七年级数学有理数教案

2022-06-08 数学教案

  作为一名教职工,就不得不需要编写教案,教案有助于顺利而有效地开展教学活动。如何把教案做到重点突出呢?下面是小编收集整理的七年级数学有理数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

七年级数学有理数教案1

  七年级上2.5有理数的减法(一)教案

  教学目标:

  1、经历探索有理数减法法则的过程。

  2、理解并初步掌握有理数减法法则,会做有理数减法运算。

  3、能根据具体问题,培养抽象概括能力和口头表达能力。

  教学重点运用有理数减法法则做有理数减法运算。

  教学难点有理数减法法则的得出。

  教具学具多媒体、教材、计算器

  教学方法研讨法、讲练结合

  教学过程一、引入新课:

  师:下面列出的是连续四周的最高和最低气温:

  第1周第二周第三周第四周

  最高气温+6℃0℃+4℃-2℃

  最低气温+2℃-5℃-2℃-5℃

  周温差

  求每周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。

  生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

  列式为;

  (+6)-(+2)=4

  0-(-5)=5

  (+4)-(-2)=6

  (-2)-(-5)=3

  教学过程二、有理数减法法则的推倒:

  师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

  2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?

  3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

  举例:(-5)+()=-2

  得出(-5)+(+3)=-2

  所以得到(-2)-(-5)=+3

  而(-2)+(+5)=+3

  有理数减法法则:减去一个数,等于加上这个数的相反数。

  教学过程三、法则的应用:

  例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

  教学过程

  解:(1)原式=-34+(-56)+(+28)

  =-90+(+28)

  =-62

  (2)原式=+25+(+293)+(-472)

  =+25+(-836)

  = 676

  注意:强调计算过程不能跳步,体现有理数减法法则的运用。

  检测题

  教学过程四、练习反馈:

  师:巡视个别指导,订正答案。

  教学过程五、小结:

  有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  有理数减法法则:

  减去一个数,等于加上

  这个数的相反数。例1:先做笔算,再用计数器检验。

  (1)(-34)-(+56)-(-28);

  (2)(+25)-(-293)-(+472)

七年级数学有理数教案2

  学习目标:

  1、学会用计算器进行有理数的除法运算.

  2、掌握有理数的混合运算顺序.

  3、通过探究、练习,养成良好的学习习惯

  学习重点:有理数的混合运算

  学习难点:运算顺序的确定与性质符号的处理

  教学方法:观察、类比、对比、归纳

  教学过程

  一、学前准备

  1、计算

  1)(—0.0318)÷(—1.4)2)2+(—8)÷2

  二、探究新知

  1、由上面的问题1,计算方便吗?想过别的方法吗?

  2、由上面的问题2,你的计算方法是先算法,再算法。

  3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)

  4、结合问题2,你先猜想,有理数的混合运算顺序应该是?

  5、阅读P36,并动手做做

  三、新知应用

  1、计算

  1)、18—6÷(—2)×2)11+(—22)—3×(—11)

  3)(—0.1)÷×(—100)

  2、师生小结

  四、回顾与反思

  请你回顾本节课所学习的主要内容

  3页

  五、自我检测

  1、选择题

  1)若两个有理数的和与它们的积都是正数,则这两个数()

  A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数

  2)下列说法正确的是()

  A.负数没有倒数B.正数的倒数比自身小

  C.任何有理数都有倒数D.-1的倒数是-1

  3)关于0,下列说法不正确的是()

  A.0有相反数B.0有绝对值

  C.0有倒数D.0是绝对值和相反数都相等的数

  4)下列运算结果不一定为负数的是()

  A.异号两数相乘B.异号两数相除

  C.异号两数相加D.奇数个负因数的乘积

  5)下列运算有错误的是()

  A.÷(-3)=3×(-3)B.

  C.8-(-2)=8+2D.2-7=(+2)+(-7)

  6)下列运算正确的是()

  A.;B.0-2=-2;C.;D.(-2)÷(-4)=2

  2、计算

  1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7

  3)(—48)÷8—(—25)×(—6)4)

  六、作业

  1、P39第7题(4、5、7、8)、第8题

  2、选做题:P39第10、11、12、1314、15题

七年级数学有理数教案3

  教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

  非常高兴,能有机会和同学们共同学习

  昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

  我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

  同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

  希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

  我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

  以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

  刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

  对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

  前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

  同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

  (1) 同号两数相加,其和有何规律可循呢?大家观察这两个式子,回答两个问题。(师引导观察,得出答案),那位同学能填好这个空?

