六年级上册数学教案

2023-01-30 数学教案

  作为一位不辞辛劳的人民教师,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。如何把教案做到重点突出呢?以下是小编为大家收集的六年级上册数学教案,欢迎大家分享。

六年级上册数学教案1

  教学内容:一个数乘以分数及其应用题。

  教学目的:在学生初步理解一个数乘以分数的意义的基础上,通过类比的推理方法,形成一个数乘以分数就是求这个数的'几分之几是多少的概念。并掌握一个数的几分之几是多少,就是用这个数乘以分数的计算方法。

  教学过程:

  一、只列式不计算

  1)两地相距4千米,小明行了4/5千米,还剩多少千米?

  2)大豆每千克含油4/25千克,照这样计算,20千克大豆含油多少千克?

  二、发展练习

  (1)六(5)班有45位学生,其中男生占3/5,男生有多少人?

  (2)商店有18辆儿童单车,上午卖出了4/9,上午卖出了多少辆?

  (3)重量是足球的49,一个足球重1/4千克,一个排球重几千克?

  (4)每小时骑车行11千米,这4小时一共行多少千米?

  2、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的1/4,第二次用去多少吨?

  3、食堂运来24吨的煤,第一次用去1/3,第二次用去的这批煤的1/4,第二次用去多少吨?

  4、食堂运来24吨的煤,第一次用去1/3,第二次用去的是第一次的2倍少3吨,第二次用去多少吨?

  五、作业:练习四第11—15题。

六年级上册数学教案2

  本单元内容包括比的意义、比的基本性质、化简比、按比分配解决实际问题等。本单元是在学生已经理解了除法的意义与基本性质、分数的意义与基本性质、分数乘除法的计算方法和解答分数除法实际问题的基础上进行教学的。

  由于本单元的知识与学生已有知识有着密切的联系,在教学时,教师应创设良好的学生自主学习的环境,引导学生自主探索与思考,并与同学展开积极的合作与交流,在特殊方法与一般方法的比较辨析中,进一步明晰知识的本质。

  教材还编排了很多问题情境图来突破教学中的重难点问题。

  例如:在例2按比分配解决实际问题中,教材在问题情境图和分析与解答过程中都采用图示直观地表示比的具体含义。

  这有利于学生理解这个比表示的是哪两个量之间的关系。同时,借助于直观图,也有利于学生运用数学语言转换各种信息,多元表达概念及数量关系,因而从本质上帮助学生理解数量关系,提高提出问题、分析问题、解决问题的能力。)

  第1课时比的意义

  教材48~49页的内容。

  1.在具体的情境中理解比的意义,学会比的读法、写法,掌握比的各部分名称及求比值的方法。

  2.经历探索比与分数、除法之间关系的过程,体会数学知识之间的内在联系,把握比的意义的本质。

  重点:

  理解比的意义以及比与分数、除法之间的关系。

  难点:

  理解比与分数、除法之间的关系,明确比与比值的区别。

  课件:

  学具。

  1.课件出示教材第48页情境图。

  教师提问:这就是杨利伟展示的两面旗,它们的长都是15cm,宽都是10cm。比较它们长和宽的关系,你能提出怎样的数学问题?

  (1)长比宽多多少厘米?15-10;

  (2)宽比长少多少厘米?15-10;

  (3)长是宽的多少倍?15÷10;

  (4)宽是长的几分之几?10÷15。

  2.师:今天我们将进一步研究这种倍数关系,它除了用除法表示外,还可以用一种新的数学方法——“比”来表示。(板书课题:比的意义)

  自学比的相关知识。

  学生自学教材第49页“做一做”之前的内容,思考问题:比各部分的名称是什么?怎样求一个比的比值?(汇报交流)

  (1)比各部分的名称。

  课件出示:15∶10=15÷10=,让学生说出比的各部分名称。(板书:前项、比号、后项、比值)

  (2)比值的意义。

  师:怎样求一个比的比值呢?(比的前项除以比的后项所得的商就是比值。)

  师:比和比值有什么区别?(引导学生小结:比表示一种关系,而比值是一个数,通常用分数表示,也可以用小数或整数表示。)

  师:同桌讨论一下,比与除法、分数之间有什么联系?比的前项、后项和比值分别相当于分数和除法算式中的什么?比的后项可以是0吗?

  讨论后根据学生交流反馈填写下表:

  联系

  区别

  除法

  被除数÷除数=商

  一种运算

  分子—分母=分数值

  比

  前项:后项=比值

  两个量的关系

  请尝试用字母表示比和除法、分数之间的内在联系。

  板书:a∶b=a÷b=(b≠0)。

  师:根据分数与除法的关系,两个数的比还可以写成分数形式。如15∶10也可以写成,仍读作“15比10”。

  师:足球比赛中的比分3∶0与我们今天学习的比一样吗?(引导学生理解:各类比赛中的比不是我们这节课学习的比,它只是一种计分形式,是比较大小的,是相差关系,不是相除关系。)

  1.教材第49页“做一做”第1题。

  请学生思考这两个比的量是同类量吗?比值表示什么意思?(所花钱数和练习本数是不同类的量,比值表示单价。)

  2.教材第49页“做一做”第2题。

  学生独立完成。反馈时,说说未知的前项或后项是怎样求出的。(引导学生根据比与除法的关系求出未知的前项或后项,归纳一般方法:前项=比值×后项;后项=前项÷比值。)

  3.教材第52页“练习十一”第1题。学生独立完成,反馈交流。

  说说这节课我们学习了什么?你有什么收获?

