作为一名老师,时常要开展说课稿准备工作,借助说课稿我们可以快速提升自己的教学能力。优秀的说课稿都具备一些什么特点呢?以下是小编精心整理的等可能条件下的概率说课稿,欢迎大家分享。
等可能条件下的概率说课稿 篇1
一、教材分析
1、教材的地位和作用
本节内容是在学生已经学习了必然事件、随机事件、不可能事件等知识的基础上,从上节课所讲的三种事件出发,以探索随机事件发生的可能的大小为目标,并为学生后面学习用列举法求概率及用频率估计概率奠定了基础。
2、教学目标分析
知识与技能:使学生在具体情境中了解概率的意义,能够运用概率的定义求简单随机事件发生的概率,并阐明理由。
过程与方法:通过实验、观察、分析、计算,在活动中培养学生探究问题能力,合作交流意识。并在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。
情感态度与价值观:引导学生对问题观察、质疑,激发他们的好奇心和求知欲,使学生在运用数学知识解决问题的活动中获得成功的体验,建立学习的自信心。并且鼓励学生思维的多样性,发展创新意识。
3、重难点分析
教学重点:能够运用概率的定义求简单随机事件发生的概率,并阐明理由。
教学难点:正确地理解随机事件发生的可能性的大小。
二、学法指导及学情分析
本节课共设计了6个教学活动,难易程度由浅入深、层层递进,通过游戏的形式,学生在动手操作、观察分析、类比归纳中,通过自主探究、合作交流,在教师的启发指导下,学生在轻松愉快的环境中探求新知。充分体现了“数学教学主要是数学活动教学”这一思想,体现了师生互动、生生互动的教学理念。
利用多媒体形象生动的特点,增加了课堂的趣味性和直观性,激发学生的学习兴趣和求知欲望,激活学生思维能力,增大了教学容量,对解决重点、突破难点起到辅助作用。
三、教学过程分析
第一环节:创设情景、复习引入
第二环节:引深拓展,归纳总结
第三环节:巩固知识,实际应用
第四环节:试试伸手,找找不足
第五环节:交流反思,课时小结
第六环节:课后作业,拓展升华
(一)创设情景、复习引入
判断下列这些事件是随机事件、必然事件还是不可能事件?
1、明天会下雨
2、天上掉馅饼
3、买彩票中奖
4、一分钟等于六十秒
5、老马失蹄
问题1从分别标有1,2,3,4,5的5根签中随机地抽取一根,抽到的号是5、这个事件是随机事件吗?抽到5个号码中任意一个号码的可能性的大小一样吗?
问题2抽出的可能的结果一共有多少种?每一种占总数的几分之几?
问题3掷一枚骰子,向上的一面的点数有多少种可能?它分别是什么?
问题4向上的点数是1、2、3、4、5、6的可能性的大小相等吗?它们都是总数的几分之几?
问题5你认为抽到你和抽到别人的可能性一样吗?
设计意图
通过以抽签的方式回答问题,让学生自己的亲身体验,这样容易激发起学生学习兴趣。这样安排一方面复习了必然事件、随机事件和不可能事件的内容,而且还加深了对三种事件的理解;另一方面也为过渡到本节课的教学作了一个很好的铺垫。
(二)、引申拓展,归纳总结
概率定义
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率
表示方法:
事件A的概率表示为P(A)
以上两个事件有什么共同特点?
提问:
特点1每一次试验中,可能出现的结果只有有限个
特点2每一次试验中,各种结果出现的可能性相等
1、从标有1,2,3,4,5的五根签中抽取一根,抽到4的概率是多少?
2、抛一枚硬币,正面向上的的概率是多少?
一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等。事件A包含其中的m种结果,那么事件A发生的概率为P(A)=m/n
请6名同学上台来参与模拟抽奖游戏,分三次进行
第一次全都没有奖
第二次有一部分有奖
第三次全都有奖
从此可以看出,不可能事件A的概率为0,即P(A)=0
必然事件A的概率为1,即P(A)=1
随机事件A的概率0<P(A)<1
事件发生的可能性越大,它的概率越接近1;
事件发生的可能性越小,它的概率越接近0、
(三)巩固知识,实际应用
例1掷一个骰子,观察向上的一面的点数,求下列事件的概率:
(1)点数为2;
(2)点数为奇数;
(3)点数大于2且小于5、
解:掷一个骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种。这些点数出现的可能性相等。
(1)P(点数为2)=1/6
(2)点数为奇数有三种可能,即点数为1,3,5,P(点数为奇数)=3/6=1/2
(3)点数大于2且小于5有两种可能,即点数为3,4,P(点数大于2且小于5)=2/6=1/3
例2图25、1—2是一个转盘,转盘分成7个相同的扇形,颜色分为红、绿、黄三种颜色。指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形)。求下列事件的概率:
(1)指针指向红色(2)指针指向红色或黄色(3)指针不指向红色。
解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所以可能结果的总数为7、
(1)指针指向红色(记为事件A)的结果有3个,即红1,红2,红3,因此P(A)=3/7
(2)指针指向红色或黄色(记为事件B)的结果有5个,即红1,红2,红3,黄1,黄2。因此P(B)=5/7
(3)指针不指向红色(记为事件C)的结果有4个,即绿1,绿2,黄1,黄2,因此P(C)=4/7
思考:联系第一问和第三问,你有什么发现?