  (2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

  (3) 一个数同0相加,其和有什么规律呢?(易得出结论)

  同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

  同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

  (活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

  同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

  看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

  通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

  同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

七年级数学有理数教案4

  教学目标

  1.进一步掌握有理数的运算法则和运算律;

  2.使学生能够熟练地按有理数运算顺序进行混合运算;

  3.注意培养学生的运算能力.

  教学重点和难点

  重点:有理数的混合运算.

  难点:准确地掌握有理数的运算顺序和运算中的符号问题.

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  1.计算(五分钟练习):

  (5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;

  (13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;

  (17)(-2)4; (18)(-4)2; (19)-32; (20)-23;

  (24)3.4×104÷(-5).

  2.说一说我们学过的有理数的运算律:

  加法交换律:a+b=b+a;

  加法结合律:(a+b)+c=a+(b+c);

  乘法交换律:ab=ba;

  乘法结合律:(ab)c=a(bc);

  乘法分配律:a(b+c)=ab+ac.

  二、讲授新课

  前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?

  1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.

  审题:(1)运算顺序如何?

  (2)符号如何?

  说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.

七年级数学有理数教案5

  学习目标:

  1、理解加减法统一成加法运算的意义.

  2、会将有理数的加减混合运算转化为有理数的加法运算.

  3、培养学习数学的兴趣,增强学习数学的信心.

  学习重点、难点:有理数加减法统一成加法运算

  教学方法:讲练相结合

  教学过程

  一、学前准备

  1、一架飞机作特技表演,起飞后的高度变化如下表:

  高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米

  记作+4.5千米—3.2千米+1.1千米—1.4千米

  请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.

  2、你是怎么算出来的,方法是

  二、探究新知

  1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

  2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

  3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写

  如:(-20)+(+3)-(-5)-(+7)有加法也有减法

  =(-20)+(+3)+(+5)+(-7)先把减法转化为加法

  =-20+3+5-7再把加号记在脑子里,省略不写

  可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.

  4、师生完整写出解题过程

  三、解决问题

  1、解决引例中的问题,再比较前面的方法,你的感觉是

  2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4

  3、练习:计算1)(—7)—(+5)+(—4)—(—10)

  四、巩固

  1、小结:说说这节课的收获

  2、P241、2

  3、计算

  1)27—18+(—7)—322)

  五、作业

  1、P2552、P26第8题、14题

七年级数学有理数教案6

  教学目标

  1,在现实背景中理解有理数加法的意义。

  2,经历探索有理数加法法则的过程,理解有理数的加法法则。

  3,能积极地参与探究有理数加法法则的活动,并学会与他人交流合作。

  4,能较为熟练地进行有理数的加法运算,并能解决简单的实际间题。

  5,在教学中适当渗透分类讨论思想

  教学难点

  异号两数相加

  知识重点

  和的符号的确定

  教学过程

  (师生活动)设计理念

  设置情境

  引入课题回顾用正负数表示数量的实际例子;

  在足球比赛中,如果把进球数记为正数,失球数记为负数,它们的和叫做净胜球数。若红队进4个球,失2个球,则红队的胜球数,可以怎样表示?蓝队的胜球数呢?

  师:如何进行类似的有理数的加法运算呢?这就是我们这节课一起与大家探讨的问题。

  (出示课题)让学生感受到在实际问题中做加法运算的数可能超出正数的范围,体会学习有理数加法的必要性,激发学生探究新知的兴趣。

  分析问题

  探究新知如果是球队在某场比赛中上半场失了两个球,下

  半场失了3个球,那么它的得胜球是几个呢?算式应该

  怎么列?若这支球队上半场进了2个球,下半场失了3个球,又如何列出算式,求它的得胜球呢?

  (学生思考回答)

  思考:请同学们想想,这支球队在这场比赛中还可

  能出现其他的什么情况?你能列出算式吗?与同伴交流。

  学生相互交流后,教师进一步引导学生可以把两个有理数相加归纳为同号两数相加、异号两数相加、一个数同零相加这三种情况。

  2,借助数轴来讨论有理数的加法。I

  一个物体向左右方向运动,我们规定向左运动为负,向右为正,向右运动5m,记作5m,向左运动5m,记作—5m。

  (1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。

  (2)交流汇报。(对学习小组的汇报结果,数轴用实物投影仪展示,算式由教师写在黑板上)

  (3)说一说有理数相加应注意什么?(符号,绝对值)能用自己的语言归纳如何相加吗?

