作为一名老师,通常需要用到说课稿来辅助教学,是说课取得成功的前提。如何把说课稿做到重点突出呢?下面是小编整理的《对数函数》说课稿,仅供参考,希望能够帮助到大家。
《对数函数》说课稿 1
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。
(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。
3、教学重点与难点
重点:对数函数的图像与性质。
难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化。
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透数形结合、分类讨论等数学思想方法。
(4)用探究性教学、提问式教学和分层教学
2、教学手段:
计算机多媒体辅助教学。
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。
(2)主动式学习:学生自己归纳得出对数函数的图像与性质。
四、说教程
1、温故知新
我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。
设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
2、探求新知
研究对数函数的图像与性质。关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的.图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质。
在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)、(2)进行分类表示,培养学生的分类意识。
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。
3、课堂研究,巩固应用
例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解。
例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况。
例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。
4、巩固练习
使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。
5、课堂小结
引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:
(1)掌握对数函数的图像与性质,体会数形结合的思想方法;
(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。
6、作业:p97习题3,4,5
选做题6题。
《对数函数》说课稿 2
一、说教材
1、地位和作用
本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。
2、教学目标的确定及依据
依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:
(1)理解对数函数的概念、掌握对数函数的图象和性质。
(2)培养学生自主学习、综合归纳、数形结合的能力。
(3)培养学生用类比方法探索研究数学问题的素养;
(4)培养学生对待知识的科学态度、勇于探索和创新的精神。
(5)在民主、和谐的教学气氛中,促进师生的情感交流。
3、教学重点、难点及关键
重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。
难点:底数a对对数函数的图象和性质的影响;
关键:对数函数与指数函数的类比教学
由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。
二、说教法
教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:
(1)启发引导学生思考、分析、实验、探索、归纳。
(2)采用"从特殊到一般"、"从具体到抽象"的方法。
(3)体现"对比联系"、"数形结合"及"分类讨论"的`思想方法。
(4)投影仪演示法。
在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。
三、说学法
教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)对照比较学习法:学习对数函数,处处与指数函数相对照。
(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。
(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。
(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。
这样可发挥学生的主观能动性,有利于提高学生的各种能力。
四、说教程
在认真分析教材、教法、学法的基础上,设计教学过程如下:
(一)创设问题情景、提出问题
在某细胞分裂过程中,细胞个数y是分裂次数x的函数,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。
问题一:这是一个怎样的函数模型类型呢?
设计意图:复习指数函数
问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?
设计意图:为了引出对数函数
问题三:在关系式每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?
设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。
(二)意义建构:
1、对数函数的概念:
同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为,我们也可以把它改为对数式,,其中x年也可以看作物质剩余量y的函数,()可见这样的问题在现实生活中还是不少的。
设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0、84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。
但在习惯上,我们用x表示自变量,用y表示函数值
问题一:你能把以上两个函数表示出来吗?
问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)
问题三:在中,a有什么限制条件吗?请结合指数式给以解释。
问题四:你能根据指数函数的定义给出对数函数的定义吗?
问题五:与中的x,y的相同之处是什么?不同之处是什么?
问题六:与中的x,y的相同之处是什么?不同之处是什么?
设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域
2、对数函数的图象与性质
问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?
(提示学生进行类比学习)
合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系。
合作探究2:当函数与的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)
合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。
(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)
问题1:对数函数()是否具有奇偶性,为什么?
问题2:对数函数(),当时,x取何值,y0,x取何值,y,当呢?
问题3:对数式的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。
知识拓展:函数称为的反函数,反之,函数也称为的反函数。一般地,如果函数存在反函数,那么它的反函数记作为
(三)课堂小结
由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)
《对数函数》说课稿 3
一、教学背景
1、教材分析
《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。
2、学情分析
刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。
基于以上分析,我制定如下教学目标及重、难点:
3、教学目标
知识与技能:
初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。
过程与方法:
经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。
情感态度与价值观:
培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。
4、教学重、难点
重点:理解对数函数的概念,掌握对数函数的图象及性质。
难点:由图象探究函数性质,应用性质解决具体问题。
二、教学方法及手段
1、教法
根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的.乐趣。
2、学法
(1)类比学习:通过指数函数类比学习对数函数。
(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。
3、教学手段
采用多媒体辅助教学。
三、教学教程
1、情境引入
通过银行的复利计算问题,逐步引出对数函数。
设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。
2、新知探索
通过上述模型,让学生给对数函数下定义。
学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。
以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。
例比较下列各组数中两个值的大小:
(1)log23.4和log28.5;
(2)log0.33.4和log0.38.5;
(3)loga3.4和loga8.5(a>0,且a≠1);
(4)log23.4和log3.42;
(5)log3.42和log0.38.5。
3、巩固练习
(1)比较大小:
lg6________lg8;ln1.3________
(2)比较正数m,n的大小:
若,则m_____n;若,则m_____n.
4、总结提炼
(1)自主探究新知识的方法;
(2)本节课应用了哪些数学思想。
5、布置作业
(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;
(2)教材P74—7、8
四、板书设计
2.2.2对数函数及其性质
一、概念例题
二、图象
三、性质
四、教学反思
《对数函数》说课稿 4
尊敬的各位考官:
大家好,我是今天的X号考生,今天我说课的题目是《对数函数及其性质》。
新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先,我来谈谈我对教材的理解。
对数函数的概念及性质是人教A版必修1第二章的内容,本节课着重讲授对数函数的概念、对数函数的图象及性质。前面学生已经学习了函数的概念,也对指数函数的概念、图象和性质进行了探究。之前的学习,为本节课的知识以及经验都起到了铺垫作用。从学生已有的知识经验出发,引导学生发现问题、解决问题,为进一步综合运用初等函数解决生产生活中以及科研中的问题起到了重要的怍用。
二、说学情
合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。
高中的学生掌握了一定的基础知识以及解决问题的经验,分析问题、解决问题以及动手能力较好。基于此,本节课注重引导学生动脑思考,更富有启发性。引导学生思考、总结,充分参与教学过程,进一步发展学生发现问题、分析问题、解决问题的能力。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握对数函数的概念,会画对数函数的图象,根据对数函数的图象理解对数函数的性质。
(二)过程与方法
通过对数函数性质的探究过程,体会从特殊到一般的方法以及数形结合的数学思想方法。
(三)情感态度价值观
通过本节的学习,体验数学的`严谨性,养成细心观察、认真分析、严谨思考的良好思维习惯。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:对数函数的概念、图象和性质。教学难点是:通过对数函数的图象归纳对数函数的性质。
五、说教法和学法
现代教学理论认为,教学过程中,以学生为主体,教师为主导,教师是学习的组织者、引导者、合作者,教学的一切活动必须以强调学生的主动性、积极性为出发点。结合本节课的内容特点和学生的年龄特征,本节课我将采用讲授法、练习法、小组讨论法等教学方法。
六、说教学过程
在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,最大限度的调动学生参与课堂的积极性、主动性。
《对数函数》说课稿 5
教学目标:
1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.
