作为一位杰出的教职工,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?以下是小编精心整理的六年级下册数学教案,欢迎大家分享。
六年级下册数学教案1
教学内容:
P702– 75
教学目标:
1、使学生初步理解正比例的意义和性质,能够正确判断成正比例的量;
2、培养学生仔细审题,认真思考,探索规律的良好习惯。
教学重难点:
理解正比例的意义和性质。
教学过程:
一、复习引入:
我们已学了一些常见的数量关系,谁能来说一说:
1、路程、速度、时间;
2、单价、数量、总量;
3、工作效率、工作时间、工作总量;
……
二、先观察、后概括:
1、例1:一列火车行驶的时间和路如下表:
时间(小时) | 1 | 2 | 3 | 4 | 5 | 6 | …… |
路程(千米) | 60 | 120 | 180 | 240 | 300 | 360 | …… |
观察上表,回答下列问题:
⑴、表中有哪两个量是相关联的?
⑵、路程是怎样随着行车时间的变化而变化的?
⑶、相对应的路程和时间的比分别是多少?比值是多少?
从上表可以看出:时间和路程是两种相关联的量,路程是随着时间的变化而变化的,相对应的路程和时间的比的比值是相等的(或一定的),这个比也就是速度。
写成关系式是:=速度(一定)
2、新改例2:一种铅笔,支数与总价如下表:
支数) | 1 | 2 | 3 | 4 | 5 | 6 | …… |
总价(元) | 0.3 | 0.6 | 0.9 | 1.2 | 1.5 | 1.8 | …… |
由上表可以发现什么特征?
(哪几个量是相关联的?这两个相关联的量之间有什么关系?)
写成关系式是:=单价(一定)
比较例1、例2,它们有什么共同点?
概括:
⑴、两种相关联的量,如果其中一种量扩大(或缩小)几倍,另一种量也随着扩大(或缩小)几倍,这两种叫做成正比例的量,它们之间的关系叫做正比例关系。
⑵、两种量成正比例关系,那么这两种量中相对应的两个数的比值(也就是商)一定。如果用字母X、Y表示两种相关联的量,用K表示比值(一定),则数量关系可以概括下面的式子:
= K(一定)
(结合例1、例2说一说)
3、练一练P75
三、巩固练习:
1、 P76看后判断,并连起来说一说。
2、 P76 – 2先观察,再分析。
3、 P76 – 3
四、小结:
要判断两个量是否成正比例,依据什么来判断?
1、两个相联的量?
2、一个量随着另一个量的变化而变化,并且它们的比值一定。
五、作业:
P76 3 4
六年级下册数学教案2
单元目标:
1、使同学认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。
使同学理解求圆柱的侧面积和外表积的计算方法,并会正确计算。
使同学理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。
单元重点:
掌握圆柱的外表积的计算方法和圆柱、圆锥体积的计算公式。
单元难点:
圆柱、圆锥体积的计算公式的推导 1、圆柱
(1)圆柱的认识
教学内容:教科书第10—12页圆柱的认识,练习二的第1—4题.
教学目标:
1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各局部的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。
2、培养同学细致的观察能力和一定的空间想像能力。
3、激发同学学习的兴趣。
教学重点:认识圆柱的特征。
教学难点:看懂圆柱的平面图。
教学过程:
一、复习
1.已知圆的半径或直径,怎样计算圆的周长?(指名同学回答,使同学熟悉圆的周长公式:C=2πr或C=πd)
2.求下面各圆的周长(教师依次出示题目,然后指名同学回答,其他同学评判答案是否正确)
(1)半径是1米 (2)直径是3厘米
(3)半径是2分米 (4)直径是5分米
二、认识圆柱特征
1.整体感知圆柱
(1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、平安、可滚动……)
(2)找找圆柱,请同学找出生活中圆柱形的物体。
2.圆柱的外表
(1)摸摸圆柱。请同学摸摸自身手中圆柱的外表,说说发现了什么?
(2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。)
3.圆柱的高
(1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导同学考虑:药水水柱的高低和水柱的什么有关?
(2)引导小结:水柱的高低和水柱的高有关.
(3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。)
(4)讨论交流:圆柱的高的特点。
①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根?
②初步感知:面对圆柱的高,你想说些什么?
归纳小结并板书:圆柱的高有无数条,高的长度都相等。
③深化感知:面对这数不清的高,丈量哪一条最为简便?
老师引导同学操作分析,得出丈量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高.
4.圆柱的侧面展开(例2)
(1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状.
反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的?
┌长方形
板书:沿高剪┤ 斜着剪:平行四边形
└正方形
强调:我们先研究具有代表性的长方形与圆柱的关系.
(2)寻求发现.展开的长方形的长和宽与圆柱的关系.
①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。
②同学再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化生长方形长和宽的过程。)
③同学交流后说出自身的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。
(3)延伸发现.展开的平行四边形的底和高和正方形的边长与圆柱的关系。
①讨论:平行四边形能否通过什么方法转化生长方形?
课件显示:平行四边形通过割补转变生长方形,再还原成圆柱侧面的动画过程。
②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形?
③引导小结:不论侧面怎样剪,得到各种图形,都能通过割补的方法转化生长方形.其中正方形是特殊的长方形.