  (4)在学生归纳的基础上,教师出示有理数加法法则。

  有理数加法法则:

  1,同号两数相加,取相同的符号,并把绝对值相加。

  2,绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  3,一个数同。相加,仍得这个数。再次创设足球比赛情境,一方面与引题相呼应,联系密切,另一方面让学生在此情境中感受到有理数相加的几种不同情形,并能将它分类,渗透分类讨论思想。

  估计学生能顺利地得到(+)+(+),(+)+(一),(一)+(+),(一)十(—),0+(+),0+(一)。

  但不能把它归的为同号异号等三类,所以此处需教师。点拔、指扎,体现教师的引导者作用。

  ①假设原点0为第一次运动起点,第二次运动的起点是第一次运动的终点。②若学生在学习小组内不能很好地参与探究,也可以让其参照教科书第21页的“探究”自主进行。③让学生感受“数学模型”的思想。④学会与同伴交流,并在交流中获益。培养学生的语言表达能力和归纳能力,也许学生说得不够严谨,但这并不重要,重要的足能用自己的语言表达自己所发现的规律

  解决问题解决问题

  例1计算:

  (1)(—3)+(—9);(2)(—5)+13;

  (3)0十(—7);(4)(—4。7)+3。9。

  教师板演,让学生说出每一步运算所依据的法则。

  请同学们比较,有理数的加法运算与小学时候学的加法有什么异同?(如:有理数加法计算中要注意符号,和不一定大于加数等等)

  例2足球循环赛中,红队4:1胜黄队,黄队1:0胜蓝队蓝队1:0胜红队,计算各队的净胜球数。

  (让学生读数,理解题意,思考解决方案,然后由学生口述,教师板书)

  学生活动:请学生说一说在生活中用到有理数加法的例子。注意点:(1)下先确定是哪种类型的加法再定符号,最后算绝对位。(2)教教师板演的例通要完整体现过程,并要求学生在刚开始学的时候要把中间的过

  程写完整。(3)体现化归思想。(4)这里增加了两道题目,要是让学生能较为熟练地运用法则进行计算。

  拓宽学生视野,让学

  生体会到数学与生活的密切联系。

  课堂练习教科书第23页练习

  小结与作业

  课堂小结通过这节课的学习,你有哪些收获,学生自己总结。

  本课作业必做题:阅读教科书第20~22页,教科书第31习题1。3第1、12、第13题。

  本课教育评注(课堂设计理念,实际教学效果及改进设想)

  1,在本节课的设计中,注重引导学生参与探究、归纳(用自己的语言叙迷)有理数加法法则的过程。

  2,注意渗透数学思想方法。数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等)。如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号,一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法。

  3,注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听

  别人的意见和建议。

  附板书:1。3。1有理数的加法(一)

七年级数学有理数教案7

  教学目标

  1, 掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;

  2, 了解分类的标准与分类结果的相关性,初步了解“集合”的含义;

  3, 体验分类是数学上的常用处理问题的方法。

  教学难点 正确理解分类的标准和按照一定的标准进行分类

  知识重点 正确理解有理数的概念

  教学过程

  探索新知

  在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).

  问题1:观察黑板上的9个数,并给它们进行分类.

  学生思考讨论和交流分类的情况.

  学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.

  例如,

  对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.…(由于小数可化为分数,以后把小数和分数都称为分数)

  通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数,”。

  按照书本的说法,得出“整数”“分数”和“有理数”的概念.

  看书了解有理数名称的由来.

  “统称”是指“合起来总的名称”的意思.

  试一试:

  按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的) 分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与

  学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

  有理数的分类表要在黑板或媒体上展示,分类的标准要引导学生去体会

  练一练

  1,任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.

  2,教科书第10页练习.

  此练习中出现了集合的概念,可向学生作如下的说明.

  把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;

  数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号:。

  思考:

  问题1:上面练习中的四个集合合并在一起就是全体有理数的集合吗?

  创新探究

  问题2:有理数可分为正数和负数两大类,对吗?为什么?

  教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,使学生了解分类的标准不一样时,分类的结果也是不同的,所以分类的标准要明确,使分类后每一个参加分类的象属于其中的某一类而只能属于这一类,教学中教师可举出通俗易懂的例子作些说明,可以按年龄,也可以按性别、地域来分等。

  小结与作业

  到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

七年级数学有理数教案8

  一、知识与能力

  理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

  二、过程与方法

  经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

  三、情感态度与价值观

  通过对有理数的学习,体会到数学与现实世界的紧密联系。

  教学重难点及突破

  在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

  教学准备

  用电脑制作动画体现有理数的分类过程。

  教学过程

  四、课堂引入

  1、我们把小学里学过的数归纳为整数与分数,引进了负数以后,我们学过的数有哪些?将如何归类?

  2.举例说明现实中具有相反意义的量。

  3.如果由A地向南走3千米用3千米表示,那么-5千米表示什么意义?