2.培养学生数形结合的思想,以及分析推理的能力.
教学重点:
对数函数性质的应用.
教学难点:
对数函数的.性质向对数型函数的演变延伸.
教学过程:
一、问题情境
1.复习对数函数的性质.
2.回答下列问题.
(1)函数y=log2x的值域是;
(2)函数y=log2x(x≥1)的值域是;
(3)函数y=log2x(0
3.情境问题.
函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?
二、学生活动
探究完成情境问题.
三、数学运用
例1求函数y=log2(x2+2x+2)的定义域和值域.
练习:
(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.
(2)函数,x(0,8]的值域是.
(3)函数y=log(x2-6x+17)的值域.
(4)函数的值域是_______________.
例2判断下列函数的奇偶性:
(1)f(x)=lg(2)f(x)=ln(-x)
例3已知loga0.75>1,试求实数a取值范围.
例4已知函数y=loga(1-ax)(a>0,a≠1).
(1)求函数的定义域与值域;
(2)求函数的单调区间.
练习:
1.下列函数(1)y=x-1;(2)y=log2(x-1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号).
2.函数y=lg(-1)的图象关于对称.
3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m=.
4.求函数,其中x[,9]的值域.
四、要点归纳与方法小结
(1)借助于对数函数的性质研究对数型函数的定义域与值域;
(2)换元法;
(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合).
五、作业
课本P70~71-4,5,10,11.
《对数函数》说课稿 6
教学目标:
(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.
(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.
(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:
问题:1.指数函数是否存在反函数?
2.求指数函数的反函数.
3.结论
所以函数与指数函数互为反函数.
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1.对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2.对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的'图象与性质:
(1)定义域:
(2)值域:
(3)过定点,即当时,
(4)上的增函数
(4)上的减函数
3.练习:
(1)比较下列各组数中两个值的大小:
(2)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本P85,习题2.8,1、3
《对数函数》说课稿 7
一、内容与解析
(一)内容:对数函数的概念与图象
(二)解析:本节课要学的内容是什么是对数函数,对数函数的图象形状及画法,其核心是对数函数的图象画法,理解它关键就是要理解掌握对数函数的图象特点.学生已经掌握了指数函数的图象画法及特点,函数图象的一般画法,本节课的内容就是在此基础上的发展.由于它是研究对数函数性质的依据,是本学科的核心内容.教学的重点是对数函数的图象特点与画法,解决重点的关键是利用函数图象的一般画法画出具体对数函数的图象,从而归纳出对数函数的图象特点,再根据图象特点确定对数函数的一般画法。
二、教学目标及解析
(一)教学目标:
1,理解对数函数的概念;掌握对数函数的图象的特点及画法。
2,通过具体实例,直观感受对数函数模型所刻画的数量关系;通过具体的.函数图象的画法逐步认识对数函数的特征;
3,培养学生运用类比方法探索研究数学问题的素养,提高学生分析问题、解决问题的能力。
(二)解析:
1,理解对数函数的概念是来源于实践的,能从函数概念的角度阐述其意义;掌握对数函数的图象和性质,做到能画草图,能分析图象,能从图象观察得出对数函数的单调性、值域、定点等;了解同底指数函数和对数函数互为反函数,能说出它们的图象之间的关系,知道它们的定义域和值域之间的关系,了解反函数带有逆运算的意味;
2,通过具体的实例,归纳得出一般的函数图象特征,并能够通过图象特征得到相应的函数特征,培养学生的作图、识图的能力和归纳总结能力;
3,类比指数函数的图象和性质的研究方法,来研究对数函数,让学生认识到研究问题的方法上的一般性;同时,让学生认识到类比这一数学思想,即对相似的问题可以借鉴之前问题的研究方法来研究,有助于提高学生分析问题、解决问题的能力。
三、问题诊断分析
本节课容易出现的问题是:对数函数的图象特点的探究容易出现图象不对、归纳不全、有所偏差等情形。出现这一问题的原因是:学生作图能力、识图能力、归纳能力不强。要解决这一问题,教师要通过让学生类比指数函数图象和性质的探究,时时回过头看看之前是怎么做的,考虑了哪些问题,得到了哪些结论,让学生类比自主探究,必要时给予适当引导,让学生自主的得出结论,对于出错的地方要让学生讨论,教师做出适当的评价并最终给出结论。
四、教学支持条件分析
在本节课xx的教学中,准备使用xx,因为使用xx,有利于xx.
五、教学过程
问题1.前面我们已经掌握了指数函数的概念、图象与性质,知道了指数函数是基本初等函数之一。现在学习的对数,也可以构成一种函数,我们称之为对数函数,那么什么样的函数称为对数函数呢?
[设计意图]新课标强调考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点。
小问题串:
1.2.2.1的例6,考古学家是如何估算出土文物或古遗址的年代的?这种对应关系是否形成函数关系?
2.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个。怎么求?相应的对应关系是否也形成函数关系?
3.由上述两个实例,请你类比指数函数的概念归纳对数函数的概念
观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+).
注意:
(1)对数函数的定义与指数函数类似,都是形式定义,注意辨别。
(2)对数函数对底数的限制。
4.根据对数函数定义填空;
例1(1)函数y=logax2的定义域是xx(其中a1)。
(2)函数y=loga(4-x)的定义域是xx(其中a1)。
说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
问题2.对数函数的图象是什么样?有什么特点呢?
[设计意图]旧教材是通过对称变换直接从指数函数的图象得到对数函数图象,这样处理学生虽然会接受了这个事实,但对图象的感觉是肤浅的;这样处理也存在着函数教学忽视图象、性质的认知过程而注重应用的功利思想。因此,本节课的设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感性认识。同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效性。这个环节,还要借助计算机辅助教学作用,增强学生的直观感受。
小问题串:
(1)用描点法在同一坐标系中画出下列对数函数的图象。
(2)用描点法在同一坐标系中画出下列对数函数的图象。
(3)观察对数函数、与、的图象特征,看看它们有那些异同点。
(4)利用计算器或计算机,选取底数,且的若干个不同的值,在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?
(5)归纳出能体现对数函数的代表性图象,并说明以后如何画对数函数的简图。
例题
1.课本P75A组第10题
2.求函数的定义域,并画出函数的图象。
六、目标检测
求下列函数的定义域
《对数函数》说课稿 8
教学目标
1.在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
2.通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
3.通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
一.引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:
由得.又的值域为,
所求反函数为.
那么我们今天就是研究指数函数的反函数-----对数函数.
二.对数函数的图像与性质(板书)
1.作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.