三、巩固练习
1.做第11页“做一做”的第2题。
2.做第15页练习二的第3题。
教师行间巡视,对有困难的同学和时辅导。
3.做第15页练习二的第4题。
四、安排作业
完成一课三练P15的1、2题。
板书:
┌长方形
沿高剪┤ 斜着剪:平行四边形
└正方形
圆柱的底面周长 → 长方形的长
圆柱的高 → 长方形的宽
六年级下册数学教案3
教学内容:
课本第79——80页例3和“练一练”,练习十三第3-5题。
教学目标:
1、让学生理解并掌握用分数乘法和加、减法解决一些稍复杂的实际问题的思考方法,能正确解决类似问题。
2、让学生进一步积累解决问题的策略,培养学生运用策略解决问题的习惯,
增强学生应用数学的意识。
教学重难点:
用分数乘法和减法解决一些稍复杂的实际问题。
课前准备:
课件
教学过程:
一、复习导入
王芳看一本120页的故事书,已经看了全书的1/3,还有多少页没有看?
全校的三好学生共有96人,其中男生占3/8,女生有多少人?
学生独立解答后,让学生说说想的过程。
二、教学例3
出示题目,要求学生默读。
指名学生读题,问:题目中的已知条件是什么?我们要解决什么问题?指名回答。
从“今年的班级数比去年增加了1/6”这句话中你看出是哪两个量在比较?比较的结果怎样?
问:今年的班级数比去年多谁的1/6呢?那么应该把什么时候的班级数看作单位“1”?
教师指导学生画线段图。
教师再根据线段图引导学生分析题意。
“要求今年有多少班,可以先算什么?
请你试着把这道题做一下。
教师找出不同的解法进行板演,并让学生说说思路。
三、完成”练一练“
1、做第1题。
(1)引导学生画线段图理解题意
(2)看线段图分析
(3)学生独立完成,指名板演,集体评讲。
2、做第2、3题。
(1)让学生独立完成,指名板演,集体评讲。
(2)让学生说说自己的想法。
四、巩固提高
1、完成练习十三第3题。
学生直接把结果写在书上,集体核对。
2、练习十三第4题。
3、学生读题后,要求学生画出线段图进行分析,然后列式解答。
集体评讲。
五.本课总结。
通过这节课的学习,你有什么收获呢?
六、布置作业
练习十三第5题。
六年级下册数学教案4
教学目标:
1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。
2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。
3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。
教学重点:
理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学准备:多媒体课件。
教学过程:
一、展示目标,引入本课。
二、探究新知,意义建构
1、看一看
下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)
2、说一说
(1)比例尺1:100表示什么意思呢?
生:图上1厘米长的线段表示实际距离100厘米。
(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。
(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。
3、议一议
(1)什么是比例尺呢?
图上距离和实际距离的比,叫做比例尺。
(2)比例尺怎样表示呢?
比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)
(3)比例尺有什么特征呢?
①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。
【意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。
三、拓展延伸,巩固新知
1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?
70:3.5=700:35=20:1
答:这幅设计图纸的比例尺是20:1。
2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)
3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?
32×6000000=192000000(厘米)192000000厘米=1920(千米)
答:广州到北京实际距离是1920千米。
五、总结新课,整理知识
通过今天的学习,你有什么收获呢?
板书设计:比例尺
比例尺=图上距离:实际距离
实际距离=图上距离×1厘米表示的实际距离
图上距离=实际距离÷1厘米表示的实际距离
六年级下册数学教案5
教学重点:
比例尺的意义。
教学难点:
将线段比例尺改写成数值比例尺。
教学过程:
一、引入
教师:前面我们学习了比例的知识,比例的知识在实际生活中有什么用途呢?
请同学们看一看我们教室有多大,它的长和宽大约是多少米。(长大约8米,宽大约6米。)如果我们要绘制教室的平面图,若是按实际尺寸来绘制,需要多大的图纸?可能吗?如果要画中国地图呢?于是,人们就想出了一个聪明的办法:在绘制地图和其他平面图的时候,把实际距离按一定的比例缩小,再画在图纸上,有时也把一些尺寸比例小的物体(如机器零件等)的实际距离扩大一定的倍数,再画在图纸上。不管是哪种情况,都需要确定图上距离和实际距离的比。这就是比例的知识在实际生活中的一种应用。今天我们就来学习这方面的知识。
二、教学比例尺的意义。
1.什么是比例尺(自学书上内容,学生交流汇报)
出示图例1
在绘制地图和其它平面图的时候,需要把实际距离按一定的比缩小(或扩大),再画在图纸上。这时,就要确定图上距离和相对应的实际距离的比。一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。
2.介绍数值比例尺
让学生看图。
“我们经常在地图上看到的比例尺有这两种:1:100000000是数值比例尺,有时也可以写成:1/100000000,表示图上距离1厘米相当于实际距离100000000厘米。
3.介绍线段比例尺
还有一种是线段比例尺(看北京地图),表示地图上1厘米的距离相当于地面上50km的实际距离。”
4.介绍放大比例尺
出示图例2
“在生产中,有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上。下面就是一个弹簧零件的制作图纸。“
学生看图,“你知道比例‘2:1’表示什么意思吗?这也是一个比例尺,图上距离与实际距离的比是2:1
比较这个比例尺与上面的比例尺有什么相同点,什么不同点。
相同点:都表示图上距离与实际距离的比。
不同点:一种是图上距离小于实际距离,另一种是图上距离大于实际距离。
5、总结
比例尺书写特征。
(1)观察:比例尺1:100000000
比例尺1/5000000
比例尺2:1
(2)看一看,比例尺书写形式有什么特征。
为了计算方便,通常把比例尺写成前项或后项是1的比。
6、比例尺的化简和转化
“我们再看一下北京地图上的这个线段比例尺,这里图上距离:实际距离=1厘米:50千米,你会把这个线段比例尺转化成数值比例尺吗?”