  4.举两个例子说明+5与-5的区别。

七年级数学有理数教案9

  一、教学目标

  ㈠知识与技能

  1.理解掌握有理数的减法法则

  2.会进行有理数的减法运算

  ㈡过程与方法

  1.通过把减法运算转化为加法运算,向学生渗透转化思想

  2.通过有理数减法法则的推导,发展学生的逻辑思维能力

  3.通过有理数的减法运算,培养学生的运算能力

  ㈢情感态度与价值感

  通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想

  二、学法引导

  1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。

  2.学生学法:探索新知归纳结论练习巩固

  三、重、难点与关键

  1.重点:有理数减法法则和运算

  2.难点:有理数减法法则的推导

  3.关键:正确完成减法到加法的转化

  四、师生互动活动设计

  教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。

  五、教学过程

  ㈠创设情境,引入新课

  1、计算(口答)

  ⑴;⑵-3+(-7)

  ⑶-10+3;⑷10+(-3)

  2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?

  引导学生观察:

  生:3℃比-3℃高6℃

  师:能不能列出算式计算呢?

  生:3-(-3)

  师:如何计算呢?

  总结:这就是我们今天要学的内容.(引入新课,板书课题)

  ㈡探索新知,讲授新课

  1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?

  生:6+(-3)=3

  师:很好!由此可知3-(-3)=6

  师:计算:3+(+3)得多少呢?

  生:3+(+3)=6

  师:让学生观察两式结果,由此得到

  3-(-3)=3+(+3)

  师:通过上述题,同学们观察减法是否可以转化为加法计算呢?

  生:可以

  师:是如何转化的呢?

  生:减去一个负数(-3),等于加上它的相反数(+3)

  2、换几个数再试一试,计算下列各式:

  ⑴0-(-3)=0+(+3)=

  ⑵-5-(-3)=-5+(+3)=

  ⑶9-8=9+(-8)=

  引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?

  归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。

  (投影显示或板书)有理数减法法则:

  减去一个数,等于加上这个数的相反数。

  用式子表示为:a-b=a+(-b)

  强调注意:减法在运算时有2个要素发生了变化

  1、减加

  2、数相反数

  3、例题讲解:(出示投影)

  例1、计算下列各题

  ⑴9-(-5)⑵(-3)-1

七年级数学有理数教案10

  教学目标

  1理解有理数乘方的概念,掌握有理数乘方的运算;

  2培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;

  3渗透分类讨论思想?

  教学重点和难点

  重点:有理数乘方的运算?

  难点:有理数乘方运算的符号法则?

  课堂教学过程设计

  一、从学生原有认知结构提出问题

  在小学我们已经学习过a·a,记作a2,读作a的平方(或a的二次方);a·a·a作a3,读作a的立方(或a的三次方);那么,a·a·a·a可以记作什么?读作什么?a·a·a·a·a呢?

  在小学对于字母a我们只能取正数?进入中学后,我们学习了有理数,那么a还可以取哪些数呢?请举例说明?

  二讲授新课

  1求n个相同因数的积的运算叫做乘方?

  2乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

  一般地,在an中,a取任意有理数,n取正整数?

  应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

  3.我们知道,乘方和加、减、乘、除一样,也是一种运算,就是表示n个a相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算?

  例1计算:

  (1)2,2,2,24;(2)-2,2,3,(-2)4;

  (3)0,02,03,04?

  教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

  引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

  (1)模向观察

  正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

  (2)纵向观察

  互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

  (3)任何一个数的偶次幂都是什么数?

  任何一个数的偶次幂都是非负数?

  你能把上述的结论用数学符号语言表示吗?

  当a>0时,an>0(n是正整数);

  当a<0时,;

  当a=0时,an=0(n是正整数)?

  (以上为有理数乘方运算的符号法则)

  a2n=(-a)2n(n是正整数);

  =-(-a)2n-1(n是正整数);

  a2n≥0(a是有理数,n是正整数)?

  例2计算:

  (1)(-3)2,(-3)3,[-(-3)]5;

  (2)-32,-33,-(-3)5;

  (3),?

  让三个学生在黑板上计算?

  教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n的底数是-a,表示n个(-a)相乘,-an是an的相反数,这是(-a)n与-an的区别?

  教师引导学生横向观察第(3)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了?

  课堂练习

  计算:

  (1),,,-,;

  (2)(-1)20xx,3×22,-42×(-4)2,-23÷(-2)3;

  (3)(-1)n-1?

  三、小结

  让学生回忆,做出小结:

  1乘方的有关概念?2?乘方的符号法则?3?括号的作用?