  教学时利用“神舟”五号升空这一现实素材自然地引出“比”,一方面激发学生的学习兴趣,感受数学与生活的密切联系;另一方面可适时进行爱国主义教育。在比较分析中,学生感受“比”和除法的联系,加深对同类量与不同类量比的意义的理解,对比的概念形成较为清晰的认识。

  在讨论交流中,教师引导学生进一步认识比和除法、分数之间的联系与区别,体会数学知识间的内在联系。

  第2课时比的基本性质

  教材第50~51页的内容。

  1.理解和掌握比的基本性质,初步掌握化简比的方法。

  2.在自主探索的过程中,分析比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

  3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

  重点:

  理解比的基本性质。

  难点:

  正确应用比的基本性质化简比。

  课件、答题纸、实物投影。

  师:同学们先来回忆一下,关于比已经学习了什么知识?

  预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

  师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变的性质,分数有分数的基本性质。联想这两个性质想一想,在比中有没有类似的性质呢?

  板书:比的基本性质。

  学生纷纷猜想比的基本性质。

  根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  1.教学比的基本性质。

  师:比和除法、分数一样,也具有属于它自己的性质,那么是否和大家猜想的一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

  教师说明合作要求。

  (1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

  (2)小组讨论学习。

  ①每个同学分别向组内同学展示自己的研究成果,并依次交流。(其他同学表明是否赞同此同学的结论。)

  ②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

  ③选派一个同学代表小组进行发言。

  (3)集体交流。(要求小组发言代表结合具体的例子在展台上进行讲解。)

  (4)全班验证。

  2.完善归纳,概括出比的基本性质。

  10∶15=10÷15==

  15∶9=15÷9=

  16∶20=(16

  ○

  □)∶(20

  ○

  □)

  上题中○内可以怎样填?□内可以填任意数吗?为什么?

  (1)学生发表自己的见解并说明理由,教师完善并板书。

  (2)学生打开书本读一读比的基本性质,教师板书课题:比的基本性质。

  3.深化认识。

  利用比的基本性质做出准确判断:

  (1)8∶10=(8+10)∶(10+10)=18∶20( )

  (2)12∶16=(12÷6)∶(16÷4)=2∶4( )

  (3)0.8∶1=(0.8×10)∶(1×10)=8∶10( )

  (4)比的前项乘3,要使比值不变,比的后项应除以3。

  ( )

  4.比的基本性质的应用。

  (1)引导学生自学最简整数比的相关知识。

  预设:前项、后项互质的整数比称为最简整数比。

  (2)从下列各比中找出最简整数比,并简述理由。

  3∶4 18∶12 19∶10 ∶ 0.75∶2

  (3)化简前项、后项都是整数的比。(课件出示教材第50页例1(1))

  学生独立尝试,化简后交流。

  (除以最大公因数和逐步除以公因数两种方法,重点强调除以最大公因数的方法。)

  (4)化简前项、后项出现分数、小数的比。(课件出示教材第51页例1(2))

  四人小组讨论研究,找到化简的方法。

  预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

  (5)归纳小结:化简时,如果比的前项和后项都是整数,可以同时除以它们的最大公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

  5.方法补充,区分化简比和求比值。

  )

  还可以用什么方法化简比?(求比值)化简比和求比值有什么不同?

  预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

  1.把下面各比化成最简单的整数比。(出示教材第51页“做一做”。)

  2.教材第53页“练习十一”第4题。学生口答完成。

  这节课你有什么收获?还有什么疑问?

  比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的.实效性。第3课时比的应用

  教材第54页的内容。

  1.能在实例的分析中理解按比分配的实际意义。

  2.初步掌握按比分配的解题方法,运用所学知识解决按比分配的实际问题。

  3.通过贴近学生生活的实例学习,在观察、研讨、交流中让学生感受到数学学习和活动的乐趣。

  重点:理解按比分配的意义,能运用比的意义解决按比分配的实际问题。

  难点:自主探索解决按比分配实际问题的策略,能运用不同的方法多角度解决按比分配的实际问题。

  课件。

  课件出示:一个农场计划把100公顷地平均分成2份,分别播种小麦和玉米。小麦和玉米各播种多少公顷?播种面积的比是多少?(指名学生回答)

  师:这道题是把100公顷平均分成2份,这是一道平均分配的应用题。在生产和生活中,使用平均分配方法的实例很多,但是在工农业生产和日常生活中,还有一种分配方法应用也很广泛,那就是把一个数量按照一定的比来进行分配。比如,配制一种混凝土需要2份水泥、3份沙子和5份石子。这种把一个数量按照一定的比来进行分配的方法通常叫做按比例分配。也就是我们今天要学的比的应用。(板书课题:比的应用)

  1.课件出示教材第54页例2。

  师:题目中要配制什么?(配制500

  mL的稀释液)

  师:是按什么进行配制的?(浓缩液和水的体积按1∶4的比进行配制)

  师:“浓缩液和水的体积比是1∶4”是什么意思?

  生:就是说在500

  mL的稀释液中,浓缩液的体积占1份,水的体积占4份,一共是5份。

  师:浓缩液的体积占稀释液体积的几分之几?水的体积占稀释液体积的几分之几?

  师:你能求出浓缩液和水的体积各是多少毫升吗?