说明:这两个数量的单位不同,所以先要把它们化成相同单位,再化简。
“是把厘米化作米,还是把米化作厘米?为什么?”(因为把米化作
“50千米等于多少厘米?”学生回答后,教师把50千米改写成5000000厘米。
“现在单位统一了,是多少比多少,怎样化简?”
图上距离:实际距离=1:5000000
教师出示比例尺不同的地图给学生看,让学生说出它们的比例尺各是多少,表示什么意思。
最后教师指出
①比例尺与一般的尺不同,这是一个比,不应带计量单位。
②求比例尺时,前、后项的长度单位一定要化成同级单位。如10厘米:10米,要把后项的米化成
③为了计算简便,通常把比例尺的前项化简成“1”,如果写成分数形式,分子也应化简成“1”。
三、巩固练习
1、做一做。
过程要求
(1)学生独立完成。(要求写出数值比例尺)
(2)同学之间互相交流。
(3)汇报交流结果。
2、完成课文练习八第1~3题。让学生完成第48页的“做一做”。教师可提醒学生注意把图上距离和实际距离的单位化成同级单位。集体订正时,要注意检查学生求出的比例尺的前项是不是“1”。
四、课堂小结
(本课要点:1、比例尺的意义;2、线段比例尺和数值比例尺的互化;3、注意单位名称的改写,如把千米和厘米的换算就是扩大或缩小100000倍的关系。)
教学目标:
1、理解比例的意义,会根据比例的意义组成比例。
2、经历引导学生参与知识的形成过程,发现过程和运用过程,体验数学与日常生活的紧密联系。
3、感受生活中处处有数学,激发学习数学的兴趣。
教学重、难点:理解比例的意义。
教学方法:自主合作,讨论交流。
教学过程:
一、复习旧知,目标展示。
1、上学期,我们学习了有关比的知识,你能说说什么是比吗?举例说明比各部分的名称。
2、今天,我们要在比的基础上学习一个新知识(板书:比例)。
3、看到这个数学新名词——比例,你的脑子里产生出哪些问题?
【老师有选择地板书如:什么是比例(或比例的意义),比例的组成及名称,比和比例的区别等。】
4、同学们提的这些问题都很有价值。这节课,我们就来研究这些问题。
二、合作交流,探究新知。
〈一〉教学比例的意义。
1、我们从学习数学开始,几乎天天都用到等号,你能说出几个含有等号的式子吗?说说等号在式子中的作用是什么?(连接左右两边相等的两部分)
2、自主探究,初步形成印象。
(1)两个比相等可以用等号连接吗?
(2)你能在练习本上写出两个可以有用等号连接的比吗?
(3)和你小组内同学交流你写出的式子,并说明理由。
(4)学生汇报。
3、形成概念。
(1)像黑板上我们所列出的这些式子叫做比例。
(2)你能用自己的话说说什么是比例吗?
(3)老师小结:表示两个比相等的式子叫做比例。
4、深化概念,巩固练习。
(1)你认为组成比例的关键是什么吗?(两个比的比值相等)
(2)你能抓住这个关键写几个比例式吗?(2分钟的时间看谁写得多,并且和别人的不一样。)
〈二〉教学比例各部分的名称。
1、比例各部分有自己的名称?你知道吗?
(预设:学生如果不清楚的话,教师说明比例各部分的名称)
2、找出黑板上这几个比例的内、外项。
3、比可以写成分数的形式,比例也可以写成分数形式。
(1)把黑板上的这几个比例式写成分数形式。(先小组讨论,再全班交流)
(2)找出它们的内、外项。
(3)你发现什么规律了吗?
〈三〉比和比例的区别。
1、小组讨论、交流。
2、全班交流。
3、小结:比例是由两个相等的比组成的式子。比例有4项,比有2项。
三、巩固练习。
1、填空。
(1)、表示()的式子叫做比例。
(2)、判断两个比能否组成比例,要看它们的()是不是相等。
(3)、写出比值是的两个比():()和():(),写成比例是()。
(4)、选取48的4个因数组成一个比例是()。
2、课本32页国旗尺寸成比例吗?
3、课本33页“做一做”第2题。(用右图中的4个数据可以组成多少个比例?)
(1)学生独立思考后,小组交流。
(2)全班交流。
(3)教师引导:比例的变化有规律可循吗?若有能用已学的知识解释吗?如不能解释,课后请预习课本34页。下节课我们就来研究这个问题。
六年级下册数学教案6
教学目标知识目标:
理解比例的意义,认识比例各部分的名称。
能力目标:
能运用比例的意义判断两个比能否组成比例,并会组比例。
情感目标:
感受数学的奥秘,培养数学兴趣。
教学重、难点教学
重点:理解比例的意义。
教学难点:能根据比例的意义写比例.