由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况和,并分别以和为例画图.
具体操作时,要求学生做到:
(1)指数函数和的图像要尽量准确(关键点的.位置,图像的变化趋势等).
(2)画出直线.
(3)的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
2.草图.
教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3.性质
(1)定义域:
(2)值域:
由以上两条可说明图像位于轴的右侧.
(3)截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.
(4)奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
(5)单调性:与有关.当时,在上是增函数.即图像是上升的
当时,在上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.巩固练习
练习:若,求的取值范围.
四.小结
五.作业略
《对数函数》说课稿 9
课题:指数函数与对数函数的性质及其应用
课型:综合课
教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。
重点:指数函数与对数函数的特性。
难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。
教学方法:多媒体授课。
学法指导:借助列表与图像法。
教具:多媒体教学设备。
教学过程:
一、复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。
二、展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。
指数函数与对数函数关系一览表
函数
性质
指数函数
y=ax(a>0且a≠1)
对数函数
y=logax(a>0且a≠1)
定义域
实数集R
正实数集(0,﹢∞)
值域
正实数集(0,﹢∞)
实数集R
共同的点
(0,1)
(1,0)
单调性
a>1增函数
a>1增函数
0<a<1减函数
0<a<1减函数
函数特性
a>1
当x>0,y>1
当x>1,y>0
当x<0,0<y<1
当0<x<1,y<0
0<a<1
当x>0,0<y<1
当x>1,y<0
当x<0,y>1
当0<x<1,y>0
反函数
y=logax(a>0且a≠1)
y=ax(a>0且a≠1)
图像
Y
y=(1/2)xy=2x
(0,1)
X
Y
y=log2x
(1,0)
X
y=log1/2x
三、同一坐标系中将指数函数与对数函数进行合成,观察其特点,并得出y=log2x与y=2x、y=log1/2x与y=(1/2)x的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。
Y
y=(1/2)xy=2xy=x
(0,1)y=log2x
(1,0)X
y=log1/2x
注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。
四、利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。
五、例题
例⒈比较(Л)(-0.1)与(Л)(-0.5)的'大小。
解:∵y=ax中,a=Л>1
∴此函数为增函数
又∵﹣0.1>﹣0.5
∴(Л)(-0.1)>(Л)(-0.5)
例⒉比较log67与log76的大小。
解:∵log67>log66=1
log76<log77=1
∴log67>log76
注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。
例⒊求y=3√4-x2的定义域和值域。
解:∵√4-x2有意义,须使4-x2≥0
即x2≤4,|x|≤2
∴-2≤x≤2,即定义域为[-2,2]
又∵0≤x2≤4,∴0≤4-x2≤4
∴0≤√4-x2≤2,且y=3x是增函数
∴30≤y≤32,即值域为[1,9]
例⒋求函数y=√log0.25(log0.25x)的定义域。
解:要函数有意义,须使log0.25(log0.25x)≥0
又∵0<0.25<1,∴y=log0.25x是减函数
∴0<log0.25x≤1
∴log0.251<log0.25x≤log0.250.25
∴0.25≤x<1,即定义域为[0.25,1)
六、课堂练习
求下列函数的定义域
1.y=8[1/(2x-1)]
2.y=loga(1-x)2(a>0,且a≠1)
七、评讲练习
八、布置作业
第113页,第10、11题。并预习指数函数与对数函数
在物理、社会科学中的实际应用。
《对数函数》说课稿 10
学习目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.
旧知提示
复习:若,则,其中称为,其范围为,称为.
合作探究(预习教材P70-P72,找出疑惑之处)
探究1:元旦晚会前,同学们剪彩带备用。现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。设所得的彩带的根数为,剪的次数为,试用表示.
新知:对数函数的概念
试一试:以下函数是对数函数的是()
A.B.C.D.E.
反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且.
探究2:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的.内容和方法吗?
研究方法:画出函数图象,结合图象研究函数性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
作图:在同一坐标系中画出下列对数函数的图象.
新知:对数函数的图象和性质:
象
定义域
值域
过定点
单调性
思考:当时,时,;时,;
当时,时,;时,.
典型例题
例1求下列函数的定义域:(1);(2).
例2比较大小:
(1);(2);(3);(4)与.
课堂小结
1.对数函数的概念、图象和性质;
2.求定义域;
3.利用单调性比大小.
知识拓展
对数函数凹凸性:函数,是任意两个正实数.
当时,;当时,.
学习评价
1.函数的定义域为()
A.B.C.D.
2.函数的定义域为()
A.B.C.D.
3.函数的定义域是.
4.比较大小:
(1)log67log76;(2);(3).
课后作业
1.不等式的解集是().
A.B.C.D.
2.若,则()
A.B.C.D.
3.当a1时,在同一坐标系中,函数与的图象是().
4.已知函数的定义域为,函数的定义域为,则有()
A.B.C.D.
5.函数的定义域为.
6.若且,函数的图象恒过定点,则的坐标是.
7.已知,则=.
8.求下列函数的定义域:
2.2.2对数函数及其性质(2)
学习目标
1.解对数函数在生产实际中的简单应用;
2.进一步理解对数函数的图象和性质;
3.学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质。
旧知提示
复习1:对数函数图象和性质.
a10
图性质
(1)定义域:
(2)值域:
(3)过定点:
(4)单调性:
复习2:比较两个对数的大小:(1);(2).
复习3:(1)的定义域为;
(2)的定义域为.
复习4:右图是函数,,,的图象,则底数之间的关系为.
合作探究(预习教材P72-P73,找出疑惑之处)
探究:如何由求出x?
新知:反函数
试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发现什么性质?
反思:
(1)如果在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?
(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.
典型例题
例1求下列函数的反函数:
(1);(2).
提高:①设函数过定点,则过定点.
②函数的反函数过定点.
③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为.
小结:求反函数的步骤(解x习惯表示定义域)
例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.
(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?
(2)纯净水摩尔/升,计算其酸碱度.
例3求下列函数的值域:(1);(2).
课堂小结
①函数模型应用思想;②反函数概念.
知识拓展
函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应.对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数.反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是交叉相等.
学习评价
1.函数的反函数是().
A.B.C.D.
2.函数的反函数的单调性是().
A.在R上单调递增B.在R上单调递减
C.在上单调递增D.在上单调递减
3.函数的反函数是().
A.B.C.D.
4.函数的值域为().
A.B.C.D.
5.指数函数的反函数的图象过点,则a的值为.
6.点在函数的反函数图象上,则实数a的值为.
课后作业
1.函数的反函数为()
A.B.C.D.
2.设,,,,则的大小关系是()
A.B.C.D.
3.的反函数为.
4.函数的值域为.
5.已知函数的反函数图象经过点,则.
6.设,则满足的值为.
7.求下列函数的反函数.
(1)y=;(2)y=(a1,x(3).
