作为一名无私奉献的老师,时常需要用到教案,教案有助于学生理解并掌握系统的知识。那么问题来了,教案应该怎么写?以下是小编帮大家整理的五年级数学上册教案,仅供参考,希望能够帮助到大家。
五年级数学上册教案1
一、教学目标:
1、掌握截取商的近似值的一般方法。
2、初步学会在小数除法中用“四舍五入”法截取商的近似值。
二、教学重点难点
重点:掌握截取商的近似值的一般方法。
难点:学会看余数不商取商的近似值。
三、教学准备:
多媒体
四、教学过程:
A、复习准备:
8.746保留一位小数约(),保留两位小数约是()。
B、讲授新课:
出示例1:我国的原煤产量1981年是6.2亿吨,1991年达到10.9亿吨。1991年的原煤产量是1981年的多少倍?(得数保留一位小数)
1、理解题意,求什么?分析数量关系。
2、列式计算:10.9÷6.2≈1.8
3、题目要求我们商怎样?保留一位小数我们商应该除到哪一位?(学生独立完成)
4、横式1.8前面用什么符号?为什么?答语要注意什么?
例2:一台织布机12小时织布62.55米,平均每小时织布多少米?(得数保留两位小数)
1、审题、理解题意,学生试做?
2、讨论:竖式商除到哪一位?为什么?
C、巩固练习:
计算求下面各题商的近似值。(得数保留三位小数)
45÷179.9÷101
D、师生归纳:
1、学生讨论:计算小数除法,需要求商的近似值的方法。
2、学生归纳后,集读P-55最后一段。
E、强化练习:
1、P-40试一试教师巡回指导,注意学生是否掌握方法。
2、P-40第一题。
F、课堂小结:
1、截取商的近似值的一般方法是怎样的.?
2、要截取商的近似值还要注意什么?
G、布置作业:P-40第二题、第三题和第四题。
课后小结:
本课是建立学生已经掌握如何取一个小数的近似值基础上教学的,所以,我在教学中的重点是放在让学生知道列竖式计算时商要除到那一位,我出示例题,列出算式,然后让学生根据题意列竖式计算,有地同学算到了很多位,有的同学只算到了第三位,在学生发表自己观点的基础上,理解除到哪一位,为什么要除到比保留的小数为数多一位,从而归纳出取商的近似值的一般方法。其实,在教学中,我还忽略了知识的应用价值最好在课的结束时让学生思考在什么情况下我们我取商的近似值,在实际生产、生活有哪些应用?
五年级数学上册教案2
教学内容:教科书五年级上册第81——82页及练习。
教学目标:
1、在异分母分数大小比较的活动中,经历认识最小公倍数和用短除法求最小公倍数的过程。
2、了解最小公倍数,学会用短除法求两个数的最小公倍数。
3、能积极主动参与数学活动,获得积极的学习体验,提高对数学的兴趣。
教学重点:学会用短除法求两个数的最小公倍数。
教学过程:
一、课前活动——对口令
师:上课前我们先来做个游戏——对口令,老师说一个数请你对出它的倍数1、对9、12的倍数。
2、对出一个数,它既是2的倍数也是3的倍数。
二、创设情境,感知概念
1、两个数的公倍数和最小公倍数的概念教学
师:同学们,我们每周都会上微机课,老师想了解一下同学打字情况,那谁愿意介绍一下你一分钟能打多少个字呢?
请几位学生说说自己一分钟能打多少个字。学生打字的速度各有不同,教师可进行激励性。如:真不错,你一分钟能打这么多字;打得慢了点,没关系,只要你经常练习,一定会越来越快。
师:你们知道吗?我们的小伙伴红红和聪聪都是打字的能手,他俩打同样一份稿件进行了一次打字比赛。
出示教材上的情境图。
师:从两个人的对话中了解到哪些数学信息?
生1:聪聪用了5/6小时。
生2:红红用3/4小时就打完了。
师:他们两个人谁打得快呢?请同学们当裁判,通过比较两个分数的大小来解决这个问题。
学生独立思考并比较,教师巡视,了解通分的方法和结果。师:谁来说说是怎样比较的?谁打得快呢?
师:谁来说说是怎样比较的?谁打得快呢?
学生交流,教师进行板书。
生1:因为6×4=24,我先把和进行通分,都化成分母是24的分数,然后再进行比较。
5/6=5×4/6×4=20/24,3/4=3×6/4×6=18/24
20/24>18/24,所以5/6>3/4。
红红打得快。
生2:我也认为红红打得快。但是我把5/6和3/4进行通分,都化成分母是12的分数,然后再进行比较。
5/6=5×2/6×2=10/12,3/4=3×3/4×3=9/12
10/12>9/12,所以5/6>3/4。
……
如果学生只有分母是24或12的一种方法,教师要作为参与者介绍另一种方法。
师:现在请大家观察这两种方法,你发现有什么相同的地方和不同的地方?
学生可能有不同的表达方式,概括一下,应有如下回答:
●相同的地方
(1)这两种方法都是先把5/6和3/4进行通分后,再比较大小的。
(2)两种方法通分时用的分母12和24都是6和4的公倍数。
教学预设
●不同的地方
(1)第一种方法,通分时用两个分数分母的积24作分母,第二种方法,通分时用4和6的公倍数12作分母。
(2)24是12的2倍。
……
师:同学们观察得非常仔细,两种通分方法中,12和24都是6和4的公倍数。那么,4和6的公倍数还有哪些?请同桌的同学合作,在老师发给你们的椭圆形纸片上分别写出50以内4和6的倍数,再圈出它们的公倍数。
学生自己找,教师巡视。
师:说说你们是怎么找的?4和6的.公倍数都有哪些呢?生:我先找出4和6各自的倍数
4的倍数有:4,8,12,16,20,24,28,32,36,40,44,48,
师:如果让你继续找下去,4的倍数还有没有?用什么表示?
生:还有无数个,用省略号表示。
生:6的倍数有:6,12,18,24,30,36,42,48,
师:如果让你继续找下去,6的倍数还有没有?用什么表示?
生:还有无数个,也用省略号表示。
生:然后找4和6的公倍数有:12,24,36,48,……。
教师根据学生的回答出示课件。
师:观察我们找到的50以内6和4的这几个公倍数,想一想,如果继续找下去,48后面一个公倍数是几?说一说你是怎样判断的?
学生可能会说:
生:继续找下去,48后面一个公倍数是60。因为每两个公倍数之间都相差12,48加12等于60。
师:60后面还有没有?还有多少个?
生:还有无数个,用省略号表示。
师:有没有最大公倍数?
生:没有最大公倍数。因为4和6的公倍数有无数个,找不到最大的一个。
师:同学们说的很好。现在再来观察4和6的这些公倍数,没有最大的我们能找到一个最小的谁?
