下册第8—10页。

  教学目标:

  1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,能够运用公式正确的计算圆柱的体积和容积。

  2、初步学会用转化的思想和方法,提高解决实际问题的能力。

  教学重点、难点:

  重点:掌握圆柱体积的计算公式。

  难点:圆柱体积计算公式的推导。

  教学过程:

  一、情境导入

  1、出示教学情境:怎样用学过的知识测量出老师的水杯里装了多少毫升的水?

  想一想:杯子里的水是什么形状?准备用什么方法来计算水的体积?

  让学生讨论得出:把杯子里的水倒入长方体或正方体容器,只要量出长方体的长、宽和水的高,就能求出水的体积。

  2、出示第二情境:圆柱形的木柱子、压路机的车轮这样的圆柱用这种方法还行吗?怎么办?

  怎样计算圆柱的体积?这就是我们本节课要研究的问题。(板书课题:计算圆柱的体积)

  二、探究新知:

  1、大胆猜想:你觉得圆柱体积的大小和什么有关?

  学生猜想,教师出示相应的课件演示,让学生观察,体会圆柱的体积和它的底面积和高,有关系,有怎样的关系。

  2、圆柱的体积可能等于什么?(说说猜想依据)

  长方体,正方体的体积都等于“底面积×高”猜想圆柱的体积也可能等于“底面积×高”。

  (用课件展示切拼过程,让学生观察等分的份数越多越接近长方体,弥补直观操作等分的份数太多不易操作的缺陷。)

  学生讨论交流:

  (1)把圆柱拼成长方体后,什么变了,什么没变?

  (2)拼成的长方体与圆柱之间有什么联系?

  (3)通过观察得到什么结论?

  得到:圆柱的体积=底面积×高 V=Sh

  三、拓展交流

  要求圆柱的体积只要找到它的底面积和高就可以,分别讨论知道半径、直径、地面周长,该怎么求出圆柱的体积,总结出公式。

  四、练习设计:

  1、想一想,填一填:

  把圆柱体切割拼成近似(),它们的()相等。长方体的高就是圆柱体的.( ),长方体的底面积就是圆柱体的( ),因为长方体的体积=(),所以圆柱体的体积=()。用字母“V”表示( ),“S”表(),“h”表示( ),那么,圆柱体体积用字母表示为( )

  2、判断正误,对的画“√”,错误的画“×”。

  (1)圆柱体的底面积越大,它的体积越大。×

  (2)圆柱体的高越长,它的体积越大。×

  (3)圆柱体的体积与长方体的体积相等。×

  (4)圆柱体的底面直径和高可以相等。√

  3、分别计算下列各图形的体积,再说说这几个图形体积计算方法之间的联系。

  4×3×8

  6×6×6

  3.14×(5÷2)2×8

  =96(cm3)

  =216(cm3)

  =157(cm3)

  4、计算下面各圆柱的体积。

  60×4

  3.14×12×5

  3.14×(6÷2)2×10

  =240(cm3)

  =15.7(cm3)

  =282.6(dm3)

  5、这个杯子能否装下3000mL的牛奶?

  3.14×(14÷2)2×20

  =3077.2(cm3)

  =3077.2(mL)

  3077.2mL>3000mL

  答:这个杯子能装下3000mL的牛奶。

  五、课堂小结:谈谈这节课你有哪些收获?

数学圆柱的体积教案14

  教学目标:

  1、渗透转化思想,培养学生的自主探索意识。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学准备:主题图、圆柱形物体

  教学过程:

  一、复习:

  1、长方体的体积公式是什么?

  (长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  二、新课:

  1、圆柱体积计算公式的推导:

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。

  (课件演示将圆柱细分,拼成一个长方体)

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。

  (长方体的'体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

  2、教学补充例题:

  (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (2)指名学生分别回答下面的问题:

  ① 这道题已知什么?求什么?

  ② 能不能根据公式直接计算?