突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。
教学媒体多媒体课件、小黑板
教学活动及主要语言预设学生活动预设
一、创境激疑
上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。
回顾
产生疑问
二、互动解疑
1、比例的意义
在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。
(1)写出每个图片的长与宽的比
(2)求出各比的比值
(3)观察特点,写出规律
板书:
图片A:6:4=3:2=1.5
图片B:3:2=1.5
图片C:8:3=2.66……
图片D:12:8=3:2=1.5
图片E:12:2=6
比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的相关知识,板书课题。
结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。
巩固练习:
(1)要求每个学生写出一个比例,教师巡视指导且批阅。
(2)要求每个学生写出一个比例,同桌交流。
(3)做一做教材表格的题,完成后由教师批改。
2、认识比例各部分名称
组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。
在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
例如:12:6=8:4中12和4是比例6和8是比例
观察
先独立思考
指名汇报
共同发现、小结
理解
自主思考
小组内交流探究
汇报交流
独立填写
同桌交流
指名汇报
三、启思导疑
1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)
2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)
指名谈发现
理解
识记
四、实践运用
(一)填一填。
1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。
2、用6,3,9,8组成一个比例是( )。
(二)下列那几组的两个比可以组成比例?为什么?
(1)4:5和8:20
(2)15:30和18:36
(3)0.7:4.9和140:20
(4)1/3:1/9和1/6:1/8
(三)按要求写一写。
1、先写出比值是3的两个比,再组成比例。
2、根据1.2×25=0.6×25写出两个比例式。
独立思考
指名汇报
评价订正
五、总结评价
这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?
自由小结
板书设计:比例的认识
12:6 = 8:4
6:4 = 3:2
六年级下册数学教案7
第一单元负数
第一课时负数
教学内容:
教材2-4页例题及“做一做”的内容。
教学目标:
知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:
温度计、练习纸。
教学过程:
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①、我在银行存入了500元(取出了500元)。
②、知识竞赛中,五(1)班得了20分(扣了20分)。
③、10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄式度(零下10摄式度)。
3、谈话:老师的一位朋友喜欢旅游,11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
看教材:首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?
现在你能看出南京是多少摄式度吗?(是0℃。)你是怎么知道的?(那里有个0,表示0摄式度)。
上海的气温:上海的最低气温是多少摄式度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄式度。
了解首都北京的最低气温:北京又是多少摄式度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)你能在温度计上拨出来吗?
比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。
①、上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
②、北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)、交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐
鲁番盆地的海拔可以记作:-155米。(板书)
(2)、小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平。
面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
①、如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
②、如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表
示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、4、+8844.43等这样的数叫做正数;象-4、-155等这样的.数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1、练习一第2、3题
2、你知道吗:水沸腾时的温度是____。水结冰时的温度是____。地球表面的最低温度是。
3、讨论生活中的正数和负数
(1)、存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)、电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我
们都可以用正数和负数来表示。
七、布置作业
《冠魔新干线》第1页的练习。
第二课时负数
教学内容:比较正数和负数的大小。
教学目的:
知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。
过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?15-85.6+0.9-+0-82832、如果+20%表示增加20%,那么-6%表示。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是____摄氏度。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)、提问你能在一条直线上表示他们运动后的情况吗?
(2)、让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)、教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)、学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)、总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)、引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到.5和-1.5
处,应如何运动?
(7)、练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、实践题记录小组同学的身高和体重,以平均身高体重为标准记为0m或(0kg)。超过的记为正数,不足的记为负数,然后按从大到小的顺序排列。
四、全课总结
(1)、在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)、负数比0小,正数比0大,负数比正数小。
五、布置作业
《冠魔新干线》第2页的练习。
第三课时
内容:认识负数练习
1、先读一读下面这些温度,在写下来。
汽油蒸发的温度是四十摄氏度。()
汽油凝固的温度是十八摄氏度。()
金星表面的最高温度是四百六十五摄氏度。()
2、先读一读,再把这些数放入相应的框内。
正数:()
负数:()
六年级下册数学教案8
教学内容:
比较正数和负数的大小。
教学目的:
1、借助数轴初步学会比较正数、0和负数之间的大小。
2、初步体会数轴上数的顺序,完成对数的结构的初步构建。
教学重、难点:负数与负数的比较。
教学过程:
一、复习:
1、读数,指出哪些是正数,哪些是负数?
-8 5.6 +0.9 - + 0 -82
2、如果+20%表示增加20%,那么-6%表示 。
二、新授:
(一)教学例3:
1、怎样在数轴上表示数?(1、2、3、4、5、6、7)
2、出示例3:
(1)提问你能在一条直线上表示他们运动后的情况吗?
(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。
(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。
(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。
(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。
(6)引导学生观察:
A、从0起往右依次是?从0起往左依次是?你发现什么规律?
B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?