生:12。
师:还有比12小的公倍数吗?
生:没有了。
师:我们给它起个名字叫做这两个数的最小公倍数。这节课我们就来重点研究一下最小公倍数。(教师板书课题:最小公倍数)
师:我们对公倍数和最小公倍数有了一些认识,谁能用自己的话说说什么是公倍数?什么是最小公倍数?同桌的同学现互相说说。
学生之间互相交流。
教师引导学生出概念(出示课件)让学生读一读。
师:刚才我们找了4和6的最小公倍数,现找了4的倍数,又找了6的倍数,最后找到4和6的最小公倍数。这种方法太麻烦,其实有一种更简便的方法——短除法(教师边说边板书用短除法求4和6的最小公倍数)
用短除法求两个数的最小公倍数与上学期我们学过的求两个数的最大公因数的书写方式一样。
板书设计:
五年级数学上册教案3
教学目标:
1、结合具体情境用分步算式和综合算式解决含有两步计算实际问题的过程,学会检验解答的正确性。
2、初步培养在实际生活中分析问题和解决问题的能力。
教学重点:
1、掌握含有两步计算的实际问题的方法。
2、用综合算式解决问题。
教学过程:
一、 复习
读题、分析、列式。
1、小兔采了20个蘑菇,送给小猴8个,小兔又采了10个蘑菇,小兔现在有多少个蘑菇?
2、小明剪了37颗星星,小红剪了45颗星,他们送给幼儿园50颗星,现在还剩多少颗星?
二、新课
出示例4
问:指名学生看图说题意。
问:你知道了什么?怎样解答?
(3) 没烤的面包有多少个?90-36=54(个)
(4) 还要烤几次?54÷9=6(次)
问:你会列综合算式吗?
(90-36)÷9=6(次)
问:解答正确吗?指名学生检验是否正确。
归纳:如果一个问题需要多个步骤才能解决,要想好先解答什么,解答什么
二、做一做
1、让学生说一说题意,再说说怎样解答,让学生独立解答,订正时说说你是怎样解答的,分步是怎样解答,综合算式是怎样解答的.。
2、了8行树苗,每行7棵,其中女生栽了28棵,男生栽了多少棵?
3、动物园有10只黑鸽子,22只白鸽子,每个笼子里住4只,一共需要多少个笼子?
独立完成,订正时说一说解题过程。
板书设计:
解决问题
(1) 没烤的面包有多少个?90-36=54(个)
(2) 还要烤几次?54÷9=6(次)
综合算式:(90-36)÷9=6(次)
五年级数学上册教案4
教学目标:
(1)引导学生在探究、理解的基础上,掌握面积计算公式,体验其推导过程。能正确计算平行四边形面积。
(2)通过对图形的观察、比较和动手操作,发展学生的空间观念,渗透转化和平移的思想。
(3)在数学活动中,激发学生学习兴趣,培养探究的精神,让学生感受数学与生活的密切联系。
教学重点:
理解并掌握平行四边形的面积计算公式,并能用公式解决实际问题。
教学难点:
理解平行四边形的面积公式的推导过程。
教具、学具准备:
课件、长方形和平行四边形图片、剪刀、平行四边形框架等。
教学过程:
一、创设情境、导入新课。
大家请看大屏幕(欣赏绥滨农场风景图片),我们学校门口有两个花坛,小明认为长方形的花坛大,而小刚认为平行四边形的花坛大,谁说的对呢?你想来帮他们评判一下吗?(想)
你认为要根据什么来确定花坛的大小呢?(花坛的面积)长方形的面积我们会求,那平行四边形的面积我们怎样求呢?这节课,我们就共同来探讨平行四边形的面积。(板书课题)
出示长方形和平行四边形教具,引导学生观察后说一说长方形和平行四边形的各部分名称。长方形与平行四边形有什么区别呢?(引导学生说出长方形四个角都是直角)(板书各部分名称,标注直角符号。)请大家回忆一下,我们以前学长方形面积公式时用过什么方法来求面积,谁来说一说?我们用过数方格的方式求过长方形和正方形的面积。那我们能不能也用数方格的方式求平行四边形的面积呢?(课件演示)
二、自主探究,合作验证
探究一:用数方格的的方法探究平行四边形的面积。
请大家打开你们的百宝箱(学具袋),里面有老师把两个花坛按比例缩小成的两张卡片,自己判断一下能不能用数方格的方法来求平行四边形的面积,认真按提示填表。出示温馨提示:
①在两个图形上数一数方格的数量,然后填写下表。(一个方格代表1㎡,不满一格的都按半格计算。)教师强调半个格的意思。
② 填完表后,同学们相互议一议,并谈一谈发现。
你是怎么数的?你有什么发现吗?能猜测一下平行四边形的面积公式是什么吗?(学生汇报)
探究二:用割补的方法来验证猜测。
小明和小刚通过数格子后和我们有了一样的猜测,但为了证实自己的猜测的正确性,想验证一下。同时也想总结出平行四边形的面积公式。你想参与吗?学生小组讨论。(鼓励学生尽量想办法,办法不唯一。)
我们已经会求哪几种图形的`面积了?(预设:学生回答会求长方形和正方形的面积),接着小组合作:大家想想办法,试试能不能把平行四边形转化成我们学过的图形,然后在求它的面积呢?请大家拿起你的小剪刀试试看吧!出示合作探究提纲:(出示教学课件)
(1)用剪刀将平行四边形转化成我们学过的其他图形。(剪的次数越少越好。)
(2)剪完后试一试能拼成什么图形?
师:你转化成什么图形了?你能说一说转化过程吗?转化后的图形和平行四边形各部分是什么关系?下面我们回顾一下我们的发现过程(大屏幕出示):
回顾发现过程:
1、把平行四边形转化成长方形后,( )没变。因为长方形的长等于平行四边形的( ),宽等于平行四边形的( ),所以平行四边形的面积=( ),用字母表示是( )
2、求平行四边形的面积必须知道平行四边形的( ) 和( )。
探究过程小结(板书)
师:小刚和小明马上到校门前测量了长方形和平行四边形。得出:长方形的长是6米,宽是4米,平行四边形的底是6米,高是4米。
然后他们手拉手找到老师说了一些话。你知道他们说了什么?
