作为一名教学工作者,通常会被要求编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。优秀的说课稿都具备一些什么特点呢?下面是小编为大家整理的《三角形的内角和》说课稿,欢迎大家分享。
《三角形的内角和》说课稿1
尊敬的各位评委老师好!(鞠躬)
我是小学数学组几号考生,今天我说课的题目是《三角形的内角和》,下面开始我的说课。
依据数学课程标准,在新课程理念的指导下,我将以教什么,怎样教以及为什么这样教的思路,从教材分析,教学目标,教学方法教学内容等方面展开我的说课。
说教材
《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的基础。
说学情
一节成功的课,不仅在于对教材的把握,还有对学生的研究。四年级的学生正处于具体形象思维为主导的阶段,他们解决问题的能力很强,但自控力稍差。因此本节课将注重引导学生动脑思考,动手实践,打破以知识传授为主的传统数学课堂模式,采用灵活多样的教学方法,牢牢将学生的.注意力集中在课堂中。
说教学目标
根据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:
知识与技能目标:通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
过程与方法目标:经历观察、猜想、验证的过程,提升自身动手操作及推理、归纳总结的能力。
情感态度价值观目标:在参与学习的过程中,感受数学的魅力,体验成功的喜悦,激发学习数学的兴趣。
说教学重难点
根据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
说教法
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,我将采用启发式教学法,引导学生利用已有的知识经验去探索新知,并在探索过程中掌握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采用自主探究,合作交流的方式进行学习,通过动手动脑动口来掌握本节课的教学重难点。
说教学内容
为了更好地完成本节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课
为了引入新课,调动学生的学习兴趣,一开始上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场激烈的争吵。钝角三角形说“我的钝角大,我的内角和一定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,因为三角形的内角和是180°”。根据视频中三角形的对话,顺势引出题目——三角形的内角和。
多媒体课件展示有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
(二)自主探究,感受新知
首先让学生画几个不同类型的三角形。然后同桌互相量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发现三角形的内角和是180°。
接着我会提出一个问题是不是所有的三角形的内角和都是180°,如何进行验证你的结论呢?接下来我会让学生分小组讨论,针对学生出现的问题,我给予指导,讨论过后,请同学汇报,鼓励学生用自己的语言表达,无论学生回答的全面与否,都给予积极的评价,其他同学认真倾听后做出判断,进行补充,提高学生的注意力。
通过小组之间的讨论,引导学生采用剪拼的方法进行验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。
最后引导学生总结出三角形的内角和是180°。
以上教学活动采用让学生主动探索、小组合作交流的学习方式,使学生充分经历数学学习的全过程,体现以生为本的教学理念。学生在全程参与中不仅掌握新知发展能力培养的推理能力,又锻炼学生的语言表达能力和沟通能力,同时让学生体验数学与生活的紧密联系。
(三)巩固练习,强化知识
我利用小学生好胜心强的特点,以闯关的形式将课本的习题展现在多媒体上来巩固本节课所学的知识,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们知识的掌握情况。
(四)课堂小结
我将此环节分为两部分。第一部分是以学生为主体的知识性总结,让学生畅谈本节课的感受和收获,及时了解学生的学习情况和情感体验。第二部分是以教师为主体的情感性总结,我会对学生的表现予以表扬和激励,激发学生的学习兴趣,增强学习自信心。
(五)布置作业
针对学生的年龄特点,我会让学生在课下和家长交流今天的收获和感受,从而让家长了解学生在校的学习情况,并促进学生与家长的沟通。
说板书设计
一个好的板书应该是简洁明了整洁美观,重难点突出,能够对学生理解本节知识有一定的强化作用,因此我的板书是这样设计的。
以上就是我的全部说课,感谢各位老师的聆听!(鞠躬)
《三角形的内角和》说课稿2
《三角形内角和》说课稿
一、说课内容:北师大版义务教育课程标准实验教材小学数学四年级下册第二单元第三节----《三角形的内角和》一课。
二、教材分析:
在这一环节我要阐述四方面的内容:
1、三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,教材呈现教学内容时,安排了一系列的实验操作活动。让学生通过探索,发现三角形的内角和是180度。
2、学情分析:
学生已经知道了三角形的概念、分类,熟悉了各角的特点,掌握了量角的方法。也可能有部分学生知道了三角形内角和是180°的结论。
3、教学目标:
A、让学生亲自动手,发现,证实三角形的内角和等于180度。并能初步运用这一性质解决有一些实际问题。
B、在经历“观察、测量、撕拼、折叠”的验证的过程中培养学生观察能力,归纳能力、合作能力和创造能力。
4、教学重难点:
经历三角形的内角和是180度这一知识的形成,发展和应用的全过程。
5、教学难点:
让学生用不同方法验证三角形的内角和是180度。
三、教学准备:
在备课过程中,我阅读了农远光盘中多位名师的教学案例来完善自己的教学设计,并收集了农远光盘中的多媒体课件,用课件适时播放。
四、教法分析
为了使教学目标得以落实,谈谈本课的教法和学法。新课程标准强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者。我采用了趣味教学法、情境教学法、引导发现法、合作探究法和直观演示法。
五、学法分析
在学法指导上,我把学习的主动权交给学生,引导学生通过动手、动脑、动口,积极参与知识形成的全过程。体现了学生动手实践、合作交流,自主探索的学习方式。
六:教学流程:
(一)猜迷激趣,复习旧知。,
兴趣是最好的老师,开课我出示了一则谜语。调动学生学习的积极性。
形状是似座山,稳定性能坚。三竿首尾连,学问不简单。(打一平面图形)
由谜底又得出了一个对三角形你们有哪些了解的问题,唤醒学生头脑中有关三角形的知识,同时很自然引出对“三角形内角和”一词的讲解,为后面的探索奠定基础。
(二)创设情境,巧引新知(课件出示)
(三)验证猜想,主动探究。
本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。
“你能运用已有的知识和身边的学具想办法验证你的猜想吗?”学生思考片刻后,我出示学习提纲:
A、先独立思考,你想怎样验证?
B、再小组合作探究,运用多种方法验证。
C、最后汇报,展示你的验证方法。
课程标准指出:数学教学应该由简单的问答式教学向独立思考基础上的`合作学习转变。所以,先让他们独立思考,形成独特的个人见解。等有了合作的需要时,再合作探究。此时的合作,学生才会有展示自己的方法的强烈欲望,才会在不同意见的相互碰撞中产生富有创意的思维火花。在足够的讨论之后,进入了汇报展示过程。学生可能出现以下几种方法
1.量角求和
这个验证方法应是全班同学都能想到的,因此,在这一环节我设计了小组活动的形式。让小组成员在练习本上任意地画几个三角形进行测量并记录。学生通过画、量、算,最后发现三角形的三个内角和都是180度。
2.拼角求和
通过讨论,有的小组可能会想到把三个角撕开,再拼在一起,刚好拼成了一个平角,由于学生在以前学过平角是180度,很快就发现这三个三角形的内角和都是180度。为了让全班学生能够真切,清晰地看到撕拼的过程,我利用了多媒体课件进行了演示。(课件出示)课件播放后学生一目了然,攻克了本课的一个教学重点。
3.折角求和
有的小组还可能想到把三个角折在一起,也刚好形成一个平角。但如何折才能够使三个内角刚好组成平角呢?这一验证方法是本课教学的一个难点。
在学生展示完验证方法后,我又让每位学生选择自己喜欢的方法,再去验证刚才的发现。最后归纳出结论:所有三角形的内角和都是180度。
(四)应用新知,解决问题。
数学离不开练习。本节课我把图像、动画等引入课件,使练习的内容具有简单的背景与情节,使学生对解题产生了浓厚的兴趣。
我设计了四个层次的练习:有序而多样。
1)基本练习:让学生通过这一习题,掌握求未知角的一般方法。
2)实践运用:这一习题的设计是为了让学生知道生活中到处都有数学,数学能解决生活实际问题,真切体验到学的是有价值的数学。
3)巩固提高:使学生了解在间接条件下求未知角的方法。
4)拓展延伸。让学生体会到数学中辅助线的桥梁作用,在潜移默化中渗透一个重要数学思想―――转化,为以后学习数学打下坚实的基础。
(五)全课小结完善新知
1、这节课我们学到了什么知识?2、你有什么收获?