  四、作业

  1?计算下列各式:

  (-3)2;(-2)3;(-4)4;;-0.12;

  -(-3)3;3·(-2)3;-6·(-3)3;-·32;(-4)2·(-1)5?

  2填表:

  3a=-3,b=-5,c=4时,求下列各代数式的值:

  (1)(a+b)2;(2)a2-b2+c2;(3)(-a+b-c)2;(4)a2+2ab+b2?

  4当a是负数时,判断下列各式是否成立?

  (1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=.

  5*平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

  6*若(a+1)2+|b-2|=0,求a20xx·b3的值?

  课堂教学设计说明

  1数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力?教学中,既要注重罗辑推理能力的培养,又重注重观察、归纳等合情推理能力的培养?因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳等能力列入了教学目标?

  2数学发展的历史告诉我们,数学的发展是从三个方面前进的:第一是不断的推广;第二是不断的精确化;第三是不断的逼近?在引入新时,要尽可能使学生的学习方式与数池家的研究方式类似,不断进行推广.a2是由计算正方形面积得到的,a3是由计算正方体的体积得到的,而a4,a5,…,an是学生通过类推得到的?

  推广后的结果是还要有严密的定义,让学生从更高的观点看自己推广的结果?一般来说,一个概念或一个公式形成后,要对其字母的意义、相互的关系、应用的范围逐项分析?在an中,a取任意有理数,n取正整数的说明还是必要的,要培养学生这种良好的学习习惯?

  3把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷?

  我们知道,学生必须通过自己的.探索才能学会数学和会学数学,与其说学习数学,不如说体验数学、做数学?始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上?例如,通过实际计算,让学生自己休会到负数与分数的乘方要加括号?

  4有理数的乘方中反映出来的数学思想主要是分类讨论思想,在例1中,精心设计了三组计算题,引导学生从底数大于零、等于零、小于零分析、归纳、概括出有理数乘方的符号法则,使学生在潜移默化中形成分类讨论思想?符号语言的使用,优化了表示分类讨论思想的形式,尤其是负数的奇次幂和偶次幂是大分类中的小分类,用符号语言就更加明显?在练习中让学生完成问题(-1)n-1,进一步巩固了分类讨论思想,使这种思想得以落实?

七年级数学有理数教案11

  一、有理数的意义

  1.有理数的分类

  知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,,5.2也可写作+3,+,+5.2;零既不是正数,也不是负数。

  2.数轴

  知识点:数轴是数与图形结合的工具;数轴:规定了原点、正方向和单位长度的直线;数轴的三元素:原点、正方向、单位长度,这三元素缺一不可,是判断一条直线是否是数轴的根本依据;数轴的作用:1)形象地表示数(因为所有的有理数都可以用数轴上的点表示,以后会知道数轴上的每一个点并不都表示有理数),2)通过数轴从图形上可直观地解释相反数,帮助理解绝对值的意义,3)比较有理数的大小:a)右边的数总比左边的数大,b)正数都大于零,c)负数都小于零,d)正数大于一切负数

  3.相反数

  知识点:只有符号不同的两个数互为相反数;在数轴上表示互为相反数的两个点到原点的距离相等且分别在原点的两边;规定:0的相反数是0。

  4.绝对值

  知识点:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作∣a∣;绝对值的意义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零,即若a>0,则∣a∣=a.若a=0,则∣a∣=0.若a<0,则∣a∣=﹣a;绝对值越大的负数反而小;两个点a与b之间的距离为:∣a-b∣。

  二、有理数的运算

  1.有理数的加法

  知识点:有理数的加法法则:1)同号两数相加,取相同的符号,并把绝对值相加;2)异号两数相加,①绝对值相等时,和为零(即互为相反数的两个数相加得0);②绝对值不相等时,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;3)一个数和0相加仍得这个数。

  加法交换律:a+b=b+a;加法结合律:a+b+c=a+(b+c)

  多个有理数相加时,把符号相同的数结合在一起计算比较简便,若有互为相反的数,可利用它们的和为0的特点。

  2.有理数的减法

  知识点:有理数的减法法则:减去一个数等于加上这个数的相反数,即a-b=a+(-b)。

  注意:运算符号“+”加号、“-”减号与性质符号“+”正号、“-”负号统一与转化,如a-b中的减号也可看成负号,看作a与b的相反数的和:a+(-b);一个数减去0,仍得这个数;0减去一个数,应得这个数的相反数。