(7)练习:做一做的第1、2题。
(二)教学例4:
1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。
2、学生交流比较的方法。
3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。
4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”
5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。
6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。
7、练习:做一做第3题。
三、巩固练习
1、练习一第4、5题。
2、练习一第6题。
3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。
四、全课总结
(1)在数轴上,从左到右的顺序就是数从小到大的顺序。
(2)负数比0小,正数比0大,负数比正数小。
第二课教学反思:
许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。
例3——两个不同层面的拓展:
1、在数轴上表示数要求的拓展。
数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。
同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。
2、渗透负数加减法
教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。
例4——薄书读厚、厚书读薄。
薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)
例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。
将厚书读薄——无论哪种类型,比较方法万变不离其宗。
六年级下册数学教案9
第一课时
教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。
教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
一、复习
我们已经认识了长方体和正方体。
谁能说一说长方体的特征?(长方体是由6个长方形围成的,相对的两个长方形完全相同,长方体的高有无数条。)正方体呢?
谁能说一说我们学习了长方体和正方体的哪些知识?
二、 新授
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、 初步印象
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)
2、 小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、 交流和汇报
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、 举例说明进一步明确特征
六年级下册数学教案10
教学目标
1、使学生初步认识对称图形,明白对称的含义,能找出对称图形的对称轴。
2、通过观察、思考和动手操作,培养学生多种能力,渗透美的教育。
教学重点
理解对称图形的概念及性质,会找对称轴。
教学难点
准确找全对称轴。
教学准备
1、教具:投影片、图片、剪刀、彩纸。
2、学具:蝴蝶几何图片、剪刀、白纸。
教学过程
(一)导入新课
你们看这些图形好看吗?观察这些图形有什么特点?
(图形的左边和右边相同。)
你能举出一些特点和上图一样的物体图形吗?(人体、昆虫、房屋、衣服……)
这些图形从哪儿可以分为左边和右边?请同学到前边来指一指。(指出中间的那条线。)
你怎么知道图形的左边和右边相同?(看出来的……)
还有别的办法吗?用手中蝴蝶图形动手试一试,互相讨论。(对折,图形左右两边完全合在一起,也就是完全重合。)
你能不能很快剪出一个图形,使左右两边能完全重合?可以讨论,也可以看一看其他同学是怎么剪的。(把纸对折起来,再剪。)
(二)讲授新课
1、对称图形的概念。
(1)对称图形和对称轴的定义。
以剪出的图形为例,贴在黑板上。
问:你们剪出的这些图形都有什么特点?
(沿着一条直线对折,两侧的图形能够完全重合。)
师:像这样的图形就是对称图形。(板书课题)
折痕所在的这条直线叫做对称轴(画在图上)。
问:现在谁能准确说出什么是对称图形?什么是对称轴。
板书:如果一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是对称图形,折痕所在的这条直线叫做对称轴。
(2)加深理解概念。
以小组为单位,说一说,你刚才剪的图形叫做什么图形?为什么?画出自己剪的图形的对称轴。注意对称轴是一条直线,两端可以无限的延长。
(3)巩固概念。(投影)
①判断下面的图形是不是对称图形?为什么?用小棒摆出对称轴。
生:天安门、奖杯、汽车图是对称图形,金鱼图不是对称图形,无论怎样折,两侧都不能完全重合,因此也就没有对称轴。
②拿出从方格纸上剪下来的几何图形,折一折,看一看哪些是对称图形,画出它们的对称轴。个人完成后,按顺序摆放在桌子上,同桌互查,再指名按顺序说。
投影出示,折一折,说明是否是对称图形,并在xx里写明有几条对称轴。
生边回答老师边填在投影片上,并用小棒摆出对称轴。
回答:
1°任意三角形不是对称图形。
2°等腰三角形是对称图形,有一条对称轴。
3°任意梯形不是对称图形。
4°正方形是对称图形,有四条对称轴。(学生再折一折,老师示范。)
5°平行四边形不是对称图形。(再折一折,沿任何一条直线折都不重合。)
6°长方形是对称图形。有两条对称轴。(有四条对不对,折一折。)
7°圆是对称图形。有无数条对称轴。(在你那个圆上至少画出三条对称轴。)
8°等腰梯形是对称图形,有一条对称轴。
③小结。
问:决定一个图形是不是对称图形,具备什么条件?有几条对称轴由谁来决定?
④练一练
打开书第125页“做一做”,读题后做在书上,一名学生做在投影片上,投影订正。
第2个图和第4个图较难,要引导学生用对折的思想思考,关键找准第一条对称轴,其它就好找了。
2、对称图形的性质。
(1)结合实例思考:对称图形在沿着对称轴折叠时,为什么两侧的图形能够完全重合?投影对称图形,边观察边思考边讨论。
(2)测量并归纳性质。
打开书第125页,看下半部分的对称图形,用尺子量一量图中的A,B,C,D点到对称轴的距离分别是多少厘米?(保留一位小数)
认真度量,结果填在书上,你发现什么?
投影订正。填后的结果:
A点到对称轴的距离是0。6厘米。
B点到对称轴的距离是1。2厘米。
C点到对称轴的距离是0。6厘米。
D点到对称轴的距离是1。2厘米。
问:根据测量的结果你发现什么?
(A,D两点及B,C两点都分别在对称轴两侧。A,D两点到对称轴的距离相等,都是0。6厘米;B,C两点到对称轴的距离也相等,都是1。2厘米。)
问:根据度量结果,你们能总结出对称图形的性质吗?