通过学生谈这节课的收获,对所学知识和学习方法进行系统的整理归纳。
(六)板书设计
三角形的内角和
量角撕拼折角拼图
三角形的内角和是180度。
六、说效果预测:
本课中,学生通过动手操作,测量、撕拼、折叠等实验活动,得到的不仅是三角形内角和的知识,也使学生学到了怎么由已知探究未知的思维方式与方法,培养了他们主动探索的精神。促进学生良好思维品质的形成,达到预想的教学目的。使学生在探索中学习,在探索中发现,在探索中成长!
《三角形的内角和》说课稿3
一、 教材分析
《三角形的内角和》,是人教版义务教育课程标准实验教科书数学四年级下册第五单元的内容。
在上学期学生已经掌握了角的分类及度量的知识。在本课之前,学生又研究了三角形的特性、三边间的关系及三角形的分类等知识。积累了一些有关三角形的知识和经验,形成了一定的空间观念,可以在比较抽象的水平上进一步认识三角形,探索新知。三角形的内角和是 180°是三角形的一个重要性质,学好它有助于学生理解三角形的三个内角之间的关系,也是进一步学习的基础。
由于在初中的教材中,本课内容还会进行深入探讨。所以本课教材在编写上,体现的就是通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和是180°。为初中的理论论证作好了准备。我在本节课的教学设计上,力图体现“尊重学生,注重发展,使之‘做’数学”的教学理念。根据本节教学内容的特点,主要体现“做”数学的四个方面:一引导学生“玩”数学;二帮助学生“悟”数学;三指导学生“用”数学;四激发学生“想”数学。
基于以上对教材的认识,我为本课设定了以下三个教学目标:
1、通过测量、剪拼等方法,探索和发现三角形三个内角的和是180°,并能应用三角形内角和的知识解决简单的实际问题。
2、在经历观察、猜测、验证的过程中,培养学生动手动脑及分析推理的能力。
3、学生在参与数学学习活动的过程中,感受数学思想方法,体验数学的魅力,获得成功的体验,产生喜欢数学的积极情感。
教学重点:通过动手操作探索发现三角形的内角和是180°。
教学难点:运用三角形的内角和解决实际问题。
二、 教法和学法
课程标准指出:“有效的数学活动不能单纯的依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”基于以上理念再结合四年级学生的思维特点。本节课当中,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
根据本节教学内容的特点,我设计了游戏导入,引发思考—“玩”数学 、操作实验,猜想验证—“悟”数学 、应用生活,解决问题—“用”数学 、梳理反思,课外延伸—“想”数学这样一个教学结构,让学生在操作探究中发现问题-提出问题-解决问题。
三、 教学过程
第一个环节:游戏导入,引发思考—玩数学
学生已有的知识,是新知有效的生长点,温故而知新能为接下来的学习作好知识上的铺垫。
(1)游戏“捉迷藏”复习三角形的分类
上课伊始,通过学生喜欢的游戏形式—“捉迷藏”来复习三角形的分类,“躲在大树后的会是什么三角形呢,猜中了就可以把它抓出来”对这一知识的复习,为探究新知中的分类验证作好了铺垫。从大树后依次出现的三个三角形,学生都能利用已有的知识进行直接或间接地判断。一次次的成功使学生的学习兴趣高涨。但最后再次出现的一个露出两个锐角的三角形,却使学生的意见产生分歧,到底是直角、是钝角、还是锐角三角形?由于运用已有的知识、经验、方法都不能确定第三个角,矛盾的直接情境激发了学生进一步学习的需求。
(2)解释“内角”,提出研究问题
老师随即话锋一转,指出:“知道了这两个内角的度数,老师就能知道第三个角的度数,你信吗?”在这里还适时地对“内角”一词作出解释,为学生扫清文本理解的障碍。“三角形的内角之间有什么关系呢?就让我们一起来研究吧。”为学生下一步的探究指明了方向。
第二个环节:操作实验,猜想验证—悟数学
第一步,量角猜想
奥苏伯尔说过:“影响学生学习的最重要的因素是学生已经知道了什么” 。其实有许多学生在课外已经知道这一性质,只是不十分坚信,老师要大力地鼓励学生实事求是,从事实中寻找原因。
(1)任意画三角形,量出三个内角的度数,再算出它们的内角和
“大家都想知道三角形的内角有什么秘密,那咱们就来研究研究吧。你们想怎么研究?”由于在前一环节中,已经出现了角的度数的探讨,学生会很自然提出量角研究,老师再具体作出算内角和的研究指导。
(2)个人独立完成,小组交流提出猜想
通过个人独立完成,再小组交流,学生就能在充足的数据基础上,有目的地互相辩驳、互相的吸纳,完善自己的猜想:三角形的内角和大约是180°。
第二步,剪拼验证
(1)独立思考验证方法,个别方法展示
“180°是一个什么样的角呢?(平角)根据平角的.特点,我们可不可以再想出其他的验证方法呢?”老师在这里画龙点睛,为学生验证开拓更广阔的思维空间。
“世界上的三角形成千上万,是不是所有的三角形内角和都是180°呢?我们不可能都去验证,怎么办?既然三角形可分成锐角三角形、直角三角形、钝角三角形三类,就从这三类去验证吧。”在这里不仅是引导学生对猜想进行全面地验证,更重要的是在这经历的过程中,感受数学研究的一种严密的逻辑性,从而为以后的数学学习奠定良好的基础。
(2)小组合作,操作验证
可能出现的情况:A、分别撕下三角形三个角拼成平角的
B、分别剪下三角形三个角拼成平角的
C、把三角形的三个角折成平角的
D、通过沿长方形对角线对折得到两个三角形,推理得到每个三角形的内角和
这些方法都验证了:三角形的内角和是180°。
第三步,演示反思
(1)课件演示剪拼过程
(2)介绍发现这一规律的科学家帕斯卡。
受年龄、知识经验、实验条件的限制,在学生的验证中会出现操作不太精确,推理不够严密的情况。老师需借助多媒体的优势,通过课件再次规范、准确的演示剪拼过程。同时介绍科学家帕斯卡对这一规律的发现,让学生及时在脑海中强化这一探究发现的过程。这也让学生感受到通过自己的努力取得成功所带来的满足感。
(3)反思测量
针对在猜想环节中,没有量出是180°的同学,要求再次测量,找到误差的原因。不仅让新知得到了及时的巩固,更培养了学生对待测量精益求精的思想,促进良好的学习习惯形成。
第四步,联系强化
(1)三角形内角和与三角形大小的关系
老师手中的大三角板与你们手中的小三角板,内角和相等吗?为什么?
(2)三角形内角和与三角形形状的关系
(几何画板演示画不同形状的三角形及角度数数据的显示)
仔细观察,有什么不同?什么相同?你有什么新发现吗?
通过学生与老师比较手中不同大小的三角板,再用几何画板动态演示不同形状的三角形,使学生进一步感受到三角形的内角和与三角形的大小、形状都没有关系。从这一系列的联系对比中,使学生对三角形的内角和,由表面的认识走向纵深的思考。
第三个环节:应用生活,解决问题—用数学
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,课程标准提倡练习的有效性。对此,我设计了三个层次的练习:
1、 基本练习
(1)运用新知解决课前游戏中的问题:已知两个角的度数,求第三个角的度数。
(2)学生仿照编题,同桌互做。
在练习中既巩固了基本的知识点,又让学生在同伴相互的反馈评价中,实现了自我的行为纠正。
2、 变式练习
(1)金字塔的问题
金字塔每个侧面是三角形,样子就像汉字的金字。金字塔的基底是一个正方形,四个侧面的形状都是等腰三角形。等腰三角形的顶角约是52°,你能算出等腰三角形的底角大约是多少度吗?
(2)交通标志的问题
交通标志的等边三角形,它们每个角是多少度?
(3)三角板中的问题
三角板的其中一个锐角是30°,另外一个锐角是多少度?
在这里设计了求一些特殊三角形角的度数的问题:算一算金字塔的等腰三角形底角度数、交通标志的等边三角形角的度数、直角三角板的锐角度数。在生活的实际情境中,灵活运用三角形的内角和,解决实际问题,突破了教学难点。
3、 发展练习
(1)用两块完全一样的三角板拼成一个三角形,这个三角形的内角和是多少度?