《对数函数》说课稿 11
一、教材分析
本节课是新课标高中数学必修①中第三章对数函数内容的第二课时,也就是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用。通过本节课的学习,可以让学生理解对数函的概念,从而进一步深化对对数模型的认识与理解。同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的'意义。
二、学情分析
大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。通过对指数函与指数函数的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数函数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。
三、设计思路
学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、教学目标
1、理解对数函数的概念,了解对数函数与指数函数的关系;理解对数函数的性质,掌握以上知识并形成技能。
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.。
3、通过学生分组探究进行活动,掌握对数函数的重要性质。通过做练习,使学生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。
五、重点与难点
重点:
(1)对数函数的概念;
(2)对数函数与指数函数的相互转化。
难点:
(1)对数函数概念的理解;
(2)对数函数性质的理解。
六、过程设计
(一)复习导入
(1)复习提问:什么是对数函数?如何求反函数?指数函数的图象和性质如何?
学生回答,并用课件展示指数函数的图象和性质。
设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。
(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?
设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。
(二)讲授新课
(1)对数函数的概念
引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。
设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。
(2)对数函数的图象
提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢
让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?
《对数函数》说课稿 12
教学目标
1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.
2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.
3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.
教学重点与难点
教学重点:函数单调性的概念.
教学难点:函数单调性的判定.
教学过程设计
一、引入新课
师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?
(用投影幻灯给出两组函数的图象.)
第一组:
第二组:
生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.
师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当x变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.
(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)
二、对概念的分析
(板书课题:)
师:请同学们打开课本第51页,请××同学把增函数、减函数、单调区间的定义朗读一遍.
(学生朗读.)
师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量x的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?
生:我认为是一致的.定义中的“当x1<x2时,都有f(x1)<f(x2)”描述了y随x的增大而增大;“当x1<x2时,都有f(x1)>f(x2)”描述了y随x的增大而减少.
师:说得非常正确.定义中用了两个简单的不等关系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!
(通过教师的情绪感染学生,激发学生学习数学的兴趣.)
师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1(x)和y=f2(x)的图象,体会这种魅力.
(指图说明.)
师:图中y=f1(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f1(x1)<f1(x),因此y=f1(x)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1(x)的单调增区间;而图中y=f2(x)对于区间[a,b]上的任意x1,x2,当x1<x2时,都有f2(x1)>f2(x2),因此y=f2(x)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(x)的单调减区间.
(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)
师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……
(不把话说完,指一名学生接着说完,让学生的思维始终跟着老师.)
生:较大的函数值的函数.
师:那么减函数呢?
生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.
(学生可能回答得不完整,教师应指导他说完整.)
师:好.我们刚刚以增函数和减函数的定义作了初步的分析,通过阅读和分析你认为在定义中我们应该抓住哪些关键词语,才能更透彻地认识定义?
(学生思索.)
学生在高中阶段以至在以后的学习中经常会遇到一些概念(或定义),能否抓住定义中的关键词语,是能否正确地、深入地理解和掌握概念的重要条件,更是学好数学及其他各学科的重要一环.因此教师应该教会学生如何深入理解一个概念,以培养学生分析问题,认识问题的能力.
(教师在学生思索过程中,再一次有感情地朗读定义,并注意在关键词语处适当加重语气.在学生感到无从下手时,给以适当的提示.)
生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.
师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?
生:不能.因为此时函数值是一个数.
师:对.函数在某一点,由于它的函数值是唯一确定的常数(注意这四个字“唯一确定”),因而没有增减的变化.那么,我们能不能脱离区间泛泛谈论某一个函数是增函数或是减函数呢?你能否举一个我们学过的例子?
生:不能.比如二次函数y=x2,在y轴左侧它是减函数,在y轴右侧它是增函数.因而我们不能说y=x2是增函数或是减函数.
(在学生回答问题时,教师板演函数y=x2的图像,从“形”上感知.)
师:好.他(她)举了一个例子来帮助我们理解定义中的词语“给定区间”.这说明是函数在某一个区间上的性质,但这不排斥有些函数在其定义域内都是增函数或减函数.因此,今后我们在谈论函数的增减性时必须指明相应的区间.
师:还有没有其他的关键词语?
生:还有定义中的“属于这个区间的任意两个”和“都有”也是关键词语.
师:你答的很对.能解释一下为什么吗?
(学生不一定能答全,教师应给予必要的`提示.)
师:“属于”是什么意思?
生:就是说两个自变量x1,x2必须取自给定的区间,不能从其他区间上取.
师:如果是闭区间的话,能否取自区间端点?
生:可以.
师:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值来判断函数的增减性,而“都有”则是说只要x1<x2,f(x1)就必须都小于f(x2),或f(x1)都大于f(x2).
师:能不能构造一个反例来说明“任意”呢?
(让学生思考片刻.)
生:可以构造一个反例.考察函数y=x2,在区间[-2,2]上,如果取两个特定的值x1=-2,x2=1,显然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的减函数,那就错了.
师:那么如何来说明“都有”呢?
生:y=x2在[-2,2]上,当x1=-2,x2=-1时,有f(x1)>f(x2);当x1=1,x2=2时,有f(x1)<f(x2),这时就不能说y=x2,在[-2,2]上是增函数或减函数.
师:好极了!通过分析定义和举反例,我们知道要判断函数y=f(x)在某个区间内是增函数或减函数,不能由特定的两个点的情况来判断,而必须严格依照定义在给定区间内任取两个自变量x1,x2,根据它们的函数值f(x1)和f(x2)的大小来判定函数的增减性.
(教师通过一系列的设问,使学生处于积极的思维状态,从抽象到具体,并通过反例的反衬,使学生加深对定义的理解.在概念教学中,反例常常帮助学生更深刻地理解概念,锻炼学生的发散思维能力.)
师:反过来,如果我们已知f(x)在某个区间上是增函数或是减函数,那么,我们就可以通过自变量的大小去判定函数值的大小,也可以由函数值的大小去判定自变量的大小.即一般成立则特殊成立,反之,特殊成立,一般不一定成立.这恰是辩证法中一般和特殊的关系.
(用辩证法的原理来解释数学知识,同时用数学知识去理解辩证法的原理,这样的分析,有助于深入地理解和掌握概念,分清概念的内涵和外延,培养学生学习的能力.)
三、概念的应用
例1图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?
(用投影幻灯给出图象.)
生甲:函数y=f(x)在区间[-5,-2],[1,3]上是减函数,因此[-5,-2],[1,3]是函数y=f(x)的单调减区间;在区间[-2,1],[3,5]上是增函数,因此[-2,1],[3,5]是函数y=f(x)的单调增区间.
生乙:我有一个问题,[-5,-2]是函数f(x)的单调减区间,那么,是否可认为(-5,-2)也是f(x)的单调减区间呢?