板书:在对称图形中,对称轴两侧相对的点到对称轴的距离相等。
(3)验证性质。
量一量五角星对称轴两侧到相对应的点到对称轴的距离是否相等。
看126页上面三幅图,同桌指着图形说出谁和谁是相对的点,相对点到对称轴的距离是多少。反过来,如果图形两侧相对应的两点到图形中线距离都相等,那么这个图形就是对称图形,中线就是对称轴。
(三)课堂总结
今天这节课我们学习了什么?什么样的图形叫对称图形?什么是对称轴?对称图形具有什么性质?为什么有很多建筑、生活用品都是对称图形?
(四)巩固练习
1、第127页1题,画出对称轴。
2、在你周围的物体上找出三个对称图形。
3、让学生把一张纸对折,用笔画出图形一半,然后剪出来,打开看一看是什么图形。也可按第127页第3题先画、再剪。
4、你能否应用对称图特点,剪出美丽的窗花或五角星。
六年级下册数学教案11
圆柱的表面积练习课
教学内容:教材14页例4和练习二余下的练习。
教学目标:
1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。
2、培养学生良好的空间观念和解决简单的实际问题的能力。
教学重点:
运用所学的知识解决简单的实际问题。
教学难点:
运用所学的知识解决简单的实际问题。
教学过程:
一、复习
1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)
2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)
3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(只列式,不计算)
二.教学例4
(1)出示例4。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积)
(2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面)
(3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。)
① 侧面积:3.14×20×28=1758.4(平方厘米)
②底面积:3.14×(20÷2)2=314(平方厘米)
③表面积:1758.4+314=20xx.4≈20xx(平方厘米)
5.小结:
在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用.
三、指导练习
1、练习二第9题
(1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积)
(2)指名板演,其他学生独立完成于课堂练习本上。
2、练习二第17题
先引导学生明确题意,求用彩纸的面积就是圆柱的表面积减去(78.5×2)平方厘米,再组织学生独立练习,集体订正。
3、练习二第13题
(1)复习长方体、正方体的表面积公式:
长方体的表面积=(长×宽+长×高+宽×高)×2
正方体的表面积=棱长×棱长×6
(2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。
4、练习二第19题
(1)学生小组讨论:可以漆色的面有哪些?
(2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。
(3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留两位小数。
四、布置作业
练习二第10、15、20题
第三课时教学反思
学生有上一节课扎实的表面积教学作基础,这节课例4的学习显得十分轻松。在这一环节,学生共提出两个有价值的问题:“求做这样一顶帽子需要多少面料,也就是求哪几部分的面积总和?”“结果20xx.4按四舍五入法保留整十数应该约等于20xx,可为什么教材中应是约等于20xx?”我在此环节,将教学重点放在联系生活实际,引导学生思考所求问题到底是求什么,即要求学生能够具体问题具体分析。在教学完例题后,运用一组选择题,提升学生灵活应用知识解决实际问题的能力。练习题目如下:
做通风管需要多少铁皮
圆柱形水池的占地面积
做无盖的圆柱形水桶需要多少铁皮
做圆柱形油桶需要多少铁皮
卫生纸中间硬纸轴需要多大的硬纸板
求水池底部和四周贴瓷砖的面积
压路机滚筒滚动一周的面积
(1)求侧面积;(2)求1个底面积与侧面积的和;(3)求底面积;(4)求2个底面积与侧面积的和
指导练习内容较多,难以在一课时完成,所以准备再补充一节练习课。
两个惊喜
1、没想到班上有一名同学(数学科代表袁文杰)通过比的知识发现了底面积与侧面积之间的倍数关系,从而利用这一关系提高求表面积的速度。因为底面积=πr2,而圆柱体的侧面积=2πrh,所以S底:S侧=(πrr):(2πrh)=r:2h,2S底:S侧=r:h。当已知圆柱体底面半径和高求表面积时,如果先求出圆柱体侧面积,就可用侧面积÷h×r快速求出两个底面的面积,从而提高计算速度。
2、没想到班上居然有一名同学(数学科代表江赐阳阳)会用课前我查找资料中所介绍的转化方法来推导圆柱体的表面积。在他的带领下,同学们推导得出新的表面积计算公式:圆柱体的表面积=圆柱的底面周长×(高+底面半径)。正因为了解到这种方法,在练习中计算已知底面周长3.14米,高5米,求表面积时,全班前30名同学完成的同学不约而同地采用了这种方法,体现出这种方法对于已知周长和高求表面积的简便之处。
六年级下册数学教案12
:
知识整理
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
复习概念
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
基础练习
1填空
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是( )。
小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是( )。
甲乙两数的比是5:3。乙数是60,甲数是( )。
2、解比例
5/x=10/3 40/24=5/x
3 、完成26页2、3题
综合练习
1、 A×1/6=B×1/5 A:B=( ):( )
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例( ):( )、( ):( )
实践与应用
1、如果A=C/B那当( )一定时,( )和( )成正比例。当( )一定时,( )和( )成反比例。
2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的和是5.4它们的比是5:4,这块钢板的实际面积是多少?