(2)用两块完全一样的三角板拼成一个长方形,这个长方形的内角和
是多少度?(如图)
巧妙地由图形的变化对比,体现了三角形内角和的发展应用,从中发展学生的空间观念和空间想象能力。
第四个环节:梳理反思,课外延伸—想数学
(1)全课总结评价
让学生整理本节课的学习收获,为自己评上星级,在梳理知识脉络的同时,又关注了学生在学习过程中的情感体验。
(2)课外练习
“把三角形剪去一个角后,所剩的图形的内角和是多少度?”使学生对知识的探究由课堂延伸到课外。
总之,本节课我力图引导学生通过自主探究、合作交流,充分经历一个知识的学习过程,让学生学会数学、会学数学、爱学数学。在教学中,随时会生成一些新教学资源,课堂的生成一定大于课前预设,我将及时调整我的预案,以达到最佳的教学效果。
《三角形的内角和》说课稿4
各位评委、各位同行朋友:
大家上午好!
“三角形的内角和”是九年义务教育六年制新课程标准教科书第八册第二单元——认识图形中第三节的内容。
一、说教材和新课标
(包括教材、新课标和教学目标)
1、在学习本节内容——探索与发现三角形的内角和之前,学生已经掌握了有关角的分类和三角形的分类知识,知道平角的度数是180°,并且能够通过量角器测量角的大小。教材编排了通过小组合作学习形式,即每人随意画一个三角形,通过小组成员的分工与合作,求出每个同学画的三角形的内角和的度数。然后与学生共同分析各活动小组的“三角形内角和”的记录情况,进而归纳出三角形的内角和等于
180°。为证明这个结论的正确性和加深学生的认识,教材还编排了“拼一拼”(即把三角形的三个角撕下来拼在一起)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作环节。本节教材的最后编排了已在三角形中两个角的'度数求第三个角的度数的内容。
2、新课程改革的重要目标就是要改变学生学习数学的方式,其中一个非常重大的变化就是由过去注重教师“怎么教”到现在更重视学生“怎么学”,因此我认为:学生“怎么学”比“学什么”更重要。一个学生如果掌握了“怎么学”,就如同拥有了点石成金的仙人指,这才是他一身中最可宝贵的、无穷无尽的财富。基于此,我们的教学目的就不言可愈了。
基于新课标的要求,本课的教学目标是:
1、通过小组分工合作学习与亲身体念,学习和探索三角形的内角和等于180°;
2、利用三角形的内角和等于180°这个已知条件进行有关角的计算;
3、培养学生自主学习。
二、说教法和学法
在本课题的教法和学法主要体现在以下两方面:
1、突出学生作为学习主体的作用
学生是学习的主体,教学中放手让学生去尝试、去思考,让他们亲身感受知识的来龙去脉、获取知识的认知规律。作为教师,应以学生的发展为立足点,以自主探索为主线,以求异创新为宗旨,采取多媒体辅助教学,尽可能地为学生创设参与的情境,充分调动学生学习的积极性,强化学生的主体地位,不断培养学生自学能力。根据本节课教材内容和编排特点,按照学生认知规律,遵循教师为主导,学生为主体的指导思想,我主要采取操作尝试、观察对比、发现归纳等方法进行教学。
2、让学生在创造中学习,在学习中创造
学会在具体情境中发现问题、提出问题并初步解决问题,体念探索的成功、学习的快乐。通过动手操作、独立思考和小组合作交流活动,完善自己的想法,提高自己的技能;通过动手操作、观察辨析、自主探究,让学生全面、全程地参与到每个教学环节。鼓励学生大胆想象,通过自己的思考和探究,努力尝试去发现和创造,培养他们的创造精神。这也正是“新课标”赋予我们每一个教学工作者的神圣使命!
三、说教学过程
为了激发学生的学习兴趣,我事先邀请两个学生表演两个大小相去甚远的三角形的争辩:都说自己的内角和较大,用夸张搞怪的动作争得唾沫星四溅,以期引起学生的注意力,进而提出问题:到底谁说的正确呢?以“请你做裁判”为名引入课题。
接着进行小组分工合作学习活动,在小组内,每个同学画一个任意三角形,然后分工量角度、登记与求和,并对这些三角形的内角和的度数进行分析、归纳,得出三角形的内角和大约是180°左右的初步结论。接着由教师引导学生综合分析归纳各活动小组的计算结果,得出任何三角形的内角和都等于180°的结论。
为证明这个论断的正确性和加深学生的认识,教师接着组织学生进行“拼一拼”(即把三角形的三个角撕下来拼在一起拼成一个平角)和“折一折”(即先把一个长方形折成一个三角形,再把这个三角形的三个角折成一个平角)这两个实践与操作活动,使学生更进一步确信:三角形的内角和等于180°。同时向学生灌输数学王国里有许许多多的规律和奥秘,有待同学们去努力探索,以激发学生的学习兴趣。
接下来是知识的应用:已知三角形中两个角的度数求第三个角的度数以及其他的相关知识和练习。
四、教学演示
1、两个学生表演争论自己的三角形内角和大些,以让大家做裁判为名引入课题;
2、指导小组合作学习活动,然后综合归纳:三角形的内角和等于180°;
3、引导学生实践操作:拼一拼、折一折(以证明三角形的内角和确实等于180°);
4、练习:判断题
①钝角三角形的内角和大于直角三角形的内角和。
②把一个三角形剪成两个三角形后,每个三角形的度数不再等于180°了。
③直角三角形中的两个锐角和等于90°
5、学习求三角形中角的度数的方法……
《三角形的内角和》说课稿5
今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67页的《三角形的内角和》。根据xxx教授的授课七步法,即说教材,说学情,说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。
一、说教材
“三角形的内角和”是新课标人教版四年级下册第五单元第三节的内容。本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
仔细分析教材的知识结构,它是分成3个部分来呈现的。第一部分是让学生通过量一量、算一算,初步感知三角形的内角和是180°;第二部分是通过拼角的实验来探究并归纳三角形内角和的规律,第三部分是运用规律、解决问题。教材这样编排由发现问题,到验证问题,再到运用规律,充分体现了知识结构的有序性和强烈的数学建模思想,既符合四年级学生的认知规律,又突出了本课教学的重点。
二、说学情
1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与基础技能。
2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。
三、说目标
根据小学数学教学大纲对四年级学生的具体要求,结合教材特点及学生年龄特征,将本节课的目标制定为以下几点:
认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发现"三角形内角和等于180度"的规律。
数学思考:在操作实验中,让学生感受图形的转化过程及数学建模思想,初步培养学生的空间思维观念。
解决问题:在运用知识解决问题的过程中,感受所学知识的重要性,初步培养学生的应用意识。
情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学中,感受生活与数学的密切联系。
将运用各种实验方法探究三角形内角和为180度的过程并掌握规律,运用规律解决实际问题确定为本节课的教学重点。而同时学生难以理解不易掌握的探究规律的全过程则是本节课的教学难点。
四、说模式
“三角形的内角和”一课,知识与技能目标并不难,我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的`形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这一教育理念。
五、说方法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180度。
因为《课程标准》明确指出:“要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力”。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从“猜测――验证”展开学习活动,让学生感受这种重要的数学思维方式。
六、说设计
根据我对教材的把握和对学情的了解,设计了4个环节展开教学。
一、创设情境,发现问题
小游戏:猜一猜藏在信封后面的是什么三角形。
师:我们在猜三角形的时候,看到一个直角,就能断定它一定是直角三角形;看到一个钝角,就能断定他一定是钝角三角形;但只看到一个锐角,就判断不出来是哪种三角形。看来在一个三角形中,只能有一个直角或一个钝角,为什么画不出有两个直角或两个钝角的三角形呢?
三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。
(创设的不是生活中的情境,而是数学化的情境。有的孩子认为一个三角形中可能会有两个钝角,还有的提出等边三角形中可能会有直角,这两个问题显现出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释"不能是这样",而不能解释"为什么不能是这样"。这样引入问题恰好可以利用学生的这种认知冲突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。)
教学进入第二环节——引导探究
二、动手操作,探究规律
1.介绍内角、内角和,并提出猜想
师:我们现在研究三角形的三个角,都是它的内角。
课件演示:三角形的三个内角
师:今天我们就来一起探究《三角形的内角和》。猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
2.确定研究范围
师:研究三角形的内角和,是不是应该包括所有的三角形?只研究黑板上这一个行不行?那就随便画,挨个研究吧。(学生反对)
请你想个办法吧!
(通过引导学生分析,"研究哪几类三角形,就能代表所有的三角形"这个问题,来渗透研究问题要全面,也就是完全归纳法的数学思想)
3.建立模型,解决问题
(一)测量法:
(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。
(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?