生:长方形和平行四边形的面积一样大。为什么会一样大?谁来讲解一下。(指名板演)
三、运用新知,练中发现
1、基本练习
(1)口算下面各平行四边形的面积
A、底12米,高3米:
B、高 4米,底9米;
C、底36米,高1米
通过这组练习,你有什么发现吗?(教学课件)
发现一:发现面积相等的平行四边形,不一定等底等高。
(2)画平行四边形比赛(大屏幕出示比赛规则)
比赛规则:
1、拿出百宝箱中的方格纸。在方格纸上的两条平行线间,画底为六个格(底固定),看能画出多少个平行四边形。
2、谁在一分钟之内画的多,谁就获胜。学生画完后(用实物展示台展示,引导学生发现)
发现二:1.发现只要等底等高,平行四边形面积就一定相等。
2.等底等高的平行四边形,形状不一定完全相同。
四、总结收获,拓展延伸
1、通过这节课的学习,你知道了什么?
2、小明和小刚学完这节课后把他们的收获写了下来,你们想知道是什么吗?
大屏幕出示(教学课件演示)
平行四边形,特点记心中。
面积同样大,形状可不同。
等底又等高,面积准相同。
要是求面积,底高来相乘。
(齐读) 希望同学们也要向小明和小刚一样,经常把学过的知识进行总结,做一个学习上的有心人。
拓展延伸
请大家看老师的演示。(用平行四边形框架演示由长方形拉成平行四边形)。如果把长方形拉成平行四边形,周长和面积有没有变化呢?课后我们可以小组合作,亲自动手做实验进行研究,并把发现记录下来,作为今天的作业。
五、板书设计:
五年级数学上册教案5
设计说明
1.创设情境,引入新课。
数学教学中,教师要不失时机地创设与学生生活环境、知识背景密切相关的,又是学生感兴趣的学习情境,使学生从中感悟到数学的乐趣,产生学习的需要,激发探索新知识的积极性,主动有效地参与学习。上课伊始,由学生喜欢的体育运动这一话题引入本节课的情境,拉近了课本与学生的距离,使学生产生浓厚的学习兴趣。
2.重视解题方法的`教学。
“授之以鱼不如授之以渔”,解决问题的教学,关键是理清思路,教授方法,启迪思维,提高解题能力。因此在这节课的教学中,首先让学生观察图画,了解画面信息,接着组织学生小组交流,分析数量关系,讨论解决问题的方法。在列方程解决问题的过程中,通过设计关键问题,层层深入引导学生讨论交流,使学生学会写设句,并根据题中的数量关系列出方程。最后引导学生总结列方程解决问题的步骤,使学生对本节课的知识有一个系统的认识。
课前准备
教师准备PPT课件学情检测卡课堂活动卡
学生准备练习卡片
教学过程
⊙创设情境,谈话导入
师:同学们都喜欢什么体育运动?
生:排球、乒乓球、篮球、足球……
师:你知道吗?有一个小朋友叫小明,他跟你们一样,也非常喜欢体育运动,更是在学校的跳远比赛中破了纪录,你们想知道学校原来的跳远纪录是多少吗?这节课我们就来列方程解决这个问题。(板书课题)
设计意图:把学生感兴趣的话题引入到新知的学习中,通过创设情境使学生感受到生活中处处有数学,从而对本节课的知识产生探究欲望,这样的设计过渡自然、顺理成章。
⊙探究新知
1.教学例1,出示情境图。
(1)写用字母x表示未知数的设句。
师:请同学们认真观察情境图并说说从中获取了哪些信息。
预设生1:小明的跳远成绩为4.21m,超过原纪录0.06m。
生2:这道题让我们求学校原跳远纪录是多少米。
师:应该设谁为x?怎样把x表示什么写清楚?
生:这道题要求学校原跳远纪录是多少米,应设学校原跳远纪录为xm。
(2)找出题中的等量关系,列出方程。
师:你能找出题中的等量关系吗?
(生讨论后汇报:原纪录+超出部分=小明的成绩)
师:你能根据等量关系列出方程吗?以小组为单位讨论。
(生小组讨论后汇报:x+0.06=4.21)
(3)解方程并检验。
师:请同学们试着解方程。
(生尝试完成解题全过程并汇报)
教师根据学生汇报,板书解题过程:
例1解:设学校原跳远纪录是xm。
x+0.06=4.21
x+0.06-0.06=4.21-0.06
x=4.15
,答:学校原跳远纪录是4.15m。
生检验并交流方法。
预设生1:把x=4.15代入原方程,看方程左右两边是否相等,如果相等就说明做对了。
生2:把x=4.15代入原题中,看看和原题的已知条件是否相符,如果相符就说明做对了。
五年级数学上册教案6
教材说明
“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生的抽象、概括能力。《标准》中指出,第二学段要让学生“进一步体会数在日常生活中的作用,会运用数表示事物,并能进行交流”。在日常生活中,数有着非常广泛的应用,在第一学段学生已经有了初步体会,特别是在一年级上册认数的时候,教材在“生活中的数”版块中就已经出现了像邮政编码、门牌号、车牌号这样的数在生活中的应用实例。数不仅可以用来表示数量和顺序,还可以用来编码,本单元就是在学生的生活经验和已有知识的基础上,进一步体会数字编码在日常生活中的应用,并通过实践活动进行简单的数字编码,培养学生的数学思维能力。
数字编码和我们的生活紧密相关,比如邮政编码、身份证号码、电话号码等,在这些号码中都蕴含着数字编码的思想,同时也为我们的生活提供了很多便利。运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。
在这一单元我们主要是通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。教材首先从老师点名的情境引入,说明我们可以用数字编码来区分班上的每个学生。接下来,例1和例2通过邮政编码和身份证号码等生活实例让学生体会数字编码在生活中的应用,初步了解邮政编码的结构与含义,了解身份证号码中蕴含的一些简单信息和编码的含义,探索数字编码的简单方法。例3和例4是在此基础上,让学生通过两个实践活动来运用数字或字母进行编码,加深对数字编码思想的理解。例3是让学生给学校的每一个学生编一个学号,例4是让学生给班里或学校图书角的书籍编一个书号,和例3相比,更复杂一些,是用符号和数字的组合进行编码,这种编码在生活中也是处处可见,比如汽车的车牌号、火车的车次、飞机的航班号以及商品的型号等,从而体会到数学应用的广泛性,提高学生学习数学的兴趣和积极性。
教学建议
1. 恰当把握教学要求。
数字编码是一种抽象的数学思想方法,在这里只是让学生通过日常生活中的一些实例,初步体会数字编码在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,学会运用数进行编码,初步培养学生的抽象、概括能力。学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,并不要求学生掌握编码中每个数字的信息和含义。另外学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。