  引导学生小组讨论解法,交流汇报。结合学生回答,板书解法。

  思路一:先把比化成分数,用分数乘法来解答。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500×=100(mL)

  水的体积:500×=400(mL)

  思路二:把比看作分得的份数,先求一份数,再求几份数。

  稀释液平均分成的份数:1+4=5(份)

  浓缩液的体积:500÷5×1=100(mL)

  水的体积:500÷5×4=400(mL)

  2.验证所求问题。

  方法一:把求得的浓缩液和水的体积相加,看是不是等于稀释液的体积。

  方法二:把求得的浓缩液和水的体积写成比的形式,看化简后是不是等于1∶4。

  3.明确按比例分配的意义。

  在日常生活中,我们常常需要把一个数按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。(板书:按比例分配)

  4.整理解题思路。

  (1)按比例分配的问题可以转化成整数的归一问题,即先用除法求出每份数,再用乘法求出几份数。(板书:整数的归一问题)

  (2)按比例分配的问题也可以转化成分数问题,先把比转化成分数,再用总数×分率。

  1.教材第55页“练习十二”第1、2题。

  第1、2题都是按比例分配的问题,但描述的方式不同,要引导学生善于转换各种信息。

  2.教材第55页“练习十二”第3题。学生独立完成,并组内交流。

  3.教材第56页“练习十二”第11题。

  注意引导学生先求出一个长、一个宽、一个高的长度和,再求解。

  今天这节课我们主要研究了什么?说说你的收获和感受。

  本节课的重点是掌握按比例分配类应用题的结构,分析应用题中的数量关系,难点是比与分数的转化。为了能在教学中化解难点,使学生轻松进入本节课的学习,课一开始我就将“平均分配”与“按比例分配”的不同用事例展示给学生,为例题的教学做好准备。把书上的例2作为尝试题,让学生独立尝试、交流,最后进行小结。这样不但培养了学生独立审题、分析的能力,而且进一步加深对两种方法的理解,让学生初尝成功的乐趣。

六年级上册数学教案3

  学习内容

  教科书第55页例2,课堂活动第2题,练习十五第4~7题。

  育人目标

  1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

  2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

  3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

  4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

  5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

  6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  学习重难点

  重点:把两个数比的问题的解题方法推广到三个数连比的问题。

  难点:理解三个数连比的问题的解题方法。

  学习评价设计

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  教学过程

  导入新课

  1.填空。(多媒体出示题目)

  (1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

  (2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

  学生回答反馈,说说怎样思考,集体评价。

  2.引入谈话:怎样解决按比例分配的问题?

  在实际生活中还有哪些问题可以用按比例分配的方法解决?生举例。(组织学生分组讨论.

  反馈.

  交流后,老师及时做出评价)

  在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

  独立思考再交流方法和结果,集体评价。

  举例,分组讨论、反馈、交流。

  探究新知

  1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

  要配制220吨混凝土,水泥、沙子、石子的比是:2∶3∶6,需要水泥、沙子、石子各多少吨?

  2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

  生1:前面所做的题都是两个量的比,这道题是三个量的比。

  生2:可以仿照上节所学的按比例分配方法去解。

  3.学生尝试解答,教师巡视。

  4.展示学生解法,说出解题思路。

  方法1:220÷(2+3+6)=20(吨)

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

  答:需要水泥40吨,需要沙子60吨,需要石子120吨。

  方法2:总份数:2+3+6=11

  需要水泥的吨数:220x2/11=40(吨)

  需要沙子的吨数:220x3/11=60(吨)

  需要石子的吨数:220×6/11=120(吨)

  方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

  解:设每份是x吨.

  2x+3x+6x=220

  11x=220

  x=20

  需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

  5.议一议:怎样解决按比例分配的问题?

  学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

  学生交流获取的信息。

  讨论交流异同。

  尝试解答,再展示交流解题思路。

  独立思考,再小组交流、小结解决按比例分配问题的一般方法。

  在配置混泥土的过程中,感受数学与生活的联系,培养学生的'合作意识,引导学生大胆探索创造。

  在按比例分配的过程中,感受分配方案的简洁美、理性美。

  巩固练习

  1.课堂活动第2题。

  根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

  2.一堆混凝土中沙子有100kg,石子有60kg,水泥有240kg。要配制180吨这样的混凝土,需要沙子、石子、水泥各多少吨?

  教师组织学生讨论:这道题与前面所做的题有什么区别?

  引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

  学生讨论后尝试独立解题。完成后交流解决问题的方法。

  刚才同学们通过上题计算,知道混凝土中沙子、石子、水泥的比为5∶3∶12。现有一堆总重为40吨的混凝土,经现场测量,水泥有20吨,沙子有12吨,石子有8吨。这堆混凝土符合配比吗?

  再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

  学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

  学生讨论找到方法。

  独立解题,再交流解题方法。

  讨论交流得出结论。

  经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

  课堂小结

  想一想,今天学习的知识与昨天有什么不同?又有什么相同?

  谈收获。

  课堂作业

  练习十五第4—7题。

  独立完成。

六年级上册数学教案4

  教学目标 1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;

  2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;

  3、培养学生分析和解决实际问题的能力,发展学生的思维;

  4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。

  教学

  关键 培养学生分析和解决实际问题的能力

  教学

  重点 复习分数乘除法应用题,掌握解题方法。

  教学

  难点 找准单位“1”

  教具

  准备 多媒体课件

  教学步骤 教学过程 教学课件演示 教学意图

  一、基础训练导入。

  师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?