  3.有理数的加减混合运算

  知识点:有理数的加减法混合运算可以运用减法法则统一成加法运算;加减法混合运算统一成加法运算以后,可以把“+”号省略,使算式变得更加简洁。

  4.有理数的乘法

  知识点:乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数和0相乘都得0。

  几个不等于0的数相乘,积的符号由负因数的个数决定;当负因数有奇数个时,积为负;当负因数有偶数个时,积为正。几个数相乘,有一个因数为0,积就为0。

  乘法交换律:ab=ba乘法结合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc

  5.有理数的除法

  知识点:除法法则1:除以一个数等于乘上这数的倒数,即a÷b==a(b≠0即0不能做除数)。

  除法法则2:两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数都得0。

  倒数:乘积是1的两数互为倒数,即a=1(a≠0),0没有倒数。

  注意:倒数与相反数的区别

  6.有理数的乘方

  知识点:乘方:求n个相同因数的积的运算。乘方的结果叫幂,an中,a叫做底数,n叫做指数。

  乘方的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何次幂都为0。

  7.有理数的混合运算

  知识点:运算顺序:先乘方,再乘除,最后算加减,遇到有括号,先算小括号,再中括号,最后大括号,有多层括号时,从里向外依次进行。

  技巧:先观察算式的结构,策划好运算顺序,灵活进行运算。

七年级数学有理数教案12

  一、素质教育目标

  (一)知识教学点

  能按照有理数的运算顺序,正确熟练地进行有理数的加、减、乘、除、乘方的混合运算.

  (二)能力训练点

  培养学生的观察能力和运算能力.

  (三)德育渗透点

  培养学生在计算前认真审题,确定运算顺序,计算中按步骤审慎进行,最后要验算的好的习惯.

  (四)美育渗透点

  通过本节课的学习,学生会认识到小学算术里的四则混合运算顺序同样适用于有理数系,学生会感受到知识的普适性美.

  二、学法引导

  1.教学方法:尝试指导法,以学生为主体,以训练为主线.

  2.学生学法:

  三、重点、难点、疑点及解决办法

  重点和难点是如何按有理数的运算顺序,正确而合理地进行有理数混合计算.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片.

  六、师生互动活动设计

  教师用投影出示练习题,学生用多种形式完成.

  七、教学步骤

  (一)复习提问

  (出示投影1)

  1.有理数的运算顺序是什么?

  2.计算:(口答)

  ① , ② , ③ , ④ ,

  ⑤ , ⑥ .

  【教法说明】2题都是学生运算中容易出错的题目,学生口答后,如果答对,追问为什么?如果不对,先让他自己找错误原因,若找不出来,让其他同学纠正,使学生真正明白发生错误的原因,从而达到培养运算能力的目的.

  (二)讲授新课

  1.例2 计算

  师生共同分析:观察题目中有乘法、除法、减法运算,还有小括号.

  思考:首先计算小括号里的减法,然后再按照从左到右的顺序进行乘除运算,这样运算的步骤基本清楚了.带分数进行乘除运算时,必须化成假分数.

  动笔:按思考的步骤进行计算,在计算时不要“跳步”太多,最后再检查这个计算结果是否正确.

  一个学生板演,其他学生做在练习本上,教师巡回指导,然后师生共同订正.

  【教法说明】通过此题的分析,引导学生在进行有理数混合运算时,遵循“观察—思考—动笔—检查”的程序进行计算,有助于培养学生严谨的学风和良好的学习习惯.

  2.尝试反馈,巩固练习(出示投影2)

  计算:

  ① ;

  ② .

  【教法说明】让学生仿照例题的形式,自己动脑进行分析,然后做在练习本上,两个学生板演.由于此两题涉及负数较多,应提醒学生注意符号问题.教师根据学生练习情况,作适当评价,并对学生普遍出现的错误,及时进行变式训练.

  3.例3 计算: .

  教师引导学生分析:观察题目中有乘方、乘法、除法、加法、减法运算.

  思考:容易看到 , 是彼此独立的,可以首先分别计算,然后再进行加减运算.

  动笔:按思考的步骤进行计算,在计算时强调不要“跳步”太多.

  检查计算结果是否正确.

  一个学生口述解题过程,教师予以指正并板书做示范,强调解题的规范性.

  4.尝试反馈,巩固练习(出示投影3)

  计算:① ;

  ② ;

  ③ ;

  ④ .

  首先要求学生观察思考上述题目考查的知识点有哪些?然后再动笔完成解题过程.四个学生板演,其他同学做在练习本上.

  说明:1小题主要考查乘方、除法、减法运算法则及运算顺序等知识,学生容易出现 的错误.通过此题让学生注意运算顺序.3题主要考查:相反数、负数的奇次幂、偶次幂运算法则及运算顺序等知识点.让学生搞清 与 的区别; , .计算此题要特别注意符号问题;4题主要考查相反数运算法则及运算顺序等知识.本题要特别注意运算顺序.