师:问得好.这说明你想的很仔细,思考问题很严谨.容易证明:若f(x)在[a,b]上单调(增或减),则f(x)在(a,b)上单调(增或减).反之不然,你能举出反例吗?一般来说.若f(x)在[a,(增或减).反之不然.
例2证明函数f(x)=3x+2在(-∞,+∞)上是增函数.
师:从函数图象上观察固然形象,但在理论上不够严格,尤其是有些函数不易画出图象,因此必须学会根据解析式和定义从数量上分析辨认,这才是我们研究函数单调性的基本途径.
(指出用定义证明的必要性.)
师:怎样用定义证明呢?请同学们思考后在笔记本上写出证明过程.
(教师巡视,并指定一名中等水平的学生在黑板上板演.学生可能会对如何比较f(x1)和f(x2)的大小关系感到无从入手,教师应给以启发.)
师:对于f(x1)和f(x2)我们如何比较它们的大小呢?我们知道对两个实数a,b,如果a>b,那么它们的差a-b就大于零;如果a=b,那么它们的差a—b就等于零;如果a<b,那么它们的差a-b就小于零,反之也成立.因此我们可由差的符号来决定两个数的大小关系.
生:(板演)设x1,x2是(-∞,+∞)上任意两个自变量,当x1<x2时,
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函数.
师:他的证明思路是清楚的.一开始设x1,x2是(-∞,+∞)内任意两个自变量,并设x1<x2(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看f(x1)-f(x2),这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但美中不足的是他没能说明为什么f(x1)-f(x2)<0,没有用到开始的假设“x1<x2”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以x1-x2<0,从而f(x1)-f(x2)<0,即f(x1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).
这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以小.
(对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)
调函数吗?并用定义证明你的结论.
师:你的结论是什么呢?
上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.
生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.
生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.
域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.
上是减函数.
(教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:
(1)分式问题化简方法一般是通分.
(2)要说明三个代数式的符号:k,x1·x2,x2-x1.
要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.
对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)
四、课堂小结
师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?
(请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)
生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明时,应该注意证明的四个步骤.
五、作业
1.课本P53练习第1,2,3,4题.
数.
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(x)
+b>0.由此可知(x)式小于0,即f(x1)<f(x2).
课堂教学设计说明
是函数的一个重要性质,是研究函数时经常要注意的一个性质.并且在比较几个数的大小、对函数作定性分析、以及与其他知识的综合应用上都有广泛的应用.对学生来说,早已有所知,然而没有给出过定义,只是从直观上接触过这一性质.学生对此有一定的感性认识,对概念的理解有一定好处,但另一方面学生也会觉得是已经学过的知识,感觉乏味.因此,在设计教案时,加强了对概念的分析,希望能够使学生认识到看似简单的定义中有不少值得去推敲、去琢磨的东西,其中甚至包含着辩证法的原理.
另外,对概念的分析是在引进一个新概念时必须要做的,对概念的深入的正确的理解往往是学生认知过程中的难点.因此在本教案的设计过程中突出对概念的分析不仅仅是为了分析函数单调性的定义,而且想让学生对如何学会、弄懂一个概念有初步的认识,并且在以后的学习中学有所用.
还有,使用函数单调性定义证明是一个难点,学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助.另外,这也是以后要学习的不等式证明方法中的比较化的基本思路,现在提出要求,对今后的教学作一定的铺垫.
《对数函数》说课稿 13
一、教学目标:
1、知识与技能
(1)理解指数函数的概念和意义;
(2)与的图象和性质;
(3)理解和掌握指数函数的图象和性质;
(4)指数函数底数a对图象的影响;
(5)底数a对指数函数单调性的影响,并利用它熟练比较几个指数幂的'大小
(6)体会具体到一般数学讨论方式及数形结合的思想。
2、情感、态度、价值观
(1)让学生了解数学来自生活,数学又服务于生活的哲理。
(2)培养学生观察问题,分析问题的能力。
二、重、难点:
重点:
(1)指数函数的概念和性质及其应用。
(2)指数函数底数a对图象的影响。
(3)利用指数函数单调性熟练比较几个指数幂的大小。
难点:
(1)利用函数单调性比较指数幂的大小。
(2)指数函数性质的归纳,概括及其应用。
三、教法与教具:
①学法:观察法、讲授法及讨论法。
②教具:多媒体。
四、教学过程:
第一课时
讲授新课
指数函数的定义
一般地,函数(>0且≠1)叫做指数函数,其中是自变量,函数的定义域为R。
提问:在下列的关系式中,哪些不是指数函数,为什么?
《对数函数》说课稿 14
教学目标
1、知识与技能
了解函数的概念,弄清自变量与函数之间的关系。
2、过程与方法
经历探索函数概念的过程,感受函数的模型思想。
3、情感、态度与价值观
培养观察、交流、分析的思想意识,体会函数的实际应用价值。
重、难点与关键
1、重点:认识函数的概念。
2、难点:对函数中自变量取值范围的确定。
3、关键:从实际出发,由具体到抽象,建立函数的模型。
教学方法
采用“情境──探究”的方法,让学生从具体的情境中提升函数的思想方法。
教学过程
一、回顾交流,聚焦问题
1、变量(P94)中5个思考题。
教师提问
同学们通过学习“变量”这一节内容,对常量和变量有了一定的认识,请同学们举出一些现实生活中变化的实例,指出其中的常量与变量。
学生活动思考问题,踊跃发言。(先归纳出5个思考题的关系式,再举例)
教师活动激发兴趣,鼓励学生联想,
2、在地球某地,温度T(℃)与高度d(m)的关系可以挖地用T=10—来表示(如图),请你根据这个关系式回答下列问题:
(1)指出这个关系式中的变量和常量。
(2)填写下表。
高度d/m0,200,400,600,800,1000
温度T/℃
(3)观察两个变量之间的联系,当其中一个变量取定一个值时,另一个变量就______。
3、课本P7“观察”。
学生活动四人小组互动交流,踊跃发言
二、讨论交流,形成概念
函数定义
一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。
教师活动归纳出函数的定义。强调在上述活动中的关系式是函数关系式。提问学生,两个变量中哪个是自变量呢?哪个是这个自变量的.函数?
学生活动辨析理解,如:T=10—这个函数关系式中,d是自变量,T是d的函数等。弄清函数定义中的问题。
三、继续探究,感知轻重
课本P8探究题。
学生活动使用计算器进行探索活动,回答问题,理解函数概念。(1)y=2x+5,y是x的函数;(2)y=2x+1,y是x的函数。
四、范例点击,提高认知
例1一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为/km。
(1)写出表示y与x的函数关系的式子。
(2)指出自变量x的取值范围。
(3)汽车行驶200km时,油箱中还有多少汽油?