  专项训练:

  课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。

  在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?

  我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?

  常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。

  二、根据看线段图列式

  师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】

  注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。

  三、基础练习

  基础练习只列式不计算

  师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?

  归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。

  尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?

  【教学课件演示】

  培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。

  四、对比练习

  1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。

  通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。

  五、巩固练习

  练习八的3-5题

  师:下面请同学们独立进行计算,完成练习八P118第3题和第4题。

  (1)、读题,分别找到两道题的单位“1”,并说说这两道题有何不同?

  (2)、根据题意分析数量关系,然后列式计算,全班讲评。

  (3)、出示P118页5题。

  提问:把谁看作单位“1”?

  结合讲解,进一步强调在解答分数乘法应用题时,一定要找准单位“1”。因为分数乘法应用题是根据分数乘法的意义计算的,求哪个数量的几分之几,就要把那个数量作为单位“1”。在解答两步计算的'分数应用题时,更要注意每一步是把什么数量看作单位“1”,每一步中的单位“1”可能是不同的。

  【教学课件演示】

  加强解题思维的训练,沟通新旧知识,沟通解决问题的方法。

  六、强化练习

  1、完成练习二十七的第7题:

  3个同学跳绳。小明跳了120个,小强跳的是小明跳的5/8,小亮跳的是小强的2/3,小亮跳了多少个?

  渗透健康教育:

  跳绳运动,是对付肥胖、预防血脂异常、高血压最切实可行的方式,也是一个很好的锻炼耐力的有氧代谢运动。同学们要积极进行跳绳运动,

  学生独立进行思考计算,请个别同学讲解回答。

  2、练习二十七的第8题,练习二十七的第9题。

  (1)一个县去年绿色蔬菜总产量720万千克,是今年绿色蔬菜总产量的9/10。今年全县绿色蔬菜总产量是多少万千克?

  (2)一个县去年绿色蔬菜总产量720万千克,比今年少了1/10,今年全县绿色蔬菜总产量是多少万千克?

  渗透健康教育:

  绿色蔬菜含维生素U较多是抗癌、防癌的复合剂,对胃溃疡高血压、动脉硬化、视网膜出血、紫癜以及出血性肾炎等疾病有治疗效果多吃的蔬菜会对胃肠功能的恢复有所帮助。

  【教学课件演示】

  强化数量关系的分析,强化方程的解法,体现解法的多样性、解法的最优化,提高学生自主意识和优化意识。

  通过强化练习提升学习水平,让各种类型的学生都有所提高。

  七、课堂总结

  今天你都学会了什么?有什么收获?今天我们学习了应用题,解答这类应用题要先找准单位“1”和相等的数量关系,再确定算法,然后列式计算,先找单位1,再看知不知,已知用乘法,未知用除法,比1多就加,比1少就减”。

  【教学课件演示】 帮助学生抓住解题的重点,已知单位“1”的用什么方法解,不知道单位“1”的又用什么方法解。帮助学生进行数学知识网络的建构。

  八、作业:

  练习二十七的第8、10题 【教学课件演示】

  板书:

  分数乘除法应用题复习

  根据条件分析单位“1”和找准对应分率。

  用算术方法解:已知单位“1”用乘法,不知单位“1“用除法。

  用方程解:单位“1”不知道或者题目的条件中含有“比另一个数多(或少)几分之几”。

六年级上册数学教案5

  设计说明

  “百分数的意义和读写法”是在学生学习了整数、小数以及分数的基础上进行教学的,百分数与分数有着密切的联系。基于以上认识,教学设计主要突出以下几点:

  1.以实际生活情境为载体,感知百分数的意义,培养学生的思维能力。

  数学知识来源于生活,又服务于生活。百分数的知识与现实生活有着密切的联系,所以,在引入课题和百分数意义的教学中,教学内容的选择都要紧密联系学生的生活实际,而且通过课前对百分数的收集,使学生认识到百分数在生产、生活中的广泛应用。同时,以实际生活情境为载体,充分挖掘学生学习的潜能,使学生积极地参与到数学活动中去,培养学生的思维能力。

  2.注重新旧知识的对比和迁移,体现类比的思想方法。

  对比和迁移能使学生容易接受新知识,防止新旧知识混淆,提高学生的辨别能力,从而扎实有效地掌握数学知识。教学百分数的意义是在学生已掌握了分数的意义的基础上进行的,教学设计中通过与分数的意义进行对比,明确分数的意义与百分数的意义的区别,更加突出百分数的意义是表示一个数是另一个数的百分之几的数,表示的是两个数之间的倍比关系。

  课前准备

  教师准备 PPT课件

  学生准备 学生课前收集的生活中有关百分数的'资料

  教学过程

  ⊙情境导入

  1.出示课件。

  师:同学们,看了这段资料,你发现了什么?你有什么感想?

  引导学生发现百分数的同时,让学生感受到我们国家的经济发展水平正在逐步提高。

  师:你知道这些数叫什么数吗?还在哪些地方见过这样的数?