(3)记录小组测量结果及讨论结果
实验名称三角形内角和
实验目的探究三角形内角和是多少度。
实验材料尺子剪刀量角器锐角三角形纸片直角三角形纸片钝角三角形纸片
方法一三角形的形状每个内角的度数三个内角的
方法二
我的发现
(4)学生汇报量的方法,师请同学评价这种方法。
师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角形的内角和只能在180°左右,究竟是不是一定就是180度呢,谁还有别的方法?
(二)剪拼法
学生汇报后师小结:能想到这个方法不简单,拼成的看起来像平角,到底是不是平角呢,我们一起来试试看。(教师和学生剪一剪、拼一拼)
师:把三角形的三个内角凑到了一起,拼成了一个大角,角的两条边是不是在一条直线上呢?看起来挺象的,但在操作的过程中难免会产生误差,有时会差一点点,谁还有别的方法确定三角形的内角和一定是180°?
(三)折拼法
学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是180度,都是借助我们学过的平角解决的问题。
这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180度?
(四)演绎推理法
(借助学过的长方形,把一个长方形沿对角线分成两个三角形。)
师:你认为这种方法好不好?我们看看是不是这么回事。
(演示课件:两个完全相同的三角形内角和等于360°,一个三角形内角和等于180°)
师小结:这种方法避免了在剪拼过程中由于操作出现的误差,非常准确的说明了三角形的内角和一定是180度。
(学生通过小组合作的方式学到方法,分享经验,更重要的是领悟到科学研究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。)
学生用的方法会非常多,但它们的思维水平是不平行的。
直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和;
拼角求和法,也就是间接剪拼和折拼这两种方法,都是通过拼成一个特殊角,也就是平角来解决问题;
而演绎推理法,即把两个完全相同的三角形合二为一,或把长方形一分为二,成为两个三角形,这是更深层次的思考。
前两种方法是不完全归纳法,能使我们确定研究的范围只能是180度左右,而不可能是其他任意猜想的度数。最后一种方法具有演绎推理的色彩,把一个长方形沿对角线分成两个完全相同的三角形后,因为两个三角形的内角和是原来长方形的四个内角之和360度,所以一个三角形的内角和就是360°÷2=180°,这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。
本节课引导学生经历从直观到抽象、思维程度从低到高的过程,感悟数学的严谨性。让学生在经历量和拼之后,逐渐会在思维发散的过程中得到集中,集中为分的方法,最后将四边形一分为二,五边形一分为三,六边形一分为四……,又会发现一些新的规律。】
4.验证猜想"三角形的内角和是180度"
5.进一步感受
(1)三角形内角和与三角形大小的关系
教师出示一个小三角形,问学生内角和是多少度?再出示一个大的等腰三角形,问学生它的内角和是多少度?把这个大三角形平均分成两份,每份内角和是多少度?你有什么发现吗?
(2)三角形内角和与三角形形状的关系
(演示不断变化的三角形。)仔细观察,在这个过程中,什么变化了?什么没变化?(三个角的度数都在变化,内角和却总是不变的)你有什么新发现吗?
如果老师把一个角一直往下拽,猜一猜会怎样?
(通过变化的三角形和三个内角的数据显示,进一步感受三角形的内角和与三角形的形状、大小都没有关系;当把三角形的一个角一直向下拽,这个角变成了一个180度的平角,另外两个角变成了0度角,虽然已经不再是三角形,也能从一个侧面证明三角形的内角和是180度,使学生感受到极限的思维方法。)
6.解释课前问题
用内角和的知识解释课前的问题,为什么在三角形中不能有两个直角或钝角。
三、拓展应用,深化创新
本节课的练习由易到难,设计成三个层次。
1、基本练习形成技能
2、变式练习巩固技能
3、综合练习发展提高技能
介绍科学家帕斯卡(出示帕斯卡的资料)
师:帕斯卡为科学作出了巨大的贡献,在我们以后学习的知识中,也有很多是帕斯卡发现和验证的,他12岁就发现三角形内角和是180度,我们同学还没到12岁,看你能不能通过自己的努力也去探索和发现。
多边形边形内角和
(设计求多边形的内角和,旨在把新问题转化归结为求几个三角形内角和的问题上,渗透化归的数学学习方法。)
四、总结全课,全面提升
我们用三角形内角和的知识知道了六边形内角和,那么五边形、七边形……这些多边形的内角和是多少度?有没有什么规律可循,你能用学到的知识和方法去探究问题,相信你还会有一些精彩的发现。
七、说设计
三角形的内角和是180度。
转化的思想:量、撕、剪、折、拼
《三角形的内角和》说课稿6
一、说教材
1、我说课的内容是《九年义务教育人教版》第八册的《三角形的内角和》。
2、教材简析
三角形在平面图形中是简单的,也是最基本的多边形,这部分内容是在学生对三角形已经有了直观的认识,并且对三角形的特性及分类有了一定的了解的基础上进行学习的。通过这部分内容的学习,培养学生的实际操作能力、观察能力、小组合作交流能力、语言表达能力以及抽象的思维能力,为以后学习多边形打好基础。
3、教学目标
根据教材的内容以及学生的知识现状和年龄心理特点,我制定以下教学目标。
(1)知识目标:从实际出发,通过互动学习初步感知三角形的内角和是180度,在此基础上,用实验的方法加以探究。
(2)能力目标:通过教学活动,培养学生动手操作、归纳推理以及抽象概括的能力。
(3)情感目标:使学生经历探究的过程,体会与他人合作交流的'乐趣,学会用数学的眼光去发现问题、解决问题。感受到数学的价值。
4、教学重点与难点。
《三角形内角和》的教学是学生从直观形象到抽象掌握的过程,即学生从感性认识到理性认识的升华,对学生发展类推的能力有着重要的作用。因此,我认为学生通过操作,自主探究三角形的内角和是180度是本节课的重点;采用多种途径证明三角形的内角和等于180度是本节课的难点。
5、教学准备
为了更好的达到教学目标,突出重点,突破难点,我准备以下教具和学具:课件、不同类型的三角形纸片、量角器、剪刀、胶水。
二、说教法学法
根据新课程教材的特点和学生实际情况,教学中以直观教学为主。运用动手观察,分组讨论等多种方法,采用现代化手段结合教材,让学生在“想一想”、“做一做”、“说一说”的自主探索过程发挥学生相互之间的作用,让学生自己动脑、动手、动口中促进思维的发展。培养学生的动手操作能力、语言表达能力和自学能力。
本节课在学生学习方法的引导上尽量体现:
①在具体的情景中,让学生亲身经历发现问题、提出问题、解决问题的过程,体验成功的快乐。
②通过师生、生生互动,探究、合作交流,完善自己的想法,形成自己独特的学习方法。
③通过灵活、有趣和富有创意的练习,提高学生解决问题的能力。
三、学生情况分析
学生在日常生活中接触了很多大小不同的角,但对于三角形内角和等于180度的知识,生活中很少接触,显得比较抽象,对于四年级的学生抽象思维虽然有一定的发展,但依然以形象具体思维为主,分析、综合、归纳、概括能力较弱,有待进一步培养。
四、说教学流程
为了达到本节课的教学目标,我这样设计教学流程:
1、设疑导入。
为了激起学生求知的欲望,再根据本课题的特点和四年级学生心理的特点,我采取了直接设疑导入。具体步骤如下:
(1)让学生汇报三角尺各个内角的度数,并计算出每个三角尺的内角和是多少度。
(2)提出问题:当学生答出三角尺的内角和度数之后,我问:所有的三角形的内角和都是180度吗?学生讨论之后引出课题。
2、动手操作,自主探究。
为创新学生的思维,张扬学生的个性,学生动手量、剪、拼等活动贯穿于整个课堂。我根据四年级学生的心理特点设计了这一环节,其目的是:让学生在活动过程中形成问题意识,从而展开想象,培养学生的问题意识。具体做法是:(1)先让学生思考如何验证三角形的内角和是180度,然后通过讨论交流得到几种验证方法。(2)让学生利用量角器量出学具三角形纸片的各个内角的度数,再求出三角形的内角和,初步感知三角形的内角和等于180度。(3)让学生利用剪拼的方法感知三角形的三个内角拼在一起是一个平角,从而得到结论。
3、巩固新知
本环节我设计了不同类型的习题。有操作题,计算题,画图题,拼角题等等。其目的是:通过这一环节,让学生掌握、理解三角形的内角和等于180度,并把所学知识回归于生活实践,从而达到情感、态度、价值观这一教学目标的实现。
五、板书设计
板书是课堂教学语言的一种表现形式,它具有启发性、指导性和应用性。精巧的板书设计有“引”和“导”的功能,“引”是引学生之思,“导”是导学生之路。
《三角形的内角和》说课稿7
大家好!