教师活动讲例,启发引导学生共同解决上述例1。
五、随堂练习,巩固深化
课本P99练习。
六、课堂总结,发展潜能
1、用数学式子表示函数的方法叫做表达式法(解析式法),它只是函数表示法的一种。
2、求函数的自变量取值范围的方法。
(1)要使函数的表达式有意义;(2)对实际问题中的函数关系,要使实际问题有意义。
3、把所给自变量的值代入函数表达式中,就可以求出相应的函数值。
七、布置作业,专题突
课本P106习题14。1第1,2,3,4题。
《对数函数》说课稿 15
教学目标:
(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;
(2)培养学生的归纳、总结能力;
(3)通过两圆外公切线长的求法向学生渗透“转化”思想。
教学重点:
理解两圆相切长等有关概念,两圆外公切线的求法。
教学难点:
两圆外公切线和两圆外公切线长学生理解的不透,容易混淆。
教学活动设计
(一)实际问题(引入)
很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以一条直线和两个同时相切的形象。(这里是一种简单的数学建模,了解数学产生与实践)
两圆的公切线概念
1、概念:
教师引导学生自学。给出两圆的外公切线、内公切线以及公切线长的定义:
和两圆都相切的直线,叫做两圆的公切线。
(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线。
(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线。
(3)公切线的长:公切线上两个切点的距离叫做公切线的长。
2、理解概念:
(1)公切线的长与切线的长有何区别与联系?
(2)公切线的长与公切线又有何区别与联系?
(1)公切线的长与切线的.长的概念有类似的地方,即都是线段的长。但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对一个圆来说的,且这条线段的一个端点是切点,另一个端点是圆外一点。
(2)公切线是直线,而公切线的长是两切点问线段的长,前者不能度量,后者可以度量。
(三)两圆的位置与公切线条数的关系
组织学生观察、概念、概括,培养学生的学习能力。添写教材P143练习第2题表。
(四)应用、反思、总结
例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆心距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B。求:公切线的长AB。
分析:首先想到切线性质,故连结O1A、O2B,得直角梯形AO1O2B。一般要把它分解成一个直角三角形和一个矩形,再用其性质。(组织学生分析,教师点拨,规范步骤)
解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB。
过O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,
于是有
O1C⊥CO2,O1C=AB,O1A=CB。
在Rt△O2CO1和。
O1O2=13,O2C=O2B-O1A=5
AB=O1C=(cm)。
反思:(1)“转化”思想,构造三角形;(2)初步掌握添加辅助线的方法。
例2x、如图,已知⊙O1、⊙O2外切于P,直线AB为两圆的公切线,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长。
分析:因为线段AB是△APB的一条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直角三角形,然后再根据勾股定理,使问题得解。证△PAB是直角三角形,只需证△APB中有一个角是90°(或证得有两角的和是90°),这就需要沟通角的关系,故过P作两圆的公切线CD如图,因为AB是两圆的公切线,所以∠CPB=∠ABP,∠CPA=∠BAP。因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直角三角形,此题得解。
解:过点P作两圆的公切线CD
∵AB是⊙O1和⊙O2的切线,A、B为切点
∴∠CPA=∠BAP ∠CPB=∠ABP
又∵∠BAP+∠CPA+∠CPB+∠ABP=180°
∴2∠CPA+2∠CPB=180°
∴∠CPA+∠CPB=90°即∠APB=90°
在Rt△APB中,AB2=AP2+BP2
说明:两圆相切时,常过切点作两圆的公切线,沟通两圆中的角的关系。
(五)巩固练习
1、当两圆外离时,外公切线、圆心距、两半径之差一定组成( )
(A)直角三角形(B)等腰三角形(C)等边三角形(D)以上答案都不对。
此题考察外公切线与外公切线长之间的差别,答案(D)
2、外公切线是指
(A)和两圆都祖切的直线(B)两切点间的距离
(C)两圆在公切线两旁时的公切线(D)两圆在公切线同旁时的公切线
直接运用外公切线的定义判断。答案:(D)
3、教材P141练习(略)
(六)小结(组织学生进行)
知识:两圆的公切线、外公切线、内公切线及公切线的长概念;
能力:归纳、概括能力和求外公切线长的能力;
思想:“转化”思想。
(七)作业:P151习题10,11。
《对数函数》说课稿 16
教学过程设计
一、复习回顾
1.一次函数的定义。
2.一次函数的图象。
3.直线y=kx+b与方程的联系。
那么一元一次不等式与一次函数是怎样的关系呢?本节课研究一元一次不等式与一次函数的关系。
教师活动:引导学生回顾一次函数相关概念以及一次函数与方程的关系。
设计意图:回顾所学知识作好新知识的衔接。
二、导探激励
问题1:我们来看下面两个问题有什么关系?
1.解不等式5x+6>3x+10.
2.当自变量x为何值时函数y=2x—4的值大于0?
教师活动:引导学生分别从数和形两个角度理解这两个问题的关系,归纳出一般形式结论。由上面两个问题的关系,我们能得到“解不等式ax+b>0”与“求自变量x?在什么范围内,一次函数y=ax+b的值大于0”之间的关系,实质上是同一个问题.
由于任何一元一次不等式都可以转化的ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大于(或小于)0时,?求自变量相应的取值范围.
问题2:作出函数y=2x—5的图象,观察图象回答下列问题:
(1)x取何值时,2x—5=0?
(2)x取哪些值时,2x—5>0?
(3)x取哪些值时,2x—5<0?
(4)x取哪些值时,2x—5>3?
教师活动:展示问题1,适当时间后请学生解答并说明理由,教师借助课件作结论性评判。
设计意图:问题2可以直接解不等式(或方程)求解,但这里意图是让学生通过直接图
象得到。引导学生体会既可以运用函数图象解不等式,也可以运用解不等式帮助研究函数问题,二者互相渗透,互相作用。
学生可以用不同方法解答,教师意图是尽量用图象求解。
问题3:用画函数图象的方法解不等式5x+4<2x+10
设计意图:通过这一活动使学生熟悉一元一次不等式与一次函数值大于或小于0时,?自变量取值范围的问题间关系,并寻求出解决这一问题的具体方法,灵活运用.教师活动:引导学生通过画图、观察、寻求答案,并能通过两种不同解法,得到同一答案,探索思考总结归纳出其中的共同点.
学生活动:在教师指导下,顺利完成作图,观察求出答案,并能归纳总结出其特点.活动过程及结论:
方法一:原不等式可以化为3x—6<0,画出直线y=3x—6的图象,可以看出,当x<2时这条直线上的点在x轴的下方.即这时y=3x—6<0,所以不等式的解集为:x<2.方法二:将原不等式的两边分别看作两个一次函数,画出直线y=5x+4与直线y=2x+10可以看出,它们交点的横坐标为2.当x>2时,对于同一个x,直线y=5x+4?上的点在直线y=2x+10上的相应点的下方,这时5x+4<2x+10,?所以不等式的解集为:x<2.