  学生讨论后,教师明确:像上面这样的数,如14%、65.5%、120%……叫做百分数。

  2.引导学生交流课前收集到的百分数的资料。

  师:同学们收集到的百分数资料可真多啊!看来百分数在生产、生活中的应用非常广泛。那人们为什么喜欢用百分数?用百分数有什么好处?百分数有什么含义呢?带着这样的问题,让我们一起走进今天的数学课堂

六年级上册数学教案6

  教学内容:

  教材第59页及相关题目。

  教学目标:

  1、在前面所学轴对称图形的基础上,进一步认识圆的轴对称特性。

  2、培养学生的动手操作能力,加深对所学平面图形的对称轴的认识。

  3、培养学生观察周围事物的兴趣,提高观察能力。

  教学重点:

  认识圆的对称轴。

  教学难点:

  用圆设计图案的方法。

  教学准备:

  多媒体课件、圆规、直尺等。

  教学过程:

  学生活动(二次备课)

  一、复习导入

  1、课件出示轴对称的物体,想一想:这些图形有什么特点?让学生观察图形,找出这些图形的特点。

  师生共同回顾总结:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的直线叫做这个图形的对称轴。

  2、你能画出下面两个圆的对称轴吗?能画多少条?学生尝试画出圆的对称轴,并观察。你发现了什么?

  学生汇报后师生共同总结:圆有无数条对称轴,每一条过直径所在的直线都是它的`对称轴。

  3、导入:我们可以利用圆的这一特点去设计很多漂亮图案来装点、美化我们的生活。本节课我们继续研究有关圆的知识。

  二、预习反馈点名让学生汇报预习情况。

  (重点让学生说说通过预习本节课要学习的内容,学到了哪些知识,还有哪些不明白的地方,有什么问题)

  三、探索新知

  1、设计美丽图案——花瓣。

  (1)课件出示教材第59页最上方的图片。观察思考:4个花瓣由几个半圆组成,这几个半圆的圆心分别在哪里?半径怎么找?

  (2)想一想,自己尝试画一画。可参考课本第59页的步骤。

  (3)交流画法。在讲述过程中要重点说出:圆心的位置在哪里,是如何找到的?半径是如何找到的?学生讲述,教师在黑板上画。

  小结:画图时首先要找出图中包含的各个圆或半圆,找到它们的圆心、半径。

  2、设计美丽的图案——风车图。

  (1)观察图案,想一想如果画这个图案,应按怎样的步骤。

  (2)在小组内交流后动手完成。展示自己画出的图案,并说一说画图步骤:

  ①先画一个圆,在圆内画两条互相垂直的直径。

  ②分别以这4个半径的中点为圆心,以大圆半径的一半为半径向同一方向画半圆。

  ③把所画半圆涂上颜色。

  3、设计美丽的图案——太极图。

  指名说一说画太极图的步骤:

  (1)画一个圆,在圆内画一条直径。

  (2)分别以组成这条直径的两个半径的中点为圆心,以大圆半径的一半为半径,分别向上、下两个方向画半圆。把大圆分成上、下两部分。

  (3)把圆的一半涂上颜色,如图所示。

  四、巩固练习

  1、完成教材练习十三第6题。

  2、完成教材练习十三第8题。

  3、完成教材练习十三第9题。

  五、拓展提升

  观察图案,说一说下面两个图案的画法。

  六、课堂总结

  让学生说一说这节课的收获。

  七、作业布置

  教材练习十三第7题和第10题的第1、4个图案。

  画一画,看一看,想一想。教师根据学生预习的情况,有侧重点地调整教学方案。在小组内交流后再汇报。观察图案,找到各个圆、半圆的圆心和半径。观察图案,想一想,说一说,画一画首先要对图案进行“分解”,知道每一部分是怎么来的。难度较大,可在课下完成。

  教学反思

  成功之处:本节课学生通过观察、操作、比较、思考、交流、讨论等一系列活动,主动获取知识,并且体会到探索之趣,经历成功之乐,培养了学生的学习兴趣,发展了学生的能力。不足之处:学生的创新能力没有体现。教学建议:教学时,在学生掌握了基本方法后,让学生用自己的思维方式自由开放地去创造,以张扬他们的个性,培养他们的动手操作能力和创新能力。

六年级上册数学教案7

  教学内容:课本P15页例2,及练习四的6—10。

  教学目的:

  1、使学生进一步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法两步应用题。

  2、进一步培养学生分析问题的能力。

  教学重点:

  使学生理解并掌握求一个数的几分之几是多少的两步计算应用题的数量关系,正确解答。

  教学难点:

  辨析两次判断单位“1”有什么不同。

  教学过程:

  一、基本练习。

  1、先说出下列各算式表示的'意义,再口算出得数。

  2、指出下面每组中的两个量,应把谁看作单位“1”。

  1)香蕉的筐数是苹果的。

  2)香蕉的筐数的和苹果的筐数相等。

  3)黄牛只数的等于水牛的只数。4)水牛的只数相当于黄牛的。

  二、新课学习。

  1、出示例2。

  2、读题,分析题意。说出已知条件和所求问题。明确这是一道两步计算的应用题。

  3、怎样用线段图表示已知条件和问题。

  思考:要画几条线段?5/6和2/3分别是谁的5/6和2/3?单位“1”分别是什么?

  根据学生的回答画图。

  4、确定每一步的算法,列式计算。

  1)求小华储蓄的钱数怎样想?