  ③ 计算之前要注意什么?

  (计算时既要分析已知条件和问题,还要注意要先统一计量单位)

  (3)出示下面几种解答方案,让学生判断哪个是正确的.

  ①V=Sh

  50×2.1=105(立方厘米)

  答:它的体积是105立方厘米。

  ②2.1米=210厘米

  V=Sh

  50×210=10500(立方厘米)

  答:它的体积是10500立方厘米。

  ③50平方厘米=0.5平方米

  V=Sh

  0.5×2.1=1.05(立方米)

  答:它的体积是1.05立方米。

  ④50平方厘米=0.005平方米

  V=Sh

  0.005×2.1=0.0105(立方米)

  答:它的体积是0.0105立方米。

  先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

  (4)做第20页的“做一做”。

  学生独立做在练习本上,做完后集体订正。

  3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

  4、教学例6:

  (1)出示例6,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

  (2)学生尝试完成例6。

  ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

  ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

  5、比较一下补充例题、例6有哪些相同的地方和不同的地方?

  (相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积。)

  三、巩固练习:

  1、做第26页的第1题:

  2、练习五的第2题:

  这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

  四、全课总结:

数学圆柱的体积教案15

  教学内容:

  教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。

  教学目标:

  1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。

  2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。

  重点难点:

  掌握圆柱体积公式的推导过程。

  教学资源:

  PPT课件 圆柱等分模型

  教学过程:

  一、联系旧知,设疑激趣,导入新课。

  1.呈现例4中长方体、正方体和圆柱的直观图。

  2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?

  启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?

  3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。

  二、动手操作,探索新知,教学例4

  1.观察比较

  引导学生观察例4的三个立体,提问

  ⑴这三个立体的底面积和高都相等,它们的体积有什么关系?

  ⑵长方体和正方体的体积一定相等吗?为什么?

  ⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?

  2.实验操作

  ⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。那用什么办法验证呢?让学生在小组中说说自己的想法。

  提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?

  ⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。

  ⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?

  操作教具,让学生观察。

  引导想像:如果把底面平均分的份数越来越多,结果会怎么样?

  演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。

  3.推出公式

  ⑴提问:拼成的长方体与原来的圆柱有什么关系?

  指出:长方体的体积与圆柱的'体积相等;长方体的底面积等于圆的底面积;长方体的高等于圆柱的高。

  ⑵想一想:怎样求圆柱的体积?为什么?

  根据学生的回答小结并板书圆柱的体积公式

  圆柱的体积=底面积高

  ⑶引导用字母公式表示圆柱的体积公式:V=sh

  长方体的体积 = 底面积 高

  圆柱的体积 = 底面积 高

  用字母表示计算公式V= sh

  三、分层练习,发散思维,教学试一试

  ⑴让学生列式解答后交流算法。

  ⑵讨论:知道什么条件就一定能算出圆柱的体积了?分别怎么算?

  (s和h,r和h,d和h,c和h)

  四、巩固拓展练习

  1.做练一练第1题。

  ⑴说一说:这两个圆柱中都是已知什么?能算出圆柱的体积吗?

  ⑵各自练习,并指名板演。

  ⑶对照板演,说说计算过程。

  2.做练一练第2题。

  已知底面周长和高,该怎么求它的体积呢?引导学生根据底面周长求出底面积。

  五、小结

  这节课我们学习了什么?有哪些收获?还有什么疑问?

  六、作业

  练习三第1~3题。

【数学圆柱的体积教案】相关文章:

数学圆柱的体积教案02-10

《圆柱的体积》数学教案12-12

《圆柱的体积》数学教案12-12

《圆柱的体积》教案06-17

《圆柱的体积》教案01-02

圆柱的体积精选教案09-10

《圆柱的体积》教案09-01

圆柱的体积教案08-15

精选数学圆柱的体积公开课教案06-13

数学圆柱的体积公开课教案08-25