2.本单元内容可用3课时进行教学。
1.情境图。
教材首先由学生非常熟悉的老师点名的生活情境来引入,然后小精灵提出问题:“如果不叫姓名,还能怎样来区分班上的学生呢?”从而引起学生的讨论:还可以用编号的形式给每个学生编个号码。接下来,教材说明数不仅可以用来表示数量和顺序,还可以用来编码。
教学时,教师可以创设这样的情境,让学生探讨用编号的方法来区分班上的学生。这样引出数不仅可以用来表示数量和顺序,还可以用来编码。这部分内容也可以结合后面的例1来教学,教师课前可以让学生先收集一些由数字组成的号码,如车牌号、邮政编码、电话号码等,然后在班上交流和汇报,教师在学生汇报的基础上,通过多媒体课件再来展示生活中经常见到的这些数字编码现象,比如邮政编码、身份证号码、电话号码等,通过这些生活中广泛存在、学生熟悉的素材来引出数字编码,使数字编码这个看似抽象的问题变得直观和有趣,这样也更能激发学生的学习兴趣,并且当老师提出学生能发现这些数字编码中的“秘密”时,也就更加激发了学生的探索欲望。
2.例1。
例1是通过了解邮政编码的结构和含义来初步体会数字编码的方法,同时通过邮政编码在信件传递中的功能初步体会数字编码在我们日常生活中的作用。教材首先由编辑室经常收到全国各地读者的来信这个生活中的情境来引出,让学生思考:你知道这些信件是怎样传递的呢?接下来,教材用一组连续的示意图展示了信件传递的'过程:先是一个小女孩把信件投入邮筒中,然后邮局(所)把收集起来的信件通过机器分拣,机器能根据每封信上面的邮政编码进行分类,再把信件传递到收信人所在地的邮局,最后由邮递员根据具体的地址来投递信件。了解了信件传递的过程后,小精灵给同学们提出了问题:你知道本地的邮政编码吗?你想知道这些数字是怎样编排的吗?引导学生来探索邮政编码中数字编排的结构和含义。
邮政编码是代表投送邮件的邮局的一种专用代号,也是这个局(所)投送范围内的居民与单位的通信代号。教材这里呈现了一个标准信封的正面,并向同学们介绍了邮政编码的结构:邮政编码由6位阿拉伯数字组成,如448268。它的前两位数表示省、自治区、直辖市,如44表示湖北省;第三位数表示邮区代号,如448表示湖北省荆门邮区;第四位数表示县(市)的编号,如4482代表湖北省荆门市沙洋县邮局;最后两位代表邮件投递局(所),所以448268表示的就是——湖北省荆门市沙洋县五里邮电支局的投递局。同样,邮政编码100009表示的是——北京市东城区地安门邮电局的投递局。了解了邮政编码的组成,接下来介绍邮政编码作为我们国家的邮政代号在信件传递的过程中所起的作用。教材通过小精灵揭示:有了邮政编码,机器就能对信件进行分拣,这样就大大提高了信件传递的速度,从而让学生体会数字编码在生活中的重要作用。
教学时,教师要充分调动学生学习的积极性,可以结合例1后面的“做一做”,让学生利用课外时间调查、收集一些邮政编码,如学校所在地的邮政编码、父母单位所在地的邮政编码、爷爷奶奶住址所在地的邮政编码等。并要求学生设法了解邮政编码的结构与含义,如向邮局工作人员或邮递员咨询、查阅邮政编码书籍等。在学生汇报了收集的邮政编码后,老师提出问题:你们知道这些信件是怎样传递的吗?让学生在调查的基础上展开讨论,等学生发表完意见后,老师再进行补充或总结。这里可以利用教材的示意图来介绍,也可以设计多媒体课件或动画动态地展现信件传递的流程。
学生了解信件的传递过程后,老师接着提出问题:我们收集了这么多邮政编码,你们发现它们有什么相同的地方?机器怎么能根据邮政编码的数字进行分拣呢?这些数字又是怎样编排的呢?让学生先通过观察、比较找出收集来的邮政编码的相同点:同一个省、市的邮政编码前面有几位是相同的。在此基础上,再让学生根据查阅的资料或是调查的结果来讨论邮政编码的数字编排的结构和含义,如果大部分学生课前已经了解了邮政编码的组成,老师可以让学生结合自己手中的一个邮政编码来进行说明,比如学校的邮政编码的组成。如果学生有困难,老师可以在学生交流汇报自己的看法后,结合教材给出的邮政编码的结构图具体说明它的组成,也就是每个数字代表的含义。然后再让学生结合某个邮政编码给出它的组成,在小组中相互说一说。
如果学生课前没有调查,可以先让学生在小组中讨论,说说自己的猜想,然后老师再在学生猜想的基础上说明邮政编码的结构和组成(可配合多媒体课件),最后再结合邮政编码的结构图具体说明。了解它的组成后,再让学生试着就某个具体的邮政编码给出具体的说明,比如结合例1下面的“做一做”,再让学生说一说学校的邮政编码是怎样组成的。
了解了邮政编码的组成后,让学生思考一下邮政编码在信件传递中所起的作用。可以让学生先互相交流讨论一下,在学生讨论的基础上再进行总结。
五年级数学上册教案7
教学目标:
1、结合具体情境,理解按比例分配的意义。
2、掌握按比例分配的计算方法,并能较熟练地运用按比例分配的方法举一反三的解决实际问题。培养学生良好的分析理解能力,提高计算能力。
3、感受学习数学的乐趣,增强学习数学的自信心和成功感,逐步养成迁移类推的好习惯。
教学重点:
按比例分配的计算方法
教学难点:
灵活运用,合理解决实际问题
教具准备:
纸条
教学过程:
一、创设情境,激趣导入
1、教师谈话
这几天我们一直在学习有关人体奥秘的知识,除了我们学过的,你还了解到那些有关人体的知识?(学生根据课前调查交流回答)
想不想再多了解一些?那请你们仔细观察情境图。
2、提问:从图中,你获得了哪些数学信息?
(1)学生观察回答,教师适时板书相应的信息条件
明明体重30千克,体内水与其它物质的比是:4:1;
爸爸的体重70千克,体内水与其它物质的比是7:3
(2)你能根据这些信息提出一些数学问题吗?
学生口答。教师板书出问题
二、合作探究,学习新知
1、解决第一个问题:明明体内的水分及其他物质各有多少千克?
(1)你想解决那个问题?可以根据那些信息解决?
(明明体内的水分及其他物质各有多少千克?体重30千克,体内水与其它物质的比是:4:1)
(2)体重30千克与4:1有什么联系?
(3)线段图或折纸的方法表示出他们之间的联系吗?
学生同位合作完成,然后小组交流自己的想法。教师巡视。
2、展示交流
(1)学生展示交流线段图,结合信息说明图意。
(2)教师引导口述信息并画出线段图
如果用一条线段表示30千克体重,水和其他物质应该怎样表示?为什么?
求的.问题是什么?怎样表示?
(3)要求体内的水和其他物质各有多少千克会计算了吗?请同学们在本子上独立完成。
明明体内的水分及其他物质各有多少千克?