  思路:根据“小华储蓄的钱数是小亮的5/6,把小亮的钱数看作单位“1”,就是求18的5/6是多少,所以用乘法计算。列式:

  (元)

  2)求小新储蓄的钱数怎样想?思路同上。注意认清单位“1”

  5、指导列综合算式解答。

  6、总结今天所学内容和昨天的异同。

  7、练习

  1)完成课本P15页下的“做一做”。

  2)指名说一说是怎样确定计算方法的。

  三、新课小结。

  1、分数乘法两步应用题与前一节所学的一步应用题有什么相同点和不同点?

  2、解答这类应用题的关键是什么?怎样判断计算方法?

  四、巩固练习:P16练习四6、7。

  五、作业。

  完成练习四的第8—10题。

六年级上册数学教案8

  教学内容:课本第14~15页的例1,完成“做一做”和练习四的第1~5题。

  教学目的

  1、使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

  2、培养学生分析能力,发展学生思维。

  教学重点:理解题中的单位“1”和问题的关系。

  教学难点:抓住知识关键,正确、灵活判断单位“1”。

  教学过程

  一、复习

  2、列式计算。

  (1)20的是多少?

  (2)6的'是多少?

  二、新授。

  1、教学例1。

  出示例1:学校买来100千克白菜,吃了,吃了多少千克?

  (1)指名读题,说出条件和问题。

  (2)引导学生画出线段图,并在线段图上标出题目中的条件和问题。

  先画一条线段,表示“100千克白菜”。

  吃了,吃了谁的?(100千克白菜)要把“100千克白菜”平均分成5份,吃了4份,怎样表示?

  教师边说边画出下图:

  (3)分析数量关系,启发解题思路。

  A请同学们仔细观察图画,并认真想一想,吃了,是吃了哪个数量的?

  B分组讨论交流:依据吃了100千克的把哪个量看作单位“1”呢?为什么?你是怎样想的?

  (4)列式计算。

  A学生完整叙述解题思路。

  B学生列式计算,教师板书:(千克)

  C写出答话,教师板书:答:吃了80千克。

  (5)总结思路。

  根据以上分析,让学生讨论一下解题顺序:吃了?吃了谁的?谁是多少(已知)?谁的是多少乘法。

  (6)反馈练习。(14页)1—3题,做完后订正。说一说你是怎样想的?

  2、阅读课本:把书中的想的过程和线段图认真看一下,不懂提问。

  (三、全课小结:

  四、随堂练习。

  1、判断下面每组中的两个量,应该把谁看作单位“1”。

  (1)乙是甲的,甲是乙的。

  (2)甲是乙的,乙是甲的倍。

  2、练习四1、2题,完成在练习本上,然后订正。

  3、操作:画出“体育小组的人数是美术小组的倍”的线段图自己补充条件和问题并解答。

  五、作业

  练习四3、4题。

六年级上册数学教案9

  教学内容:课本第6页的内容和练习二的第5—11题。

  教学目的:

  1、进一步掌握分数乘分数的计算法则,并能比较熟练地进行计算。

  2、培养学生的计算能力。

  教学过程:

  一、复习。

  1、计算下面各题,并说一说计算方法。

  2、把下面的整数改写成分数。

  2=()5=()14=()25=()

  二、新授。

  1、统一计算法则。

  (1)到目前为止,你学会了哪些分数乘法的知识?分数乘整数以及分数乘以分数的计算法则分别是什么?分数乘分数的法则适用于分数和整数相乘吗?为什么?

  (2)请你试算一算:

  (学生小组合作学习,教师巡视。)

  学生边展示计算过程,边阐述理由。

  (3)教师引导学生归纳:因为整数可以看成分母是1的分数,所以分数乘分数的法则也适用于分数和整数相乘。因此分数乘法的计算法则可以统一为一条,即用分子相乘的积作分子,分母相乘作分母。

  2、书写形式。

  (1)具体计算时,在碰到整数和分数相乘,可以把整数看成分母是1的分数,直接和分数的.分子相乘,不必把整数化成分母是1的分数。

  例如:

  (2)计算时,也可以不把相乘的两个数改写成分子、分母分别相乘的形式,直接把整数或分数的分子与另一个数的分母进行约分。

  例如:

  3、做一做。

  完成课本第6页下面的做一做题目。

  三、巩固练习。

  1、练习二的第6题。

  2、练习二的第8题。

  3、练习二的第10题。

  四、总结。

  这节课你有什么收获?

  五、课堂练习。

  练习二的第5、7、9、11题。

六年级上册数学教案10

  教学内容:课本P19页和练习五。

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义和怎样求倒数。

  教学难点:求倒数方法的叙述。

  教学过程:

  二、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  三、自学新课:

  自学书本P19。并思考以下问题:

  1)什么叫倒数?

  2)怎么求一个数的倒数?

  3)是不是任何数都有倒数?小数有吗?带分数有吗?

  四、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  1)两个数。

  2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  五、练习

  1、判断下列各组数是否互为倒数,为什么?

  和和和和

  2、同座同学相互举出几组倒数。你怎么知道同学说的对不对?

  1)5的倒数是多少?

  2)所有的.自然数都有倒数吗?1的倒数是几?

  3)0有没有倒数?为什么?

  4)怎样求一个数的倒数?

  4、完成课本P19页的“做一做” 。

  5、辨析:求3/5的倒数,写作:3/5=5/3。

  五、思考:0.2的倒数是多少?