  【教法说明】习题的设计分层次,由易到难,循序渐进,符合学生的认知规律.注重培养学生的观察分析能力和运算能力.通过变式训练,也培养学生的思维能力.学生做练习时,教师巡回指导,及时获得反馈信息,对学生出现错误较多的问题,教师要进行回授讲解,然后再出一些变式训练进行巩固.

  (三)归纳小结

  师:今天我们学习了,要求大家做题时必须遵循“观察—分析—动笔—检查”的程序进行计算.

  【教法说明】小结起到“画龙点睛”的作用,教给学生运算的方法、步骤,培养学生良好的学习习惯,提高运算的准确率.

  (四)反馈检测(出示投影4)

  (1)计算① ; ②

  ③ ; ④ ;

  ⑤ .

  (2)已知 , 时,求下列列代数式的值

  ① ; ② .

  以小组为单位计分,积分最高的组为优胜组.

七年级数学有理数教案13

  教学目标

  1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;

  2.了解倒数概念,会求给定有理数的倒数;

  3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。

  教学建议

  (一)重点、难点分析

  本节教学的重点是熟练进行运算,教学难点 是理解法则。

  1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。

  2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。

  (二)知识结构

  (三)教法建议

  1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

  2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

  3.理解倒数的概念

  (1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。

  (2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

  (3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。

  4.关于倒数的求法要注意:

  (1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.

  (2)正数的倒数是正数,负数的倒数仍是负数.

  (3)负倒数的定义:乘积是-1的两个数互为负倒数.

  教学设计示例

  一、素质教育目标

  (一)知识教学点

  1.了解有理数除法的定义.

  2.理解倒数的意义.

  3.掌握有理数除法法则,会进行运算.

  (二)能力训练点

  1.通过有理数除法法则的导出及运算,让学生体会转化思想.

  2.培养学生运用数学思想指导思维活动的能力.

  (三)德育渗透点

  通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

  (四)美育渗透点

  把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

  二、学法引导

  1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

  2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

  三、重点、难点、疑点及解决办法

  1.重点:除法法则的灵活运用和倒数的概念.

  2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

  3.疑点:对零不能作除数与零没有倒数的理解.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、自制胶片、彩粉笔.

  六、师生互动活动设计

  教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

  七、教学步骤

  (一)创设情境,复习导入

  师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

  【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

  (二)探索新知,讲授新课

  1.倒数.

  (出示投影1)

  4×( )=1; ×( )=1; 0.5×( )=1;

  0×( )=1; -4×( )=1; ×( )=1.

  学生活动:口答以上题目.

  【教法说明】在有理数乘法的基础础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

  师问:两个数乘积是1,这两个数有什么关系?

  学生活动:乘积是1的两个数互为倒数.(板书)

  师问:0有倒数吗?为什么?

  学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

  师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

  提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

  【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

  (出示投影2)

  求下列各数的倒数:

  (1); (2); (3);

  (4); (5)-5; (6)1.

  学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

  2.

  计算:8÷(-4).

  计算:8×()=? (-2)

  ∴8÷(-4)=8×().

  再尝试:-16÷(-2)=? -16×()=?

  师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

  学生活动:同桌互相讨论.(一个学生回答)

  师强调后板书:

  [板书]

  【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让学生总结法则,尤其是字母表示,训练学生的归纳及口头表达能力.

  (三)尝试反馈,巩固练习

  师在黑板上出示例题.

  计算(1)(-36)÷9, (2)()÷().

  学生尝试做此题目.

  (出示投影3)

  1.计算:

  (1)(-18)÷6; (2)(-63)÷(-7); (3)(-36)÷6;

  (4)1÷(-9); (5)0÷(-8); (6)16÷(-3).

  2.计算:

  (1)()÷(); (2)(-6.5)÷0.13;

  (3)()÷(); (4)÷(-1).

  学生活动:1题让学生抢答,教师用复合胶片显示结果.2题在练习本上演示,两个同学板演(教师订正).

  【教法说明】此组练习中两个题目都是对的直接应用.1题是整数,利用口答形式训练学生速算能力.2题是小数、分数略有难度,要求学生自行演算,加强运算的准确性,2题(2)小题必须把小数都化成分数再转化成乘法来计算.

  提出问题:(1)两数相除,商的符号怎样确定,商的绝对值呢?(2)0不能做除数,0做被除数时商是多少?

  学生活动:分组讨论,1—2个同学回答.

  [板书]

  2.两数相除,同号得正,异号得负,并把绝对值相除.