今天我说课的题目是《三角形的内角》,我将从如下方面作出说明。
一、教材分析
(一)教学内容的地位
本节课是在研究了三角形的有关概念和学生在对 “三角形的内角和等于1800 ”有感性认识的基础上,对该定理进行推理论证。它是进一步研究三角形及其它图形的重要基础,更是研究 多边形问题转化的关键点;此外,在它的证明中第一次引入了辅助线,而辅助线又是解决几何问题的一种重要工具,因此本节是本章的一个重点。
(二)教学重点、难点:
三角形内角和等于180度,是三角形的一条重要性质,有着广泛的应用。虽然学生在小学已经知道这一结论,但没有从理论的角度进行推理论证,因此三角形内角和等于180度的证明及应用是本节课的重点。
另外,由于学生还没有正 式学习几何证明,而三角形内角和等于180度的证明难度又较大,因此证明三角形内角和等于180度也是本节课的难点。
突破难点的关键:让学生通过动手实践获得感性认识,将实物图形抽象转化为几何图形得出所需辅助线。
二.教学目标
基于以上分析和数学课程标准的要求,我制定了本节课的教学目标,下面我从以下三个方面进行说明。
(一)知识与技能目标:
会用平行线的性质与平角的定义证明三角形的内角和等于1800,能用三角形内角和等于180度进行角度计算和简单推理,并初步学会利用辅助线解决问题,体会转化思想在解决问题中的应用。
(二)过程与方法目标:
经历拼图试验、合作交流、推理论证的过程,体现在“做中学”,发展学生的合 情推理能力和逻辑思维能力。
(三)情感、态度价值观目标:
通过操作、交流、探究、表述、推理等活动培养学生的合作精神,体会数学知识内在的联系与严谨性,鼓励学生大胆质疑,敢于提出不同见解,培养学生良好的学习习惯。
三、学情分析
七年级学生的特点是模仿力强,喜欢动手,思维活跃,但思维往往依赖于直观具体的形象,而学生在小学已通过量、拼、折等实验的方法得出了三角形内角和等于180度这一结论,只是没有从理论的'角度去研究它,学生现在已具备了简单说理的能力,同时已学习了平行线的性质和判定及平角的定义,这就为学生自主探究,动手实验,讨论交流、尝试证明做好了准备。
四、教学方法与学法指导:
根据新课程标准的要求,学习活动应体现学生身心发展特点,应有利于引导学生主动探索和发现,因此,我采用了动手操作— 观察实验—猜想论证的探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体 现了教师是教学活动的组织者、引导者、合作 者,学生才是学习的主体。并教给学生通过动手实验、观察思考、抽象概括从而获得知识的学习方法,培养他们利用旧知识获取新知识的能力。
五.教学活动程序:(设计为六个环节:)
我结合七年级学生的年龄特点,采用了“1.情景激趣 引出课题”的环节引入课题,这样可以激发学生学习兴趣和求知欲,为探索新知识创造一个最佳的心理和认知环境。让学生说明三角形内角和是180度,是本节课的重点、难点,为此我设计了“2.自主探索 动手实验 ”“3.讨论交流 尝试证明”以下两个环节。 定理的掌握必须要有训练作为依托,因此我设计了“4.应用新知 巩固提高。为了培养学生学习数学的兴趣,在竞争中体验成功的快乐。我设计了“5. ‘渔技’大比拼”这4道习题既含盖了方程的思想又包括了整体的思想,还让学生提前感受到了反证法的方法,有利于学生掌握重要的数学思想方法。回顾使人记忆深刻,反思促人进步。在“6.畅谈体会 课外延伸 ”这一环节我选择从三个方面,让学生进行 回顾反思和作业补充。我认为学生要从一堂课中得到收获不仅仅是知识上的,更重要的是让他们通过这种方式,获取比知 识本身更重要的东西,那就是数学方法,数学能力以及对数学的积极情感。
六.设计说明与教学反思
本节课的设计从学生已有的知识经验出发,遵循学生的认知规律,将实物拼图与说理论证有机结合,在动手操作,合情推理的基础上进行严密的推理论证,使学生对知识的认识从感性逐步上升到理性。以问题为载体,在探究解决问题策略的过程中学会知识、感悟方法、训练思维、发展能力,练习的设计起点低、范围广、有梯度,以满足不同程度学生的需要。树立大数学观 ,把课堂探究 活动延伸到课外,在课与课之间,新旧知识之间,数学与生活之间搭建桥梁,为学生长远的发展奠基。
本节课的教学在一种轻松愉快的氛围中完成,大部分学生能参与活动中,突出了重点 ,突破了难点。完成了教学任务。取得了较好的教学效果。练习除注重基础外 并进行了延伸。拓宽了学生思维的空间。美中不足的是,还有少部分学习基础较差的学生可能没有在参与活动中去思考,收获不大。
新课程的教学评价对老师和学生都提出了新的要求 :因此整个教学过程中我对学生的如下方面作出了多元化的关注:1、关注学生探索结论、分析思路和方法的过程。2、关注学生说理的能力和水平。3、关注学生参与教学活动的程度。以期待人人都能学有 所得,不同的学生在课堂上得到不同的发展。
以上是我对这节课的初浅认识,希望得能到各位专家、各位老师的指导,谢谢大家!
《三角形的内角和》说课稿8
一、 说教材
“三角形的内角和”是九年义务教育六年制小学四年级下册第六单元第3节的内容。“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。
为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识目标:
知道三角形内角和是180°。
2、 能力目标:
①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。
②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:
①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;
②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:
三角形内角和是180°的'实际应用。
教学难点:
探索三角形的内角和是180°
二、说教法
新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。
三、说学法
学法是学生再生知识的法宝。为了使在整节课的探索活动中,我的设计有独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。
“将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者,落实学生的主体地位,促进学生的自主学习和探究。”秉着这样的指导思想,在整个教学设计上力求充分体现“以学生发展为本”教育理念,将教学思路拟定为“谈话激趣设疑导入—— 猜想——验证{自主探究}——巩固内化——拓展延伸”,努力构建探索型的课堂教学模式。
四、说教学程序
1、 谈话激趣设疑导入:
教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我就以两个三角形的争论为的知识“三为切入点,让学生来评理,当一回公正的法官{激趣},你认为哪一个三角形的内角和大呢?用什么方法知道谁大谁小呢{设疑}?这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。
2、 猜想:
学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想,形成统一的认识,使后边的探索和验证活动有了明确的目标。
3、 验证{自主探索}:
学生形成统一的猜想{即三角形的内角和等于180度}后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,不是随意放开让学生盲目的操作,而是把放和引有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——折一折——看一看。
4、 巩固内化:
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用,如:设计让学生用所学的知识说一说三角形内角和与三角形的大小有关系吗,又如:师说两个角度,学生求第三个角,从中培养学生应用意识和解决问题的能力;让学生判断有两个直角三角形拼成的三角形的内角和的度数,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
5、 拓展创新:
数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我设计了这样一道题目:学了三角形的内角和后,你知道五边形、六边形的内角和是多少度吗?请小组合作选择一个图形求内角和。这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。
总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
《三角形的内角和》说课稿9
说教材
《三角形的内角和》是人教版小学数学四年级下册第五单元的内容。“三角形的内角和”是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的根底。本节课是在学生学过角的度量、三角形的特征和分类等学问的根底上进展教学的,学生已经具备肯定的关于三角形的熟悉的直接阅历,也已具备了一些相应的三角形学问和技能,这为感受、理解、抽象“三角形的内角和”的规律,打下了坚实的根底。
说学情
一节胜利的课,不仅在于对教材的把握,还有对学生的讨论。四年级的学生正处于详细形象思维为主导的阶段,他们解决问题的力量很强,但自控力稍差。因此本节课将注意引导学生动脑思索,动手实践,打破以学问传授为主的传统数学课堂模式,采纳敏捷多样的教学方法,牢牢将学生的留意力集中在课堂中。
说教学目标