爸爸体内的水分及其它物质各有多少千克?
3、探究算理
(1)教师巡视的过程中指明不同解答方法的同学到前面板书
解法一:4+1=5
解法二:3054=24(千克) 30 4/4+1 =24(千克)
3051=6(千克) 30 1/4+1=6(千克)
(2)让两种不同解法的学生说一说这样做的理由,每一步表示的含义。
(3)观察比较:这两种方法有什么区别?
相同点:体重是有水份和其他物质组成的,求水和其他物质的重量也就是把30按照4:1的比例分配。
不同点:一是把比看作平均分得的份数,用平均分的方法来解答;二是把比化作分数,转化成分数乘法问题来解答。
(4)优化算法:他们的方法你喜欢哪个?为什么?
说给你的同位听一听。
(5)小结:像第二种方法,把一个数量按照一定的比进行分配的方法叫做按比例分配。(板书课题)
4、解决第二个问题:爸爸体内的水分和其他物质各有多少千克?
(1)师:你能用这种方法解决第二个问题吗?
(2)学生独立完成,同位交流自己的想法。
(3)指名一学生板演并说说自己的解题思路。
怎样知道我们解答的是否正确呢?谁能口头检验一下?
5、同学们都很棒,都能灵活的运用刚刚学过的分数乘法解决按比例分配的题目,谁能说说在计算按比例分配的题目时应注意什么问题?
三、巩固练习
1、走进生活(看谁能又对又快的解决这些问题)
自主练习1、2、3 第2、3题要求画出线段图分析解答。
2、课后延伸
判断:一个长方形周长是20厘米,长与宽的比是7∶3,求长与宽各是多少厘米?
7+3=10 207/10=14(厘米) 203/10=6(厘米)
错,要分的不是20厘米
四、布置作业
自主练习3、4、5
五年级数学上册教案8
课型:新授
教学内容:教材P5~6例3、例4及练习二第1、9题。
教学目标:
知识与技能:理解并掌握小数乘小数的计算方法,会正确进行笔算,并且会运用该知识解决一些实际问题。
过程与方法:在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。
情感、态度与价值观:渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。
教学重点:在理解小数乘法和小数意义的基础上掌握计算方法。
教学难点:让学生自主探究小数乘法的计算方法并正确地进行笔算。
教学方法:观察、分析、比较。
教学准备:多媒体。
教学过程
一、复习引入
1.口算。0.7×5 9×0.8 1.2×6 0. 23×3 14×3 1.4×3
口算后提问:从14×3和1.4×3的口算中,你有什么发现?
2.列竖式计算。26×7 1.36×12 30.8×25
学生独立完成,指名板演,订正时让学生说一说计算的过程。
3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)
二、自主探究
1.创设情境,引入问题。出示教材第5页例3的主题情境图。
师:观察图片,说说你发现了什么?(学校有一个长2.4米、宽0.8米的宣传栏。现在学校要给它刷油漆,一共需要多少千克油漆?)
师:给宣传栏刷油漆,一共需要多少千克油漆?该怎样计算呢?
全班交流,然后说出解决问题的方法。
师:我们该如何解决问题呢?
生:要算出一共需要多少千克油漆,需要先求出宣传栏的.面积。
师:那么怎样求宣传栏的面积呢?如何列式呢?生:2.4×0.8
师:这个式子中,两个因数都是小数,该如何计算呢?
生1可以用竖式计算:×0.8
生2:也可以把它们可作整数来计算(下左)。
师:那么如何求一共需要多少油漆呢?
生:算式是1.92×0.9,可以仿照上面同样的方法计算。(上右)
所以一共需要1.728千克油漆。
师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?
学生小组交流讨论,老师加以总结。
小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。
师:看一看算式的两个因数中一共有几位小数?积呢?
生:两个因数中一共有2位小数,积也有2位小数。
2.探究小数乘法的计算方法。完成P6例4上面的填空。
(l)组织学生尝试完成教材第5页的“做一做”。
(2)学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。
(3)教学例4。 0.56×0.04
师:这个算式中的两个因数都是两位小数,通过列竖式计算,我们能发现一个问题,即这个算式中,乘得的积的小数位数不够,那么如何点小数点呢?
学生讨论,教师板书。
师:乘得的积的小数位数不够时,要在前面用0补足,再点小数点。
师:观察黑板上各题,小组讨论。(出示讨论提纲。)
讨论提纲:①小数乘小数,我们首先怎样想?
(把两个因数的小数点去掉,转化为整数乘法。)
②怎样得到正确的积?(因数扩大到它的几倍,积就缩小到它的几分之一。)
③积的小数位数和两个因数的小数位数有什么关系?能举例说明吗?
(教师以竖式中的因数的小数位数和积的小数位数为例,说明因数中一共有几位小数,积就有几位小数,积的小数位数不够时,要在前面用O补足。)
3.根据上面的分析,想想小数乘法是怎样计算的?
学生讨论后,教师组织学生交流,回答上面的问题,归纳出计算小数乘小数应该注意哪些问题。
生:小数乘小数,先按整数乘法计算,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。当积的小数位数不够时,要在前面用0补足,再点小数点。
教师引导学生讨论、归纳,进一步得出“1看、2算、3数、4点”。
三、巩固练习
1.不计算,说一说下列各题的积有几位小数。
2.3×0.4 0.08×0.9 7.3×0.06
9.1×0. 03 0.25×0.23 45.9×3.5
提问:怎样判断积有几位小数?
2.用竖式计算。(教材第6页“做一做”的第1题)
提问:你是怎样计算0.29×0.07的?
3.完成教材第6页“做一做”的第2题。先由学生独立完成,然后集体订正。
师:分别比较积和第一个因数的大小,你能发现什么?小组交流讨论,教师总结。
师:一个数(0除外)乘大于1的数,积比原来的数大。
一个数(O除外)乘小于1的数,积比原来的数小。
四、课堂小结
师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)
作业:教材第8~10页练习二第1、9题。
板书设计:
小数乘小数
2.4×0.8=1.92 0.56×0.04=0.0224
1看、2算、3数、4点
五年级数学上册教案9
教学内容:
北师大版小学数学五年级上册。(教科书第82、83页。)
课标分析:
本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。
教材分析:
本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。
学生分析:
1、学生的知识基础
五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。
2、学生的能力基础
学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。
教学目标:
1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。
2、培养学生推理、观察、归纳和概括能力。
3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。
教学重点:
探究发现点阵中的规律。
教学难点:
总结概括规律。
教学准备:
课件,五子棋,磁扣等。
教法学法:
1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入
2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思
教学过程:
一、展示图片,引出课题
1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。
师:这些图片有什么特点?