  0除以任何不等于0的数,都得0.

  【教法说明】通过上组练习的结果,不难看出与有理数乘法有类似的法则,这个法则的得出为计算有理数除法又添了一种方法,这时教师要及时指出,在做有理数除法的题目时,要根据具体情况,灵活运用这两种方法.

  (四)变式训练,培养能力

  回顾例1 计算:(1)(-36)÷9; (2)()÷().

  提出问题:每个题目你想采用哪种法则计算更简单?

  学生活动:(1)题采用两数相除,异号得负并把绝对值相除的方法较简单.

  (2)题仍用除以一个数等于乘以这个数的倒数较简单.

  提出问题:-36:9=?;:()=?它们都属于除法运算吗?

  学生活动:口答出答案.

  (出示投影4)

  例2 化简下列分数

  (1); (2); (3)或3:(-36)

  (4); (5).

  例3 计算

  (1)()÷(-6); (2)-3.5÷×();

  (3)(-6)÷(-4)×().

  学生活动:例2让学生口答,例3全体同学独立计算,三个学生板演.

  【教法说明】例2是检查学生对有理数除法法则的灵活运用能力,并渗透了除法、分数、比可互相转化,并且通过这种转化,常常可能简化计算.例3培养学生分析问题的能力,优化学生思维品质:

  如在(1)()÷(-6)中.

  根据方法①()÷(-6)=×()=.

  根据方法②()÷(-6)=(24+)×=4+=.

  让学生区分方法的差异,点明方法②非常简便,肯定当除法转化成乘法时,可以利用有理数乘法运算律简化运算.(2)(3)小题也是如此.

  (五)归纳小结

  师:今天我们学习了及倒数的概念,回答问题:

  1.的倒数是__________________();

  2.;

  3.若、同号,则;

  若、异号,则;

  若,时,则;

  学生活动:分组讨论,三个学生口答.

七年级数学有理数教案14

  一、课题§2.5有理数的减法

  二、教学目标

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力.

  三、教学重点和难点

  有理数减法法则

  四、教学手段

  现代课堂教学手段

  五、教学方法

  启发式教学

  1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;

  2.培养学生观察、分析、归纳及运算能力。

  有理数减法法则。

  有理数的减法转化为加法时符号的改变。

  电脑、投影仪

  习题:

  一、从学生原有认知结构提出问题

  1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

  2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).

  3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.

  二、师生共同研究有理 数减法法则

  问题1 (1)4-(-3)=______ ;

  (2)4+(+3)=______.

  教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).

  思考:减法可以转化成加法运算.但是,这是否具有一般性?

  问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.

  对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?

  (2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).

  归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.

  强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.

  三、运用举例 变式练习

  例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)

  例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?

  例3 P63例3

  例4 15℃比5℃高多少? 15℃比-5℃高多少?

  练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题.

  补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;

  (5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.

  2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;

  (5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.

  3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);

  4.当a=11,b=-5,c=-3时,求下列代数式的值:

  (1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.

  四、反思小结

  1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。

  2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。

  习题2.6知识技能1、3、4题。

  本节课内容较为简单,学生掌握良好,课上反应热烈。

七年级数学有理数教案15

  教学目标:

  1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。

  重点难点:

  重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加

  教学过程

  一激情引趣,导入新课

  1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想

  2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。

  ,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。

  二合作交流,探究新知

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米

  1同号两数相加

  小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.

  从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。

  同号两数相加,取__________的符号,并把它们的_____________相加。

  2异号两数相加

  (1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.

  (2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了

  _____千米。用式子表达为_______________________.

  从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。

  异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值

  减去_______________的绝对值。

  3一个数和零相加,以及互为相反数相加

  (1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?

  (2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?

  从上问题,你发现了什么?把你的结论写在下框中,

  互为相反数的两个相加得_______,一个数和零相加,任得____________________.

  三应用迁移,拓展提高

  例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)

  (3)(-5)+9(4)(–10)+7

  例2计算(1)(-3)+(2)(-)+(-)

  例3填空

  (1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=

  四课堂练习,巩固提高

  P21

  五反思小结巩固提高

  有理数的加法法则有哪些?请你把它们写在下面:

  1

  2

  3

  4

  六作业p24-25A组1-4B1

【七年级数学有理数教案】相关文章:

数学有理数教案范本10-13

初中数学《有理数乘法》教案08-29

数学有理数的乘法教案03-07

有理数的数学教案10-12

数学有理数的除法优秀教案09-12

《有理数的乘法》数学教案10-12

关于有理数的数学教案08-08

有理数减法人教版数学七年级上册教案09-03

有理数七年级优秀教案09-07