依据新课程的要求及教材的编写特点,充分考虑到四年级学生的思维水平,我确立如下三维教学目标:
学问与技能目标:通过量、剪、拼等活动发觉、证明三角形内角和是180°,并会应用这一学问解决生活中简洁的实际问题。
过程与方法目标:经受观看、猜测、验证的过程,提升自身动手操作及推理、归纳总结的力量。
情感态度价值观目标:在参加学习的过程中,感受数学的`魅力,体验胜利的喜悦,激发学习数学的兴趣。
说教学重难点
依据教学目标,我确定了本节课的重点和难点。重点为三角形内角和定理,而三角形内角和定理推理的过程为本节课的难点。
说教法
为了更好地突出重点,突破难点,坚持“以学生为主体,以教师为主导”的原则,依据学生的心理进展规律,我将采纳启发式教学法,引导学生利用已有的学问阅历去探究新知,并在探究过程中把握本节重难点,同时辅之以多媒体教学设备,直观地呈现教学内容。
我将引导学生采纳自主探究,合作沟通的方式进展学习,通过动手动脑动口来把握本节课的教学重难点。
说教学内容
为了更好地完本钱节课的教学内容,突出重点突破难点,我设计了以下几个教学环节:
(一)创设情境,导入新课
为了引入新课,调动学生的学习兴趣,一开头上课我便用多媒体播放有关三角形内角和情境视频:在图形的王国中,有一天,三角形家族里为“三角形内角和的大小”爆发了一场剧烈的争吵。钝角三角形说“我的钝角大,我的内角和肯定比你们的内角和大”。锐角三角形也不示弱“你虽然有一个钝角,可是其它两个角都很小,而我的三个角都不是很小,所以我的内角和比你大”。直角三角形说“别争了,我们的内角和是一样大的,由于三角形的内角和是180°”。依据视频中三角形的对话,顺势引出题目——三角形的内角和。
多媒体课件展现有关三角形内角和的内容,激发学生深厚的学习兴趣和求知欲望,快速的进入学习高潮。
(二)自主探究,感受新知
首先让学生画几个不同类型的三角形。然后同桌相互量一量,算一算,三角形3个内角的和各是多少度?通过测量,学生可以发觉三角形的内角和是180°。
接着我会提出一个问题是不是全部的三角形的内角和都是180°,如何进展验证你的结论呢?接下来我会让学生分小组争论,针对学生消失的问题,我赐予指导,争论过后,请同学汇报,鼓舞学生用自己的语言表达,无论学生答复的全面与否,都赐予积极的评价,其他同学仔细倾听后做出推断,进展补充,提高学生的留意力。
通过小组之间的争论,引导学生采纳剪拼的方法进展验证,先把一个三角形的三个角剪下来,再拼一拼,拼成一个平角。
最终引导学生总结出三角形的内角和是180°。
以上教学活动采纳让学生主动探究、小组合作沟通的学习方式,使学生充分经受数学学习的全过程,表达以生为本的教学理念。学生在全程参加中不仅把握新知进展力量培育的推理力量,又熬炼学生的语言表达力量和沟通力量,同时让学生体验数学与生活的严密联系。
(三)稳固练习,强化学问
我利用小学生好胜心强的特点,以闯关的形式将课本的习题呈现在多媒体上来稳固本节课所学的学问,这样设计能增加数学的趣味性,激发学生的学习兴趣,并查看他们学问的把握状况。
(四)课堂小结
我将此环节分为两局部。第一局部是以学生为主体的学问性总结,让学生畅谈本节课的感受和收获,准时了解学生的学习状况和情感体验。其次局部是以教师为主体的情感性总结,我会对学生的表现予以表扬和鼓励,激发学生的学习兴趣,增加学习自信念。
(五)布置作业
针对学生的年龄特点,我会让学生在课下和家长沟通今日的收获和感受,从而让家长了解学生在校的学习状况,并促进学生与家长的沟通。
说板书设计
一个好的板书应当是简洁明白干净美观,重难点突出,能够对学生理解本节学问有肯定的强化作用,因此我的板书是这样设计的。
《三角形的内角和》说课稿10
一、说教材
“三角形的内角和”是义务教育课程标准实验教科书数学四年级下册85页内容。经过前几节课的学习,学生已经学习了有关三角形的知识。
教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识目标:知道三角形内角和是180°。
2、能力目标:
①通过学生算、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。
②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:
①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:三角形内角和是180°的实际应用。
教学难点:探索三角形的内角和是180°。
二、说教法
在教学中,我主要采用激趣法、实验法、直观演示法、启发式教学,以观察法和练习法为辅助教学,(以学生为主体,教师为主导。
新课程标准的基本理念就是要让学生“人人学有价值的数学”。)强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者。
在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“量一量——算一算——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。
三、说学法
在学习中,以学生自己学习为主,充分开发学生的思维,通过实验观察,培养学生动手、动脑、分析、比较、综合的能力。在整节课的探索活动中,我设计有独立活动、分小组活动。在具体活动中,我让学生自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数和。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。
四、说教学程序
1、谈话激趣设疑导入:
教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。刚开始上课,我设计了两个三角形哪一个三角形的内角和大,用什么方法知道谁大谁小呢{设疑},这样的问题。能最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。学生有了探索的愿望和兴趣,可是不能没有目标的去探索。
2、验证自主探索:
把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动,即既验证三角形的内角和是否是180度?在活动中,把放开和引导有机的结合,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量——拼一拼——折一折。
3、巩固内化:
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我非常注意将数学的.思考融入不同层次的练习之中,很好的发挥练习的作用,练习题的设计有易到难,使学生在图形变化的过程中掌握知识,培养思维的灵活性,从中发展学生的空间观念和空间想象能力。这些练习设计目的明确,针对性强,使学生不但巩固了知识,更重要的是数学思维得到不断的发展。
4、拓展创新:
数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我设计了这样一道题目:学了三角形的内角和后,你知道五边形、六边形的内角和是多少度吗?请小组合作选择一个图形求内角和。这道题通过对本节课所学知识的迁移就可以完成,既能对学生进行思维训练,又能培养学生应用知识的能力,更能培养学生的创新意识和创新精神。
总之,本节课教学活动中我力求充分体现以下特点:以学生发展为本,以学生为主体,思维为主线的思想;充分关注学生的自主探究与合作交流;练习体现了层次性,知识技能得于落实和发展。教师是学生学习的组织者、引导者、合作者,而非知识的灌输者,因而对一个问题的解决不是要教师将现成的方法传授给学生,而是教给学生解决问题的策略,给学生一把在知识的海洋中行舟的桨,让学生在积极思考,大胆尝试,主动探索中,获取成功并体验成功的喜悦。
《三角形的内角和》说课稿11
各位老师:
你们好,我是来应聘XX数学老师的X号考生,我今天抽到的试讲题目是《三角形的内角和》,下面开始我的试讲。
同学们,上节课我们已经学习了三角形的基本形状,那么同学们一起告诉老师我们都学了什么形状的三角形啊?对,非常好,有钝角三角形、直角三角形和锐角三角形。大家回答的很好,说明上节课掌握的很好,那今天老师想让大家画个特殊点的三角形,好不好?今天我请同学们在纸上画一个有两个直角的三角形,画好了请举手哦。有没有画好呀?没有,大家看黑板上老师画的,是不是和你们画出来的一样?为什么我们没办法画出有两个直角的三角形呢?肯定里面有秘密,大家跟着老师一起来研究一下好不好?
大家拿出事先准备好的三角板和量角器吧,同学们,你们现在用量角器来测量一下每一个三角形的角的度数,待会老师会进行统计。(转身画两个三角板模型),测好了吧,下面请靠窗的.同学告诉老师你的测量答案。30度60度90度,非常好,那另一个呢?45度45度和90度,非常精确,请坐,相信咱们其他同学也一定能够测量出来。那么大家仔细观察一下,这两组数据有没有什么相似点。有的同学说都有个九十度,很好,还有呢,很好!有的同学发现了,说这三个角加起来是180度,非常棒。也就是这两个三角形内角和是180度。
可是是不是所有内角和都是180度啊,同学们,你们自己分别画一个不同的锐角、钝角、直角三角形,并且测量每个内角度数,并报给老师内角和。好,请第一排的女生起来回答,你的三个内角和是多少?179,180,180很好,大家知道为什么第一个不是吗?对,是因为毕竟有误差的存在,很棒。
下面大家按以前的安排分成六个组,交给你们一个任务,你们讨论一下,怎么来验证我们刚刚得出的这个结论呢?给大家十分钟时间来讨论。
好,讨论结束,来,哪个组派个代表来回答一下?请,哦,你说用量角器测量,恩不错,可是用量角器的话,有可能存在误差对不对?那还有没有更好的方法呢?