生:好像都是由点组成的。
师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。
早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。
二、细心观察,探求规律
1、出示正方形点阵,探索正方形点阵的规律。
A、第一个规律。
师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)
(1)每个点阵可以看成什么图形?
(2)每个点阵中分别有多少个点?你是怎样观察出来的?
小组讨论,指名回答。
师:每个点阵可以看成什么图形?(正方形),同意吗?
生1:我认为第一个点阵不能看成一个正方形,是一个圆形。
师:其他同学也同意他的观点吗?
师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?
师:每个点阵中分别有多少个点?
生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。
师:你能说一说你是怎么得到每个点阵中点的个数的.吗?你是怎样观察出来的?
生:我是通过数出每个点阵中点的个数得到的。
师:谁还有不同的方法?有没有更快一些的方法?
生:我是通过计算得到的。
师:能具体说一说是怎样通过计算得到的吗?
生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。
师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?
生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)
师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)
师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?
(这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)
B、第2个规律
师:刚才我们是怎样观察的?(横着数和竖着数)
正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?
“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)
观察并思考
(1)分别用算式表示每个点阵点的个数。
(2)你发现了什么规律?
学生汇报,教师板书
第1个:1=1
第2个:1+2+1=4
第3个:1+2+3+2+1=9
第4个:1+2+3+4+3+2+1=16
第N个:1+2+3+N++3+2+1
师:“谁发现什么规律呢?”
生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。
师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。
刚才是横竖数,“第几个点阵就是几乘几”。
C、第3个规律
师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?
师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。
小组代表汇报。
生:(总结)每用折线画一次后,点阵中的个数是
1=1 1+3=4 1+3+5=9 1+3+5+7=16
师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,
师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”
教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”
通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。
师:真了不起。这种划分方法,我们可以叫做“折线划分法”。
第几个点阵,就是从1开始加几个连续奇数。
通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。
(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)
刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?
(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)
三、牛刀小试
1. (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?
生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。
小组交流,研究:上面的点阵还有其他的规律吗?
生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。
生;1,1+2,1+2+3,1+2+3+4
师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)
上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)
四、兴趣优在:(课件出示教材第83页练一练)
第2题:按规律画出下一个图形。
师:这道题就象梅花桩,指第一个,走了几个梅花桩?
生:3个。
师:指第二个,共走了几个梅花,增加几个桩?
生:7个,增加了4个。
师:指第三个,共走了几个梅花桩,又增加了几个桩?
生:13个,又增加了6个。
师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。
生:交流,探索总结规律
(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)
五、知识拓展
欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。
师:点阵不只是点,很多有规律的排列,都可以看成点阵。
投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。
六、课堂小结
师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?
七、课后操作
自创新的点阵图,并说出点阵规律。
五年级数学上册教案10
[教学内容]
打扫卫生(第4~6页)
[教学目标]
1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。
2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。
3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。
[教学重点]
除数是整数,商是小数的小数除法的计算方法。
[教学难点]
除得的结果有余数,补“0”继续除。
[教学过程]
一、复习导入
课件出示情境主题图:
开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?
引导学生列出算式并独立计算:18.6÷624÷4
计算后说一说整数除法与小数除法的异同。
二、对比中探索,交流中生成
师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?
教师把情境题中的18.6改成18.9,把24改成26。
1、初步尝试,发现问题。
请你尝试计算这两题,你发现了什么?
2、独立思考,尝试解决。
师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6
3、讨论交流,异中求同。
(1)在小组内汇报自己的计算方法。
(2)展示汇报。(可能出现第4页中几种不同的方法)
(3)对比这几种方法:有什么相同的地方?
引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9角里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。
4、应用方法,归纳总结。
竖式计算26÷4
(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的'小数点对齐。
(2)尝试总结除数是整数的小数除法的计算方法。
三、巩固练习。
1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?
2、错题诊所。
209÷5=41810÷25=41.26÷18=0。7
3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算.32÷812÷252.45÷3
4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?
[课堂总结]
本节课你有哪些收获?
[板书设计]
打扫卫生
商的小数点要和被除数的小数点对齐。
除到被除数的末尾有余数时,要在余数后边添“0”继续除。
五年级数学上册教案11
教学内容:
教材第3-4页的例3、例4,以及“试一试”、“练一练”,练习一第5-8题。
教学目标:
1.能在盈与亏、收与支、升与降、增与减及相反方向运动等现实的情境中准确地应用负数,进一步理解负数的意义。
2.通过用正数和负数表示一些具有相反意义的量,体会数学的应用价值。
教学重点:
在现实情境中应用负数,体验负数。
教学难点:
用正、负数表示相反方向的量,体验负数的'意义。
教学过程:
一、自主准备
你知道生活中有哪些相反意义的量?试着举例用正数或负数来表示。
二、自主探究
1.阅读课本第3页的例3。从表中你能知道些什么?(大声地读一读,并说一说表中的数所表示的意义)
2.从例3的学习中,你知道( )和( )是一对具有相反意义的量,通常情况下,怎样用正数和负数来表示?
3.填写课本第3页的“试一试”。
4.阅读课本第3页的例4。思考:如何用图来表达学校、邮局、公园之间的相对位置?(在下面画一画)
5.如果把向东走2千米记作+2千米,那么向西走2千米可以记作什么?
6.在直线上用点表示邮局和公园的位置
看了上图,你有什么发现?
三、自主应用
1.电梯上升15米记作+15米,下降10米记作( )米,-20米表示电梯( )米。
2.公交车上的售票员将下车3人记作-3人,上车4人记作( )人,-5人表示( )人。
3.知识竞赛抢答的评分规定:答对一题得10分,记作+10分;答错一题扣10分,应记作( )分。王明答对12题,答错3题,他得了( )分。
四、自主质疑
你认为本节课应学会什么?你还有什么疑问?
五年级数学上册教案12
教学内容:
教材第1-2页的例1、例2,以及“练一练”,练习一第1-4题。
教学目标:
1.在现实情境中初步认识负数,知道正数和负数的读、写方法;知道0既不是正数,也不是负数。
2.初步学会用正数和负数表示日常生活中的简单现象,如温度、海拔高度等具有相反意义的量。
3.体验数学与日常生活的密切联系,感受学习数学的乐趣。
教学重点:
在现实情景中理解正负数及零的意义。
教学难点:
用正负数描述生活中的相反现象。
学习指导:
一、自主准备
1.找一只温度计,仔细观察,并将观察内容与家长交流;或上网搜索,了解有关温度计知识。
2.学会使用温度计测量温度。
二、自主探究
1.阅读课本第1页的`例1。从图中你能知道些什么?(大声地读一读,并在下面写一写)
2.阅读课本第2页的例2。思考:怎样表示珠穆朗玛峰和吐鲁番盆地的海拔高度?