板书设计: 整理和复习
比例的意义
比例 比例的性质
解比例
正反比例 正方比例的意义
正反比例的判断方法
比例应用题 正比例应用题
反比例应用体题
教学要求:
1、使学生进一步理解比例的意义和基本性质,能区分比和比例。
2、使学生能正确理解正、反比例的意义,能正确进行判断。
3、 培养学生的思维能力。
六年级下册数学教案13
教学要求:
1、使学生认识解比例的意义,学会应用比例的基本性质解比例。
2、使学生进一步巩固比和比例的意义,进一步认识比例的基本性质。
教学重点:认识解比例的意义。
教学难点:应用比例的基本性质解比例。
教学过程:
一、复习引新
1.做第32页复习题。
出示复习题。让学生先思考可以怎样想。[可以用求已知比比值的方法来确定里的数;也可以用比的基本性质,把已知的一个比的前项、后项同时扩大。]让学生根据思考的方法在括号里填上数。指名口答结果,老师板书括号里的数。
2.根据比例的基本性质把下面的比例改写成积相等的式子。(口答)
4:3=2:1.5=x:4=1:2
提问;根据积相等的式子,你能求出最后一题里的x吗?
3.引入新课。
在上面两题里,第1题是求比例里的未知项。(板书:求比例里的未知项)从第2题可以看出,根据比例的基本性质,如果已知比例中的任何三项.就可以求出这个比例里另外一个未知项.这种求比例里的未知项,就叫做解比例。(板书课题)现在,我们就应用比例的基本性质来解比例。
二、教学新课
1、教学例2。
出示例2。提问:你能用比例的基本性质来解比例,求出未知项x吗?自己先想一想,有没有办法做。再试着做做看。指名一人板演,其余学生做在练习本上。集体订正,让学生说说怎样想的,第一步的根据是什么,并向学生说明解比例的书写格式。
2、教学例3。
出示例题,让学生用比例形式读一读。让学生解答在自己的练习本上。指名口答解比例过程,老师板书。让学生说一说解比例的方法。指出:解比例一般按比例的基本性质写出积相等的式子,再求未知数x。
3、教学“试一试”。
提问已知数都是怎样的数。让学生自己解答。学生口答是怎样做的,老师板书。
4、小结方法。
提问:你认为根据比例的基本性质要怎样解比例?
三、巩固练习
1、做“练一练”。
指名四人板演。其余学生分两组,每组两道题,做在练习本上。
2、做练习六第8题。
让学生做在课本上,指名口答。
3、做练习六第l0题。
学生分两组,每组一题,做在练习奉上。要求写出检验过程。指名口答x的值和检验过程,老师板书检验过程。并说明检验时把x代入原来的比例,看两边比的比值是否相等。
4、做练习六第11题。
学生口答、老师板书,看能写出多少个比例。
四、讲解思考题
提问:根据题意,两个外项正好互为倒数,你想到什么?(积是1)两个外项的积已知是1,你能求另一个内项吗?
五、课堂小结
这堂课学习的什么内容?应用比例的基本性质怎样解比例,
六、布置作业
课堂作业:练习六第6题第(1)~(4)题,第7题。
家庭作业:练习六第6题第(5)、(6)题,第9题和思考题。
教学目标:
1、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,
2、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。
3、培养学生的判断分析推理能力。
六年级下册数学教案14
教学目标
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是成反比例。
3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。
教学重点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学难点
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
教学过程
一、复习
1.什么是正比例的量?
2.判断下面各题中的两种量是否成正比例?为什么?
(1)工作效率一定,工作时间和工作总量。
(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。
(3)正方形的边长和它的面积。
二、导入新课
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
三、进行新课
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)
观察思考并用自己的语言描述变化关系乘积(路程)一定。
把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。
写出关系式:每杯果汁量×杯数=果汗总量(一定)
以上两个情境中有什么共同点?
4.反比例意义
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
教学内容:
苏教版义务教育课程标准实验教科书第60-61页
教材分析:
在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。
“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。
在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。
教学目标:
⑴使学生会用工具测量两点间的距离、步测和目测的方法。
⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。
⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。
教学重点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学难点:
掌握“用工具测量两点间的距离、步测和目测”的方法。
教学具准备:
卷尺、标杆、50米跑道。
教学流程:
一、揭示课题,明确学习内容。
⑴揭示课题。
板书课题——实际测量。让学生说说对课题的理解。
⑵了解测量工具。
让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。
⑶明确学习内容。
测量地面上相隔较远的两点间的距离;步测和目测。
二、了解测量知识,为实践活动作准备。
⑴测量相隔较远的两点间的距离。
理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。
理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;
观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)
掌握测定直线的步骤:测定直线;分段量出;记录计算。
⑵学习步测的方法。
理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。
掌握步测的方法:用步数×每一步的距离。
理解步测的关键:确定平均步长。
掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。
理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。
⑶学习目测的方法。
观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。
目测较短距离:人书本的长和宽;课桌的长和宽等等;
理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。
三、实践活动。
⑴测定直线。
⑵确定平均步长。
⑶步测篮球场的长和宽。
⑷目测教学楼的长度。
第三单元分数除法
第10课时按比例分配的实际问题
教学内容:
课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。
教学目标:
1、使学生理解按比例分配实际问题的意义。
2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。
教学重难点:
理解按比例分配实际问题的意义,掌握解题的关键。
课前准备:
课件
教学过程:
一、创设情境、引入新知
根据信息填空:
(1)男生有31人,女生有21人,男生人数是女生人数的。
(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?