  六、小结。

  请学生说一说这节课学习了哪些内容。

  七、作业:练习五3—8。

六年级上册数学教案11

  教材分析:

  在学习了比例这个单元的知识后,教材安排了一节整理复习的内容,对本单元的知识进行整理和复习。学生通过学习对比例的意义、正反比例关系、以及用比例知识解决问题的方法都有了一定的认识和理解,经过一段时间的学习,有必要对这些知识进行系统的整理和复习。教师在组织整理复习时,要紧紧围绕着本单元教学的基本要求,结合学生学习的具体情况有针对性地进行复习。对学生平时学习过程中容易出错的、易混淆的概念,要加强对比复习,使学生明确它们的区别,加深对概念的理解。

  教学目标:

  1.通过复习,进一步理解比例的意义和基本性质,明确比和比例的联系与区别,能正确熟练地解比例。

  2.通过复习,进一步理解正比例和反比例的意义,能正确进行判断。

  3.通过复习,熟练掌握应用比例知识解决问题的方法。

  4.在复习过程中,培养学生的整理复习意识,体会整理复习的好处,逐步掌握用思维导图整理知识的方法。

  教学重点:理解并掌握比例的意义和基本性质、正比例和反比例的意义;

  掌握应用比例知识解决问题的方法。

  教学难点:通过整理和复习,对比例知识有系统的认识,形成系统的知识体系。

  教法:教师用思维导图的方法指导学生整理和复习。

  学法:学生回忆整理,练习巩固知识。

  设计说明:

  根据我们的《小学六年级数学复习课教学的有效性研究》课题,结合学生已有的知识经验设计教案。有两个要达成的目标,一是老师带着学生边复习便边整理知识,在对知识之间的联系有初步认识的基础上,初步形成知识网络。二是通过收集错题,典型题,对本单元的重点,难点、易错点的复习,让学生对知识有一个比较完整的'把握。从学法层面来说,向学生展示一种好的复习方法——用思维导图对本单元进行整理和复习,旨在让学生通过该节课的学习,掌握用思维导图进行整理和复习的方法。

  教学过程:

  一、谈话引入,揭示课题

  1.比例这个单元我们主要学习了什么内容?【比例的意义和基本性质、正比例和反比例、比例的应用等】

  2.学习的内容那么多,你是如何整理和复习的?有什么好方法与大家分享?

  3.今天这节课,我们就一起用思维导图对这个单元的知识进行整理和复习。

  揭示课题:比例的整理和复习

  二、看书归纳整理

  1、看书整理比例的意义

  (1)师指导学生看书(第40至42页),边复习边整理。

  老师带着学生看书整理和复习比例的意义。

  (2)复习比例的意义、各部分名称、比和比例的区别。

  说一说:什么是比?什么是比例?比和比例有什么联系和区别?

  比:两个数相除又叫做这两个数的比

  比例:表示两个比相等的式子叫做比例。

  2、看书整理复习正比例和反比例

  (1)让学生看书第45至49页,尝试整理本节知识。

  3、整理比例的应用让学生看书第53至62页,尝试整理本节知识,老师个别辅导。

  4、汇报分享交流整理的成果。

  注意事项:

  1、将一个图形按一定的比放大和缩小时要注意什么?教师强调:图形的放大和缩小都是把图形的边长按一定比例进行放大和缩小。

  2、用比例知识解决问题有哪些步骤?

  三、巩固练习

  1、下面各表中相对应的两个量的比能否组成比例?如果能,把组成的比例写出来。

  2、判断两种相关联的量是否成比例?成什么比例?说明理由。

  (1)总路程一定,速度和时间。

  (2)总页数一定,看了的页数和剩下的页数。

  (3)购买铅笔的单价一定,总价和数量。

六年级上册数学教案12

  教学目标:

  1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

  2、发展学生思维,侧重培养学生分析问题的能力。

  教学重点:

  理解数量关系。

  教学难点:

  根据多几分之几或少几分之几找出所求量是多少。

  教具准备:

  多媒体课件。

  教学过程:

  一、旧知铺垫(课件出示)

  1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

  (1)一块布做衣服用去。

  (2)用去一部分钱后,还剩下。

  (3)一条路,已修了。

  (4)水结成冰,体积膨胀。

  (5)甲数比乙数少。

  2、口头列式:

  (1)32的`是多少?

  (2)120页的是多少?

  (3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?

  (4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?

  3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

  4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

六年级上册数学教案13

  教材分析

  理解并掌握分数除法的计算方法,会进行分数除法计算;理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质;能够正确地化简比和求比值。这为以后学习运用比的知识解决有关的实际问题打下基础。学习本节课学生能理解并掌握分数除法的计算方法,会进行分数除法计算。

  学情分析

  分数除法是本单元的第一课,也是非常要的一课,这节课的学习效果将直接影响到后面解决问题的学习。由于学生普遍基础较差,必须在理解分数除法的意义的基础上开始学习。学生分析问题解决问题的能力较差,因此,要培养学生在探索除分数以整数计算方法的过程中,进一步体会分数除法的意义,体会数学知识间的内在联系,发展分析、比较、抽象、概括的能力。

  教学目标

  1.通过具体的问题情境,探索并理解分数除法的计算方法。

  2.能正确地进行分数除法的计算。

  3.培养学生分析、推理能力。

  教学重点和难点

  教学重点:理解分数除法的意义,掌握分数除以整数的计算方法。

  教学难点:分数除以整数计算法则的推导过程。

  教学过程

  一、创设情景,教学分数除法的意义

  1.以3盒水果糖的重量为问题为切入点,请你们列出算式并计算,看谁算的又快又好!