老师看到很多同学都皱起了眉头,那老师来给大家一点小提示, 我们试着把三角形的三个角剪下来拼拼看。啊,很棒我看到前排的同学把三个角拼成了一个平角,大家知道平角多少度?180。那下面,大家可以动动手,任意再画几个三角形,用刚刚的方法看看能不能拼成一个平角?好,大家都非常积极,通过刚刚的验证,我们可以肯定:三角形的内角和是180度。
那接下来我们回到咱们刚开始上课的问题:为什么不能画一个有两个直角的三角形?谁愿意给大家说说?好,你举手最快,请你来说说。嗯,很好,因为有两个九十度的角加起来就是180度了, 不可能画出一个三角形,太棒了。请坐。
大家看大屏幕,这里有两个三角形,老师给分别给大家标出了其中两个角的度数,有没有同学告诉我剩下的度数啊?赶紧开动脑筋算算看。好,算好的同学大声告诉老师,第一个是30度,很棒。第二个50度,很棒,算的非常准确,看来大家上课都非常认真。
这堂课我们就上到这里,请大家回去完成课后习题1到3。好,下课!
《三角形的内角和》说课稿12
一、 说教材
三角形的内角和是北师大版四年级下册第二单元的内容。三角形的内角和是三角形的一个重要性质,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。
二、说学情
本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识和技能,这为感受、理解、抽象三角形的内角和的规律,打下了坚实的基础。
因此,我确定本节课的教学目标是:
教学目标:
知识与技能:通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180。知道三角形两个角的度数,能求出第三个角的度数。能应用三角形内角和的性质解决一些简单的问题。
过程与方法:
发展学生动手操作、观察比较和抽象概括的能力。
情感、态度与价值观:体验数学活动的探索乐趣,体会研究数学问题的思想方法。
教学重点:
学生经历探究三角形内角和的全过程并归纳概括三角形内角和等于180。
教学难点:
三角形内角和的探索与验证,对不同探究方法的指导和学生对规律的灵活应用。
三、说教法、学法
整个教学将体现以人为本,先放后扶的教学策略。放,不是漫无目的的放,而是为学生提供足够的探究规律的材料和时间,放手让学生自主学习,合作探究;扶,则是根据学生的不同探究方法和出现的错误,给予恰当指导,引导学生归纳概括出规律。
《课程标准》明确指出:要结合有关内容的教学,引导学生进行观察、操作、猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作、主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。在教学中,学生通过测量、拼折、验证等方式确定三角形内角的度数和。这样,既培养了观察能力和归纳概括能力,又体现了动手实践、合作交流,自主探索的学习方式,同时也培养了探索能力和创新精神。
四、说教学过程
基于以上分析,我以猜测、验证、结论和应用四个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
第一, 猜测。
通过出示一个角形,让学生说知道三角形的知识来引出三角形的内角的概念,让学生自由猜测,三角形内角和是多少?引出课题,以疑激思。
第二,动手操作,探究新知。
动手实践,自主探究,是学生学习数学的重要方式,新课程的一个重要理念就是提倡学生做数学用亲身体验的方式来经历数学,探究数学,这要求老师首先为学生提供充分的研究材料,以及充裕的时间,保证学生能真正地试验,操作和探索。
这一环节我设计为以下三步:
1、操作感知。
组织学生通过算一算初步感知三角形的内角和。根据学生特点,为了节约学生上课的时间,作为预习作业,我提前让学生在家里自制钝角、锐角、直角三角形,并测量出每个角的度数,写在三角形对应的角上,也填在书上的表格里。这时直接让学生计算,学生汇报计算结果,不同的学生可能会有不同的结果,有可能大于180或小于180甚至等于180,只要相对合理(允许一点误差)都给与肯定。这时可引导学生得出结论(强调在排除测量误差的前提下):三角形的内角和是180度。在这一过程中,学生有困惑,有疑问,而正是这些困惑激发了学生更强的探究欲望,正是这些疑问,使得合作成为学生的内在需要。
2、小组合作。
针对探究过程中不同思维能力的学生,要做到因材施教。对于得出结论的学生要鼓励他们思考新的方法,对于无法下手的学生,要启发他们知道三角形的内角和,我们可以把角合起来看是多少?能用什么方法将三个角合起来。在探究学习中,老师只是起一个引导者的作用,引导学生不断地深入探究,尽可能用多种合理的方法,验证结论。
3、交流反馈,得出结论。
学生完成探究活动之后,在有亲身体验的.基础上,我将选择不同方法的代表,在展示平台上展示自己的探究过程,并说说自己是怎样想的。我关注的不是学生最后论证的结果,而是学生思维的过程。学生可能通过:拼一拼、折一折、画一画的方法,验证得出三角形的内角和是180度,并通过观察对比各组所用的三角形,是不同类型的而且大小不同的,发现这一规律是具有普遍性的,对于任意三角形都是适用。在学生探究之后,我用课件重新演示了3种方法,让学生有一个系统的知识体系。
第三是灵活应用,拓展延伸。
揭示规律之后,学生要掌握知识,形成技能技巧,就要通过解答实际问题的练习来巩固内化。根据学生能力的不同,我将练习分为以下3个层次。
1、基础练习。要求学生利用三角形内角和是180度在三角形内已知两个角,求第三个角。由于学生空间思维能力的局限,我将先出示有具体图形的题目,再出示文字叙述题。在这之间指导学生注意一题多解。
2、提高练习。如已知一个直角三角形的一个角的度数,求另一个角的度数;已知一个等腰三角形的顶角或底角的度数,求底角或顶角的度数。
3、拓展练习。针对不同思维能力的学生,我设计的思考题是要求学生应用三角形内角和是180的规律,求多边形的内角和。我的目的不仅仅是为了让学生去求解多边形的内角和,更重要的是为了让学生灵活应用知识点,培养学生的空间思维能力。
这样安排可以兼顾不同能力的学生,在保证基本教学要求的同时,尽量满足学生的学习需要,启发学生的思维活动。
本节课通过这样的设计,学生全身心投入到数学探究互动中去,学生不仅学到科学探究的方法,而体验到探索的甘苦,领略成功的喜悦,学生在探索中学习,在探索中发现,在探索中成长,最终实现可持续性发展。
板书:
三角形的内角和
猜测验证结论应用
三角形内角和等于180。
《三角形的内角和》说课稿13
一、说教材
“三角形的内角和”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形内角之间的关系,也是进一步学习几何的基础。经过第一学段以及本单元的学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识和技能,这为感受、理解、抽象“三角形的内角和”的概念,打下了坚实的基础。
为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,教材在呈现教学内容时,不但重视体现知识形成的过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活的组织教学提供了清晰的思路。主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让学生通过探索、实验、发现、讨论、交流等获得。从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:
1、知识目标:知道三角形内角和是180°。
2、能力目标:①通过学生猜、测、拼、折、观察等活动,培养学生探索、发现能力、观察能力和动手操作能力。②能运用三角形内角和是180°这一规律解决实际问题。
3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:三角形内角和是180°的实际应用。
教学难点:探索三角形的内角和是180°
{二、教学用具}
本节课采用课件、不同形状的三角形、量件器等。
三、说教法
新课程标准的基本理念就是要让学生“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。因此,我运用“猜一猜——量一量——拼—拼——折一折——看一看……”的教学法,让学生知道身边的数学问题随处可见,能用自己所学的知识解决生活当中的事情,培养学生的发散思维,进一步激发学生学习数学的热情。
四、说学法
学法是学生再生知识的法宝。为了使学生能在整节课的探索活动中积极主动参与动手实践、自主探究、合作交流的学习活动,我设计了独立活动、二人活动及分小组活动。在具体活动中,我让学生大胆猜想,自主探索三角形的内角和是多少度?再通过测量、拼折、验证等方式让学生确定三角形内角的度数是18度。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神。
五、说教学流程
“将课堂还给学生,让课堂焕发生命的活力”,“努力营造学生在教学活动中独立自主学习的时间和空间,使他们成为课堂教学中重要的参与者与创造者。在整个教学设计上力求充分体现“以学生发展为本”教育理念,我将教学流程拟定为“设疑导入——大胆猜想——动手验证——巩固内化&mdash