3.想一想:气温在( )时候用正数表示,在( )时候用负数表示,气温的正和负是以( )为分界点的。海拔高度呢?
三、自主质疑
你对正数和负数有了哪些了解?还有什么疑问?
教学准备:
多媒体课件
教学过程:
一、明确目标
同学们,通过自主学习,你知道今天的学习内容吗?(揭示课题)你认为本节课应学会什么?
二、交流提升
1.认识温度计
知道测量气温要用什么吗?(出示温度计)谁能把温度计向大家介绍一下? (温度计的结构、计量单位、类型、表示温度的方法等)
2.交流例1
(1)出示例1,全班交流:从图中你知道些什么?
(2)小组交流:以这三个城市的最低气温为例,说一说怎样用正数和负数来表示气温,正数和负数又是怎样读和怎样写的?
(3) 全班交流。(以0摄氏度为标准,0摄氏度以上用正数表示,0摄氏度以下用负数表示。写正数时,正号可写出,也可省略不写,写出正号的,一定要读出“正” 字,省略正号的,“正”字也省略不读,我们以前认识的数都是正数。而写负数时,一定要写出负号,读时也一定要读出“负”字。)(板书:+20(20)、- 20、0
3.交流例2
(1)小组交流:珠穆朗玛峰和吐鲁番盆地分别比海平面高或低多少米?怎样用正数和负数来表示海拔高度。
(2)全班交流。(以海平面为标准,超过海平面的用——正数表示,低于海平面的用——负数表示。)(板书:+8844.4、-155)
(3)想一想:气温在( )时候用正数表示,在( )时候用负数表示,气温的正和负是以( )为分界点的。海拔高度呢?
4.归纳总结
(1)小组交流:说说你对正数和负数有了哪些认识?
(2)全班交流。
(3)相机引导小结:像+20、+8844.4这样的数都是正数。像-20、-155这样的数都是负数。0既不是正数,也不是负数。
三、巩固拓展
1.练习一第1题。
生自已阅读第5题后全班交流:你知道了什么?说说哪个是正数,哪个是负数?
2.练习一第2题。
全班交流:你是怎么表示的?为什么?学生订正。
3.练习一第3题。
生独立完成,全班交流。(追问:正数和负数能写完吗?)
4.练习一第4题。
生独立完成,全班交流(交流时,帮助学生进一步明确0刻度线以上表示零上温度,每格表示10摄氏度,半格表示5摄氏度,特别要注意表示零下温度时数的方向)。
四、总结延伸
你有哪些收获?你还有什么疑问?
板书设计:
负数初步认识
+20(20)、-20、0、+8844.4、-155
像+20、20、+8844.4这样的数都是正数。
像-20、-155这样的数都是负数。
0既不是正数,也不是负数。
五年级数学上册教案13
第8单元 总复习
第2课时 位置复习课
【教学内容】:教材P114第4题及练习二十五第1题。
【教学目标】:
知识与技能:使学生能够准确地、熟练地用数对表示位置。
过程与方法:经历用数对表示位置的过程,掌握将数对应用于生活中的方法。
情感、态度与价值观:激发学生的学习兴趣,感受数学在日常生活中的应用。
【教学重、难点】
重 点:用数对确定位置。
难 点:培养学生灵活运用知识的能力。
【教学方法】:组织练习,质疑引导。练习体验,小组交流。
【教学准备】:多媒体。
【教学过程】
一、练习导入
1.谈话:为了更有利于同学们的学习,老师想调整一下同学们的座位。下面是座位示意图:
已知(1,4)表示小亮的位置。
⑴小明、小丽和小红的位置用数对分别可以表示为( , ),( , ),( , )。
⑵老师想把小刚排在(5,3)这个位置上,请你在图中标出来。
⑶从小明的位置向左数2列,再向后数1行就是小强的位置,小强的位置是( , )。
2.下面是一幅街区平面图,请看图回答问题。
五爱城所在的位置可以用(2,7)表示,它在火车站以东200m,再往北700m处。
⑴像上面那样描述一下其他建筑物的位置。
⑵小刚家在火车站以东600m,再往北400m处小红家在火车站以东900m,再往北200m处。在图中标出这两名同学家的位置。
⑶星期六,小刚的活动路线是(6,4)→(2,7)→(4,3)→(5,7)→(7,6)→(9,4)→(11,1)→(11,8)→(6,4)。与一说,他这一天先后去了哪些地方。
二、回顾整理
1.行和列的意义:竖排叫列,横排叫行。
2.数对可以表示物体的位置,也可以确定物体的位置。
3.数对表示位置的方法:先表示列,再表示行。先用括号把代表列和行的数字或字母括起来,再用逗号隔开。如:(7,9)表示第7列第9行。
4.两个数对,前一个数相同,说明它们所表示物体的位置在同一列上。如:(2,4)和(2,7)都在第2列上。
5.两个数对,后一个数相同,说明它们所表示物体的位置在同一行上。如:(3,6)和(1,6)都在第6行上。
6.物体向左、右平移,行数不变,列数减去或加上平移的格数。物体向上、下平移,列数不变,行数加上或减去平移的格数。
三、巩固拓展
1.运用平移的.方法加深用数对确定物体的位置。
按要求完成题目。 (答案:数对略)
(1)中点A的位置可用数对(1,1)表示,那么平行四边形其他各顶点的位置分别怎样表示?
(2)写出平行四边形向上和向右平移的的图形,写出平移后的各顶点的位置。
学生尝试解答。教师小结:一个图形向上或向下平移后,各顶点的位置的列数没变,行数发生变化;向左或向右平移后,各顶点的位置的行数没变,列数发生变化。
2.教材第114页第4题。教师:我们都下过五子棋,都知道五子棋的规则。请观察题中的情境图,你能用数对来准确地表示出图上的棋子的具体位置吗?
学生观察图片,独立思考,同桌交流,然后指名汇报。
四、课后小结
位置可以由数对来确定,要注意数对的规范写法,逗号前面表示列,逗号后面表示行。
五、作业:教材第115页练习二十五第1题。
【板书设计】
位置复习课
竖排叫列,横排叫行。 先表示列,再表示行。
物体向左、右平移,行数不变,列数减去或加上平移的格数。
物体向上、下平移,列数不变,行数加上或减去平移的格数。
五年级数学上册教案14
第一课时
一 教学内容
分数加减混合运算
教材第117 、118 的内容及第120页练习二十三的第1 一4 题。
二 教学目标
1 .通过教学,使学生掌握分数加减混合运算的顺序和计算方法,并掌握带有小括号的分数加减混合运算的顺序及算法。
2 .培养学生迁移、类推的能力和归纳、概括的能力。
3 .养成用简明、灵活的方法解决问题的习惯。
三 重点难点
掌握分数加减混合运算的顺序和计算方法。
四 教具准备
投影。
五 教学过程
(一)导入
1 .说一说下列各题的运算顺序。
112+8-13 16-4+21 24-(18+3)
2 . 老师指出:分数加减混合运算的运算顺序和整数加减混合运算的运算顺序相同。
(二)教学实施
1 .出示例1 的表格。
( l )让学生读懂表格的内容,并用自己的语言表述出来。
( 2 )老师出示第一个问题:"森林部分比草地部分多几分之几?"