师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。
二、探究新知
1、出示例11中的实物图及例题。
(1)让学生阅读题目后说说你知道哪些信息?
(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:
①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;
②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。
③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。
师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。
学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?
说说你是怎样做的?
方法一:3+2=530÷5×330÷5×2
方法二:30×3/530×2/5
2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?
说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)
如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)
3、完成练一练第1题。
4、完成试一试。
出示试一试。
提问:“按各小组人数的比分配”是什么意思?你想到了什么?
5、归纳(讨论)。
(1)比较例题与试一试题目在解答方法上有什么共同特点?
(2)怎么解答?
求总份数,各部分量占总数量的几分之几,最后求各部分量。
(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)
三、应用比的知识解决实际问题
1、练一练第2题。
独立完成后进行交流
指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?
2、练一练第3题。
独立填表,完成后集体核对。
3、练习十第1题。
四、课堂总结
这节课学过以后,你有什么收获?
五、布置作业:
练习十第2、3题。
教学反思:
教学过程:
(一)导引探究,由表及里
教学例1,认识成正比例的量。
1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。
时间(时)123456……路程(千米)80160240320400480……
在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)
2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。
3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。
4.让学生根据板书完整地说一说表中路程和时间成什么关系。
[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]
(二)自主探究,尝试归纳
出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?
速度(千米/时)406080100120……时间(时)3020151210……
1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?
2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。
3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。
[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]
(三)对比探究,把握本质规律
1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。
多媒体呈现:
例1路程/时间=速度(一定)
路程和时间成正比例
例2速度×时间;路程(一定)
速度和时间成反比例
2.探究活动。
(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。
(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。
[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]
(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。
启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?
根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。
[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]
3.组织对比性练习。
(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:
表1
数量/本2030405060……总价/元3045607590……
表2
单价/元1。52456……数量/本4030151210……
在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!
在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。
[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]
(2)成比例与不成比例的对比练习。
下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?
①圆的直径和周长。
②小麦每公顷产量一定,小麦的公顷数和总产量。
③书的总页数一定,已经看的页数和未看的页数。
[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]
(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。
[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。
六年级下册数学教案15
教学目标
1、通过分数应用题的复习,帮助学生熟练掌握分数应用题的数量关系和解题思路;
2、引导学生运用转化的思想,寻找出简便的解法,并理出解题思路;
3、培养学生分析和解决实际问题的能力,发展学生的思维;
4、让学生了解到生活与数学的关系,体会到数学的价值,培养对数学的学习兴趣。
教学关键 培养学生分析和解决实际问题的能力
教学重点 复习分数乘除法应用题,掌握解题方法。
教学难点 找准单位“1”
教学步骤 教学过程 教学课件演示 教学意图
一、基础训练导入。
师:今天我们要对分数应用题做一下全面的复习。大家想一下我们解答分数应用题最关键的是什么?
专项训练:
课件:练习:已知根据条件,说出把哪个数量看作单位“1”,并说出有关的数量关系式。
在每道题后追问:从信息中你还知道了什么? 指名回答,并作评价:说一说你们找单位1有什么好的方法吗?
我们以信息中的第6题为例,谁来说说,应该怎样画线段图呢?根据线段图教师问:线段图画好了,如果要求用去和还剩的吨数应该怎样做?
常规性基本训练,复习找单位“1” 训练:为新知识做铺垫。
二、根据看线段图列式
师:谁来说说,根据线段图应该这么列式呢? 出示线段图 【教学课件演示】
注重线段图的应用,帮助学生在理解的基础上写出乘法数量关系式。同时,向学生渗透数形结合的思想。
三、基础练习
基础练习只列式不计算
师:用我们刚才复习的方法做。(学生做完后教师指名回答)你是怎么想的?把谁看作单位“1”?单位“1”的量是已知的还是未知的?用什么方法计算?
归纳总结:请同学们把这4道题分分类,并要说出分类的依据是什么?自己不能完成的可以进行小组讨论,有能力的就独立完成。学生进行思考;在学生回答时要引导学生说出分类的依据是什么,这类题目应当怎样解答。
尝试练习,然后提问:这道题你是怎样想的?分数和比联系在一起会出现许多的新问题。出示:文艺书和科技书本数的比是1∶4。谁来说说可以得出哪些信息?
【教学课件演示】
培养学生审题要仔细,弄清数量关系。使学生通过自主探索,掌握分数应用题分类的依据是。
四、对比练习
1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?2)根据题意分析数量关系,然后列式计算,全班讲评。
通过两题对比,突出较复杂应用题的难点,帮助学产生加强审题意识,提高分析能力。
- 相关推荐
【六年级下册数学教案】相关文章:
六年级下册数学教案01-04
六年级下册人教版数学教案11-13
六年级下册数学教案01-15
人教版六年级下册数学教案04-10
人教版六年级下册数学教案08-25
小学六年级下册数学教案10-11
人教版六年级下册数学教案06-17
苏教版六年级下册数学教案11-13
小学六年级下册数学教案07-27
六年级下册数学教案【荐】01-02