;—拓展延伸”,努力构建探索型的课堂教学模式。
1、设疑导入
教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。伊始上课,我想以前面学过的知识“三角形的分类”为切入点,给出不同形状的三角形,让学生说出它们的名称,有锐角三角形、直角三角形、钝角三角形,随后我提出挑战,让学生画一个很特殊的三角形:即含有两个直角的三角形,结果是可想而知的,学生是不可能画出来的,想知道为什么呢?学了“三角形内角和”我们就知道了。板书课题:三角形内角和。这样,我在很短的时间内最大限度的激发学生探究数学的愿望和兴趣,为学生进一步学习打好基础。
2、大胆猜想
学生有了探索的愿望和兴趣,可是不能没有目标的去探索,那样只会事倍功半,甚至没有结果,这时我让学生大胆猜想:为什么不能画出有两个直角的三角形呢?猜一猜三角形的内角和”大约是多少度?学生猜想时我在黑板上书写几个比较接近的度数。这样形成统一的认识,使后边的探索和验证活动有了明确的目标。
3、动手验证
学生形成统一的猜想后,我就把课堂大量的时间和空间留给学生,让他们开展有针对性的数学探究活动{既验证三角形的内角和是否是180度?},在活动中,我既不像过去那样告诉学生怎么动手去验证,让学生做机械的操作员,也不是随意放开让学生盲目的操作,我想把放和引有机的结合起来,鼓励学生积极开动脑筋,从不同的途径探索解决问题的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分析、推理和想象活动过程中解决问题,发展空间观念和论证推理能力。具体过程为:量一量量不同形状的三角形的三个内角拼一拼将三角形的`三个内角可以拼成一个什么角,折一折将三角形的三个内角可以折成一个什么角,看一看无论是量、还是拼、或者是折我们得到的三角形内角和都是多少度?。
4、巩固内化:
俗话说的好:“熟能生巧”。数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好的思维品质也要通过一定的思考练习,课程标准提倡练习的有效性。对此,我力争注意将数学的思考融入不同层次的练习之中,很好的发挥练习的作用。
1、释疑练习:让学生用所学的知识说一说为什么画不出含有两个直角的三角形?目的是解释课前的设疑,从中培养学生应用意识和解决问题的能力;
2、基本练习:巩固本节课所学的知识。
3、变式练习:目的是是学生将知识转化成能力。
4、综合练习:目的是让学生感受数学与生活的联系,培养运用所学知识解决实际问题的能力。
5、拓展创新:力求体现“不同的人在数学上得到不同的发展”这一新课程理念。
数学具有严密的逻辑性和抽象性。而学生学习内容的呈现是从简单到复杂,思维方式是从具体到抽象的一个循序渐进的过程,前面学习的知识往往是后面进一步学习的基础。要培养学生思维的灵活性,可以先让学生学会对知识的迁移。本课最后,我给学生出了一道通过对本节课所学知识的迁移就可以完成的问题,对学生进行思维训练,既培养了学生应用知识的能力,又培养了学生的创新意识和创新精神。
总之,在本节课教学活动中我力求充分体现一下特点:以学生发展为本,以学生为主体,以思维训练为主线的教学思想;充分关注学生的自主探究与合作交流,注重培养学生的创新意识和实践能力。
《三角形的内角和》说课稿14
一,说教材
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1。通过量一量;算一算;拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2。通过把三角形的内角和转化为平角进行探究实验,渗透转化;的数学思想。
3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是内角的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二,说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
引入
呈现情境:出示多个已学的平面图形,让学生认识什么是内角;。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。
【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的'大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的横空出现
猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系
起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用角的大小与边的长短无关的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
(五)应用
1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
《三角形的内角和》说课稿15
各位老师:
下午好!
今天我们相聚在云周小学,共同行走在“生本”课堂的道路上。作为一名新教师,我也是抱着一种学习的心态来评课。应老师的这节《三角形内角和》,无论是他的设计,还是他对课的演绎,都充分体现了“以生为本”的理念。
这节课有以下几点值得我们去探讨:
一、学生的起点在哪里?
既然是生本课堂,那我们在备课之前,就要做到备学生,找起点。新课导入时,应老师花了一些时间复习三角形的分类和平角的知识,充分唤醒学生对三角形的认知,分类是为了抓住三角形的本质,缩小验证时选材的范围,而三个角拼成一个平角的练习,则为学生之后的验证搭好一个脚手架,降低他们学习的难度。但从课堂上来看,部分学生已经知道三角形内角和是180°,而且当出示平角那道题时,学生立刻说出180°是三角形内角和,而没有想到平角,这需要我们来反思这个环节的必要性。为什么学生会联想到内角和呢?我想可能是应老师在此之前询问了:“三角形有几个角?如果告诉你两个角,会求第三个角吗?”同样是为了复习,却产生了负迁移,反而没有达成预定的效果。再此之后又介绍“内角”等概念,这样难免有回课嫌疑。课堂选材要有取舍,我觉得这个环节可以删除。
二、既然量正确了,为什么还要拼?
有位老师说过:“数学老师和语文老师就是不一样,语文老师会发散,将一句简单的话复杂化;而数学老师会收敛,将复杂的例题、方法融汇成一句话。”所以数学课上必须让学生亲身经历知识的发展过程。在探究过程中,应老师放手让学生想方法验证猜想,学生首先会想到量出内角并相加,从反馈来看,学生量得的结果都是180°,既然得到想要的结果了,再拼不是多此一举了吗?课堂上应老师也对学生的精确结果赶到意外,究竟量角的误差在哪里?
学生的心里总是不敢犯错的,这就会让很多数据失真。其实误差不仅仅只是存在于内角总和,还存在于每个内角的度数。课堂反馈上,对于同样的锐角,学生量出了“60°,40°,80°和55°,45°,80°”同样一个三角形,为什么内角度数会有所不同,此时通过对比,让学生明白量角时有误差,容易改变角度,看来量不是最准确的方法,而撕角拼角则不会改变它的大小。我想这就是我们为什么将力气花在剪拼法上了。
三、如何凸显内角和的本质?
通过各种方法的验证,我们知道了三角形的内角和是180°,难道点到即止吗?应老师巧妙借助几何画板,改变三角形的形状和大小,并引导学生观察什么变了,什么不变?这一简单的演示却寓意深远,无论形状大小如何改变,三角形内角和永远是180°,这也从另一个角度说明了三角形为什么具有稳定性,只要确定两个角,第三个角永远的唯一的。结论只是静态的文字,而课件是动态的演示,这种动静结合的.美渲染了我们的眼球,同时也凸显了内角和的本质,让结论更具说服力。
四、练习设计的创新点在哪里?
练习是一节课的精髓,这节课的练习主要分三层,一算二辨三延伸。应老师在练习的设计上很注重一材多用,而且非常有坡度性,这也是本节课最大的亮点。在“只知道一个角”的环节中,应老师设计了只露出一个70°角的等腰三角形,求另两个角。大多数学生只想到一种情况后,便沾沾自喜,不会更深入思考问题,因为在学生潜意识中总认为正确答案只有一个。这也给了我们一个启示,关注答案,更要关注学生解题的意识,引导学生从多维角度思考问题。
这里我有一个的想法,这个想法也来源于作业本的习题。能不能把70°角改成40°,当学生算出答案后,询问学生,如果按角分,这是一个什么三角形?沟通按角分和按边分三角形的横向联系,在练习中温故而知新。再设计已知一个角是140°的等腰三角形的练习,打破学生的思维定势,并不是所有等腰三角形都有两种可能。之后再询问:“一个角都不知道,如何求内角。”让练习更具层次性。
应老师这节课还有很多值得我们学习的地方,比如应老师自如的教态、亲切的语言让学生倍感温暖;精心准备的教具让课堂不再沉闷;精彩的练习让知识落到实处。以上是我对这节课一些不成熟的想法,希望各位老师给予批评和指正。
【《三角形的内角和》说课稿】相关文章:
《三角形内角和》说课稿07-06
《三角形内角和》说课稿06-09
《三角形的内角和》说课稿05-05
三角形的内角和说课稿05-30
《三角形内角和》说课稿06-10
《三角形内角和》说课稿 15篇03-07
《三角形内角和》说课稿15篇07-13
《三角形内角和》说课稿(精选17篇)12-01
三角形的内角和说课稿(精选23篇)03-31