以上两种方法其实都是把解不等式转化为比较直线上点的位置的高低.从上面两种解法可以看出,虽然像上面那样用一次函数图象来解不等式未必简单,但是从函数角度看问题,能发现一次函数.一元一次不等式之间的联系,能直观地看出怎样用图形来表示不等式的解.这
种函数观点认识问题的方法,对于继续学习数学很重要.
三、巩固练习
1.当自变量x的取值满足什么条件时,函数y=3x+8的值满足下列条件?①y=—7.②y<2.
2.利用图象解出x:
6x—4<3x+2.
[解]1.(1)方法一:作直线y=3x+8的图象.从图象上看出:y=—7?时对应的自变量x取值为—5,即当x=—5时,y=—7.
方法二:要使y=—7即3x+8=—7,它可变形为3x+15=0.作直线y=3x+15的图象,?从图上可看出它与x轴交点横坐标为—5,即x=—5时,3x+15=0.所以x=—5时,y=—7.
(2)方法一:画出y=3x+8的图象,从图象上可以看出当x<—2时,?对应的函数值都小于2.所以自变量x的取值范围是x<—2.
方法二:要使y<2即3x+8<2,它可变形为3x+6<0,作出直线y=3x+6?的图象可以看出它与x轴交点横坐标为—2,只有当x<—2时对应的函数值才小于0.?所以自变量x的'取值范围是x<—2.
2.方法一:6x—4<3x+2可变形为:3x—6<0.作出直线y=3x—6的图象.?从图象上可看出:当x<2时,这条直线上的点都在x轴下方,即y<0,3x—6<0.所以,6x—?4<3x+2的解为x<2.
方法二:作出直线y=6x—4与直线y=3x+2,它们的交点横坐标为2,?从图象上可以看出当x<2时,直线y=6x—4在直线y=3x+2的下方,即6x+4<3x+2.所以,6x—4<3x+2的解为x<2.
四.随堂练习
1.求当自变量x取值范围为什么时,函数y=2x+6的值满足以下条件?①y=0;②y>0.
2.利用图象解不等式5x—1>2x+5.
五.课时小结
本节我们学会了用一次函数图象来解一元一次不等式.虽说方法未必简单,但我们从函数的角度来重新认识不等式,发现了一次函数、一元一次不等式之间的联系,能直观看到怎样用图形来表示不等式的解,对我们以后学习很重要.
六.课后作业
习题14.3─3、4、7题.
七.活动与探究
a、b两个商场平时以同样价格出售相同的商品,在春节期间让利酬宾.a商场所有商品8折出售,b商场消费金额超过200元后,可在这家商场7折购物.?试问如何选择商场来购物更经济
教学反思:
本堂课在设计上可以跳出教材,根据学生的实际情况,在问题1中可设计一
个简单一点的不等式,待学生会将不等式转化为一次函数分析并用图像解决时在增加难度,放在问题3中一并解决,这样学生在接受上不会太难,也不会导致时间分配不合理,以至设计的内容无法完成。另外,这充分发挥学生的主体性,让学生通过观察及操作发现一次函数与一元一次不等式的关系及用一次函数解决一元一次不等式的方法。
《对数函数》说课稿 17
一、素质教育目标
(一)知识教学点:
1.使学生了解一元二次方程及整式方程的意义;
2.掌握一元二次方程的一般形式,正确识别二次项系数、一次项系数及常数项.
(二)能力训练点:
1.通过一元二次方程的引入,培养学生分析问题和解决问题的能力;
2.通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性.
(三)德育渗透点:由知识来源于实际,树立转化的思想,由设未知数列方程向学生渗透方程的思想方法,由此培养学生用数学的意识.
二、教学重点、难点
1.教学重点:一元二次方程的意义及一般形式.
2.教学难点:正确识别一般式中的“项”及“系数”.
三、教学步骤
(一)明确目标
1.用电脑演示下面的操作:一块长方形的薄钢片,在薄钢片的四个角上截去四个相同的小正方形,然后把四边折起来,就成为一个无盖的长方体盒子,演示完毕,让学生拿出事先准备好的长方形纸片和剪刀,实际操作一下刚才演示的过程.学生的实际操作,为解决下面的问题奠定基础,同时培养学生手、脑、眼并用的能力.
2.现有一块长80cm,宽60cm的薄钢片,在每个角上截去四个相同的小正方形,然后做成底面积为1500cm2的无盖的长方体盒子,那么应该怎样求出截去的小正方形的边长?
教师启发学生设未知数、列方程,经整理得到方程x2-70x+825=0,此方程不会解,说明所学知识不够用,需要学习新的知识,学了本章的知识,就可以解这个方程,从而解决上述问题.
板书:“第十二章一元二次方程”.教师恰当的语言,激发学生的求知欲和学习兴趣.
(二)整体感知
通过章前引例和节前引例,使学生真正认识到知识来源于实际,并且又为实际服务,学习了一元二次方程的知识,可以解决许多实际问题,真正体会学习数学的意义;产生用数学的意识,调动学生积极主动参与数学活动中.同时让学生感到一元二次方程的解法在本章中处于非常重要的地位.
(三)重点、难点的学习及目标完成过程
1.复习提问
(1)什么叫做方程?曾学过哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含义?
(3)什么叫做分式方程?
问题的提出及解决,为深刻理解一元二次方程的概念做好铺垫.
2.引例:剪一块面积为150cm2的长方形铁片使它的长比宽多5cm,这块铁片应怎样剪?
引导,启发学生设未知数列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以观察、比较,得到整式方程和一元二次方程的概念.
整式方程:方程的两边都是关于未知数的整式,这样的方程称为整式方程.
一元二次方程:只含有一个未知数,且未知数的.最高次数是2,这样的整式方程叫做一元二次方程.
一元二次方程的概念是在整式方程的前提下定义的.一元二次方程中的“一元”指的是“只含有一个未知数”,“二次”指的是“未知数的最高次数是2”.“元”和“次”的概念搞清楚则给定义一元三次方程等打下基础.一元二次方程的定义是指方程进行合并同类项整理后而言的.这实际上是给出要判定方程是一元二次方程的步骤:首先要进行合并同类项整理,再按定义进行判断.
3.练习:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一个一元二次方程都可以化为一个固定的形式,这个形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2称二次项,bx称一次项,c称常数项,a称二次项系数,b称一次项系数.
一般式中的“a≠0”为什么?如果a=0,则ax2+bx+c=0就不是一元二次方程,由此加深对一元二次方程的概念的理解.
5.例1?把方程3x(x-1)=2(x+1)+8化成一般形式,并写出二次项系数,一次项系数及常数项?