  (1)每盒水果糖重100g,那么3盒有多重?

  100×3=300(g)

  (2)3盒水果糖重300g,那么每盒有多重?

  300÷3=100(g)

  (3)300g水果糖,每盒重100g,可以装几盒?

  300÷ 100=3(盒)

  2、师:我们一起来看一下这三个算式,观察一下这三个算式的已知数和得数,说一说它们都是已知什么,求什么的运算?这就是分数除法的意义。

  讨论:分数除法的意义和整数除法的意义一样吗?

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  二、探究分数除法的计算方法

  (1)引导参与,探究新知

  师:我们已经知道了分数除法的意义,那么如何来计算呢?请同学们看黑板。

  出示问题1。

  请大家拿出一张操作纸,涂色表示出这张纸的4/5。

  师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?

  4/5÷2

  请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。

  方法一:把4/5平均分成2份就是把4份平均分成2份,每份是2个1/5,也就是2/5。展示折纸和计算过程。

  4/5÷2=4÷2/5=2/5

  方法二:把一张纸的4/7平均分成2份,求每份是多少就是求4/5的1/2是多少,可以用乘法来做。展示折纸和计算过程。

  4/5÷2=4/5×1/2=2/5

  (2)质疑问难,理解新知

  ①师小结:有的是用分子除以整数,分母不变的方法算出结果2/5,有的是转化成分数乘法来做……那么在这些方法中,你最喜欢哪种?

  ②接下来就请你用自己喜欢的方法来解决这个问题:把一张纸的4/5平均分成3份,每份是这张纸的几分之几?先列式再用自己喜欢的'方法计算。

  ③通过计算你们有什么发现?

  生1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。

  生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15

  能再讲讲这样做的道理吗?

  师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。

  请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?

  展示学生的分法

  师(指着涂色部分):你所表示的这一部分是4/5的多少?

  通过直观图理解4/5的1/3是4/15

  (3)比较归纳,发现规律。

  分数除以整数(0除外),等于分数乘这个整数的倒数。要注意的是:

  结果最简。除号要变成乘号。

  三、巩固练习

  学生独立完成

  四、课堂小结

  1、分数除法的意义是什么?

  2.分数除以整数的计算法则是什么?(学生总结)

  五、作业布置

六年级上册数学教案14

  教学目的:

  1、使学生理解倒数的意义。掌握求一个数的倒数的`方法。

  2、渗透事物都是普遍联系观点的启蒙教育。

  教学重点:理解倒数的意义和怎样求倒数。

  教学难点:求倒数方法的叙述。

  教学过程:

  一、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

  二、自学新课:

  自学书本P19。并思考以下问题:

  1、什么叫倒数?

  2、怎么求一个数的倒数?

  3、是不是任何数都有倒数?小数有吗?带分数有吗?

  三、讨论辨析:

  1、什么叫倒数?

  2、看下面四道题,你能说一些什么有关“倒数”的话。

  3、存在倒数有那些条件

  (1)两个数。

  (2)这两个数的乘积是1。

  4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

  5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

  6、总结求一个数的倒数的方法。

  四、思考:0.2的倒数是多少?

  五、小结:请学生说一说这节课学习了哪些内容。

  六、作业:练习五3—8。

六年级上册数学教案15

  教学目标:

  1、通过学习,学生能用方程的方法解答“已知一个数的几分之几是多少,求这个数”的分数应用题,并能掌握检验方法。

  2、根据题意,能画线段图分析图意。

  3、学习数学知识的应用过程,感受身边数学,体会学数学,用数学的乐趣,培养学生知识迁移能力。

  教学过程:

  一、巩固旧知,过渡引入

  1、根据题意,判断谁是单位1,并写出各题的数量关系。

  (1)故事书本的2/5等于连环画的本数。

  (2)梨重量的7/8是840千克。

  (3)男生人数是全班人数的2/3 。

  2、一个儿童体重35千克,他体内所含的水分占体重的4/5,他体内的`水分有多少千克?

  [这两组算题具有较强的针对性,与本课知识有联系,通过学习,为学习新知作过渡。]

  二、学习新知

  1、出示例1根据测定,成人体内的水分大约占体重的2/3,而儿童体内的水分约占体重的4/5 。我体内有28千克的水分,可是我的体重才是爸爸的7/15。小明的体重是多少千克?

  (1)读题,找出已知条件和问题。

  (2)根据题意与线段图理解题中的条件和问题。

  (3)根据题意,启发学生:根据一个数乘分数的意义写出数量关系式。

  体重× 4/5 =体内水分重量

  师引导:这道题把哪个数量看作单位“1”,是已知的?还是未知的?该怎样求?能不能根据上面的等量关系式,设未知数χ,再列方程求出?

  (4)学生尝试练习方程解答,个别板演,教师点评。

  (1)解:设这个儿童体重χ千克

  (2)算术法:28÷4/5 χ× 4/5=28 χ=28÷4/5

  χ=35答:这个儿童体重35千克。

【六年级上册数学教案】相关文章:

六年级上册数学教案01-12

六年级上册数学教案07-20

六年级数学教案上册08-23

六年级上册数学教案07-20

小学六年级上册数学教案06-14

人教版六年级上册数学教案12-17

小学六年级上册数学教案10-11

六年级上册数学教案范文10-14

六年级人教版上册数学教案08-28

人教版六年级上册《扇形的认识》数学教案09-22