( 3 )提问:森林部分指什么?怎样列式?
( 4 )请学生试着算一算,集体交流计算方法。
老师巡视,请不同算法的同学板演。
方法一: + 一 方法二: + 一
= + 一 = + 一
= 一 =
= =
( 5 )计算方法:计算分数加减混合运算时,可以分步通分也可以一次通分进行计算。计算时,可以根据题目的特点和自己的情况灵活选择方法。
2 .出示例1 的第二个问题:"裸露地面储存的地下水占降水量的几分之几?
( l )先让学生看懂表格内容,然后老师提问:在这个问题中,把什么看作单位"1 " ? 是什么意思?
( 2 )请学生列出算式:1 - - 或1 -( + )
( 3 )请学生试着计算,并指名板演这两种方法的计算过程。
1 - - 1 -( + )
= - - =1 -( + )
= =1 -
=
提问:比较这两种方法有什么不同?带有小括号的分数加减混合运算该怎样计算?
3 .。
提问:你能说一说分数加减混合运算的顺序吗?
引导学生归纳概括出:分数加减混合运算与整数加减混合运算的顺序相同,也是按照从左往右的顺序计算,带有小括号的先算小括号里面的,再算小括号外面的。
4 .完成教材第118页的"做一做。
学生试着独立完成,集体交流计算过程,重点看运算顺序及书写美观情况。
5 .完成教材第120 页练习二十三的第1 - 4 题。
学生独立完成,集体订正。第2 - 4 题,鼓励学生用不同的方法解答。
(四)思维训练
某市举办一次数学竞赛,设一、二、三等奖若干名。获一、二等奖的占获奖总人数的 ,获二、三等奖的占获奖总人数的 。获二等奖的占获奖总人数的几分之几?
(五)课堂
本节课我们研究了分数加减混合运算的顺序和计算方法。分数加减混合运算的顺序与整数加减综合运算的顺序相同。
第二课时
一 教学内容
分数加减混合运算
(二)教材第119 页的内容及第121 页练习二十三第5 ? 8 题。
二 教学目标
1 .通过教学,使学生理解整数加法的运算定律对分数加法同样适用,并能灵活运用加法运算定律进行简便运算。
2 .培养学生计算的灵活性。
3 .养成认真审题的良好习惯。
三 重点难点
正确应用加法运算定律进行简算。
四 教具准备
投影。
五 教学过程
(一)导入
1 .用简便方法计算下面各题,并说出简算的`依据。
53 + 36 + 64 + 97 1 . 5 + 3 . 8 + 6 . 2
2 .全班学生独立完成,并说出加法运算定律的字母表示形式。
3 .老师板书:
加法交换律:a + b = b 十a
加法结合律:a + b +c = a 十(b +c)
(二)教学实施
1 .老师设疑:当上面式中的字母表示分数时,这个定律还适用吗?
2.出示教材第119 页的例2 ,学生计算两边是否相等,集体交流结果。
板书: + ○= +
( + )+ ○= +( + )
提问:① 两组算式的特点各是什么?(两组算式中,左右两边的加数都相同,第一组中加数交换了位置,第二组中改变了加的顺序。
② 这一特点与整数加法的什么运算性质相同?(加法交换律、加法结合律)
3 .结论:整数加法的交换律和结合律对分数加法同样适用。
4 .完成教材第119页"做一做"的第l 题及第121 页的第5 、7 题。学生在教材上填写,集体订正。
5 .完成教材第119 页"做一做"的第2 题。
学生根据数的特点,想想应用什么定律进行简算。集体订正计算过程,并说出简算的依据。
6 .完成教材第121 页练习二十三的第8 题。
学先计计算出3 个算式的结果: - = - = - = 。然后让学生观察,找规律,归纳出: - = (≠0)再应用规律计算 + + + 集体交流计算方法。
(四)思维训练
1 .下面各题怎样简便就怎样算。
-( + ) 5 - - - +
- + - + - - -( + )
2 .请将 、 、 、 、 和 填在圆圈中,使每条线上的三个数的和都相等。
3 . 计算。
(1) + + + +
(2) 1- + - + - + - +
(五)课堂
本节课,我们研究了如何应用整数加法的运算定律简便计算分数加法。今后,在计算分数加法时,要注意认真审题,根据题目中数的特点,灵活应用加法交换律、加法结合律进行简便运算,从而提高计算的正确率和计算的速度。
五年级数学上册教案15
一、比较图形面积大小的方法:
1、数格法;
2、重叠法;
3、分割平移法;
4、公式计算面积法;
5、借助参照物比较法。
二、计算不规则图形面积的方法:
1、数格法;
2、分割法;
3、大面积减小面积法;
4、综合计算法
注:数格子时,先数完整的格子,再数能拼接的格子,如果几个格子可以拼接成一个完整的'格子,就可以算作一个整格;不能拼接的格子,如果接近半格,按半格算;如果只多一点点的,可以忽略不计;如果超过半格,接近一格的,按一格计算。
三、底和高
1、底和高是互相垂直的两条垂线段。(画高时,用虚线画高)
2、画垂线时用实线画。
四、面积公式
1、平行四边形面积=底×高(s平=ah)
底=平行四边形面积÷高(a=s平÷h)
高=平行四边形面积÷底(h=s平÷a)
2、三角形面积=底×高÷2(s三=ah÷2)
底=三角形面积×2÷高(a=s三×2÷h)
高=三角形面积×2÷底(h=s三×2÷a)
3、梯形面积=(上底+下底)×高÷2(s梯=(a+b)h÷2)
上底=梯形面积×2÷高-下底(a=s梯×2÷h-b)
下底=梯形面积×2÷高-上底(b=s梯×2÷h-a)
高=梯形面积×2÷(上底+下底)(h=s梯×2÷(a+b))
【五年级数学上册教案】相关文章:
数学五年级上册教案05-26
数学上册五年级教案11-03
数学上册教案12-25
数学上册教案12-25
五年级上册数学教案01-14
五年级数学上册教案06-13
五年级上册数学优秀教案12-22
五年级上册数学教案04-18
数学五年级上册教案15篇05-26
数学五年级上册优秀教案模板02-17