教师边提问边引导,板书并规范步骤,深刻理解一元二次方程及一元二次方程的一般形式.
6.练习1:教材P.5中1,2.要求多数学生在练习本上笔答,部分学生板书,师生评价.题目答案不唯一,最好二次项系数化为正数.
练习2:下列关于x的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项.
8mx-2m-1=0;(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教师提问及恰当的引导,对学生回答给出评价,通过此组练习,加强对概念的理解和深化.
(四)总结、扩展
引导学生从下面三方面进行小结.从方法上学到了什么方法?从知识内容上学到了什么内容?分清楚概念的区别和联系?
1.将实际问题用设未知数列方程转化为数学问题,体会知识来源于实际以及转化为方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次项系数、一次项系数及常数项.归纳所学过的整式方程.
3.一元二次方程的意义与一般形式ax2+bx+c=0(a≠0)的区别和联系.强调“a≠0”这个条件有长远的重要意义.
四、布置作业
1.教材P.6练习2.
2.思考题:
1)能不能说“关于x的整式方程中,含有x2项的方程叫做一元二次方程?”
2)试说出一元三次方程,一元四次方程的定义及一般形式(学有余力的学生思考).
五、板书设计
第十二章?一元二次方程
12.1用公式解一元二次方程
1.整式方程:
4.例1:
2.一元二次方程:
3.一元二次方程的一般形式:
5.练习:
六、课后习题参考答案
教材P.6A2.
教材P.6B1、2.
1.(1)二次项系数:ab?一次项系数:c?常数项:d.
(2)二次项系数:m-n?一次项系数:0?常数项:m+n.
2.一般形式:(m+n)x2+(m-n)x+p-q=0(m+n≠0)二次项系数:m+n,一次项系数:m-n,常数项:p-q.
思考题
(1)不能.如x3+2x2-4x=5.
(2)一元三次方程:只含有一个未知数,且未知数的最高次数是3,这样的整式方程叫做一元三次方程.一般形式:ax3+bx2+cx+d=0(a≠0).
一元四次方程:只含有一个未知数,且未知数的最高次数是4,这样的整式方程叫做一元四次方程.一般形式:ax4+bx3+cx2+dx+e=0(a≠0).
《对数函数》说课稿 18
教学目标
1、使学生掌握的概念,图象和性质。
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。
2、通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
3、通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。
教学建议
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的.基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。
(2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。
《对数函数》说课稿 19
【教学目的】
1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。
2、能力目标:提高学生的观察、分析能力和对图形的感知水平。
3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。
【教学重点】
探索反比例函数图象的主要性质及其图像形状。
【教学难点】
1、准确画出反比例函数的图象。
2、准确掌握并能运用反比例函数图象的性质。
【教学过程】
活动1、汇海拾贝
让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。
活动2、学海历练
让学生仿照画一次函数的方法画反比例函数y=2/x和y=—2/x的图像并观察图像的特点
活动3、成果展示
将各组的成果展示在大家的面前,并纠正可能出现的.问题。
活动4、行家看台
1.反比例函数的图象是双曲线
2.当k>0时,两支双曲线分别位于第一,三象限内当k<0时,两支双曲线分别位于第二,四象限内
3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交
活动5、星级挑战
1星:
1、反比例函数y=—5/x的图象大致是()
2、函数y=6/x的图像在第象限,函数y=—4/x的图像在第象限。
2星:
1、函数y=(m—2)/x的图像在二、四象限,则m的取值范围是
2、函数y=(4—k)/x的图像在一、三象限,则k的取值范围是
3星:
1、下列反比例函数图像的一个分支,在第三象限的是()
a、y=(3—π)/xb、y=2—1/xc、y=—3/xd、y=k/x
2、已知反比例函数y=—k/x的图像在第二、四象限,那么一次函数y=kx+3的图像经过()
a、第一、二、三象限b、第一、二、四象限
c、第一、三、四象限d、第二、三、四象限
4星:
1、在同一坐标系中,函数y=—k/x和y=kx—k的图像大致是
2、反比例函数y=ab/x的图像在第一、三象限,那么一次函数y=ax+b的图像大致是
5星:
1、反比例函数y2m
1xm28,它的图像在一、三象限,则2、反比例函数y
活动6、回味无穷k4k2,它的图像在一、三象限,则k的取值范围是x
1、反比例函数的图象是双曲线
2、当k>0时,两支双曲线分别位于第一,三象限内当k<0时,两支双曲线分别位于第二,四象限内
3、双曲线会越来越靠近坐标轴,但不会与坐标轴相交活动
7、终极挑战
如图,矩形abcd的对角线bd经过坐标原点,矩形的边分别平行于坐标轴,点c在反比例函数y=(k2—5k—10)/x的图像上,若点a的坐标是(—2,—2)则k的值为
《对数函数》说课稿 20
一、教学目标:
知识与技能:理解指数函数的概念,能够判断指数函数。
过程与方法:通过观察,分析、归纳、总结、自主建构指数函数的概念。领会从特殊到一般的数学思想方法,从而培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念,判断指数函数。教学难点:对底数的分类。
三、学情分析:
学生已经学习了函数的知识,,指数函数是函数知识中重要的一部分内容,学生若能将其与学过的正比例函数、一次函数、二次函数进行对比着去理解指数函数的概念、性质、图象,则一定能从中发现指数函数的本质,所以对已经熟悉掌握函数的学生来说,学习本课并不是太难。学生通过对高中数学中函数的学习,对解决一些数学问题有一定的能力。通过教师启发式引导,学生自主探究完成本节课的学习。高一学生的认知水平从形象向抽象、从特殊向一般过渡,思维能力的提高是一个转折期,但是,学生的自主意识强,有主动学习的愿望与能力。有好奇心、好胜心、进取心,富有激情、思维活跃。
四、教学内容分析
本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第一节第二课()《指数函数及其性质》。根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究指数函数的概念,图象及其性质,指数函数及其性质的应用),这是第一节课“探究指数函数的概念”。指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的`应用,所以指数函数应重点研究。函数及其图象在高中数学中占有很重要的位置。如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。本节课,主要是让学生学会如何去发现研究心的函数,为后面学习对数函数、幂函数做出铺垫。
五、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?
问题2:《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的函数关系式?
(二)导入新课
引导学生观察,两个函数中,有什么共同特征?
(三)新课讲授指数函数的定义
(四)巩固与练习例题:
(五)课堂小结
(六)布置作业
【《对数函数》说课稿】相关文章:
对数函数的说课稿01-12
对数函数及其性质说课稿07-20
《对数函数的图像与性质》说课稿11-11
对数函数及其性质说课稿07-20
对数函数说课稿12篇11-05
对数函数教学反思04-02
《对数函数》教学反思08-13
对数函数的教学反思06-25
对数函数教学反思10-28