(四)试试伸手,找找不足
1、一共52张不同的纸牌(已去除大小王),随机抽出一张是A牌的概率;
2、在1~10之间有五个偶数2、4、6、8、10,将这5个偶数写在纸片上,抽取一张是奇数的概率;
3、在1~10之间3的倍数有3,6,9,随机抽出一个数是3的倍数的概率;
4、一个袋子中装有15个球,其中有10个红球,则摸出一个球不是红球的概率。
设计意图
巩固学生对概率定义的理解和认识及对概率的计算公式的简单运用技能。以达到及时学习、及时应用,让学生从中找一成功的感觉,从而提高学生对学习数学的兴趣。
(五)交流反思,课时小结
如果在一次实验中,有n种可能的结果,并且他们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率P(A)=m/n。
0≤m≤n,有0 ≤ m/n≤1
因此0 ≤P(A)≤1
P(必然事件)=1 P(不可能事件)=0
(六)课后作业,拓展升华
P159练习第1题和第2题
等可能条件下的概率说课稿 篇2
一、教材分析:
“认识概率”是根据义务教育课程标准实验教科书《数学》九年级上册设计的。在六年级下册《可能性》一章中学生已经接触过不确定事件的有关事例:如在“一定能摸到红球吗”中,学生已初步体验了有些事件的发生是不确定的,知道事件发生的可能性有大小;同时,在“转盘游戏”中又体验了不确定事件发生的可能性大小;而在“谁转出的四位数大”中进一步体会到不确定事件的特点及事件发生的可能性)。本节课中,学生将再次通过摸球游戏活动,体会概率的意义,了解计算一类不确定事件发生可能性的方法,理解现实世界中不确定现象的特点,树立一定的随机概念,同时为下一节课概率的“数学模型论”建立扎实的基础。因此本节课在本章中有承上启下的作用。
知识目标:通过摸球活动,帮助学生了解计算一类事件发生可能性的方法,体会概率的意义。
能力目标:通过活动,帮助学生感受数学与现实生活的联系,体验数学在解决实际问题中的应用,培养学生实事求是的态度及合作交流的能力。
情感目标:通过学生对数据的收集、整理、描述和分析活动的创设,鼓励学生积极参与,培养学生自主、合作、探究的学习方式以及学习情趣。
教学重点难点:使学生了解计算一类事件发生可能性的方法,体会概率的意义。
二、学情分析:
本节课面对的是初二的学生。首先,从他们所掌握的知识体系上来说:在六年级下学期,学生已经接触了不确定事件,初步体会了不确定事件的特点及事件发生可能性的意义。而在本章中,学生已通过第一节的探讨进一步了解了不确定现象的特点,知道了可能性有大有小,但只是一种感性的认识,没有上升到用具体的数字描叙的理性认识。其次,从自身的能力上来说:与六年级相比他们的分析思考能力以及根据问题情景作出合理决策的能力有了很大的提高,活动对于他们更具吸引力。因此本节课我设计的学法是让学生自主、合作、探究,形成集沟通、交流、倾听于一体的完整过程,从而使学生在学习过程中,提高理解、分析、概括、思维等学习能力。
三、设计理念:
《数学课程标准》明确指出:“学生是数学学习的主人。”“动手实践、自主探索与合作交流是学生学习数学的重要方式。”为了体现新课程的理念,本节课从学生熟悉的摸球实验入手,在设计上为学生提供了广泛的自主探索、积极思考、合作交流的时间和空间,实现了学生在学习过程中获得不同数学知识的体验与发展。
数学教学是一种思维不断展开的过程,课堂上应避免以事实为基础的问答,而应采取以思维为基础的问答。因此,本节课我基本是以思维性的问答为基础,同时注重了问题设置的梯度:由易到难,层层深入。使学生能够通过思考自己解决,从而实现本节课的教学目标。
四、教学流程:
(一)、导入新课:
【通过上节课的探讨,我们知道了事情发生的可能性是有大小之分的。请同学们思考这样一个问题:
小丽有一个密码日记本,密码锁的密码是由三位数字组成的。每位上的数字都是0~9这10个数字中的一个。小丽忘了密码,如果她任意拨一个密码,恰好打开密码锁的可能性大吗?
在此同学们只是了解了可能性的一个大体的范围,这与数学知识的精确性是不符的。那么可能性的大小能否用一个具体的数值来描述呢?希望通过本节课的学习同学们会有所收获。
(二)、请你参与:
盒子里装有3个红球和1个白球,它们除颜色外完全相同,若从盒子里任意摸出一个球。
(1)猜一猜摸出的球可能是什么颜色的?摸到什么颜色球的可能性比较大?请你试一试。
(2)如果将每个球都编上号码,分别记为1号球(红),2号球(红),3号球(红),4号球(白),那么摸到每个球的可能性一样吗?
(3)任意摸出一个球,说出所有可能出现的结果。
(三)、请你掌握:
在上面的实验中,我们可以用
P(摸到红球)= 摸到红球可能出现的结果数
摸到一球所有可能出现的结果数
表示摸到红球的可能性,也称为摸到红球的概率。
(四)、请你思考:
1、如果盒子的4个球都是红色的,那么摸到红球、白球的事件属于什么事件?你能表示出它们发生的概率吗?由此你能得到什么结论?
(1)必然事件发生的概率为1,记作:P(必然事件)=1
(2)不可能事件发生的概率为0,记作:P(不可能事件)=0
2、请同学们思考并讨论一下不确定事件发生的概率是多少?
如果A为不确定事件,那么0<P(A)<1
3、想一想,若盒子里仍是装有3个红球和1个白球:
(1)用同样的方式,你能表示出摸到白球的概率吗?
(2)对比摸到红球和摸到白球的概率,你能得到什么结论?由此给你了什么样的启示?
(五)、请你做做:
1、任意掷一个均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6),“6”朝上的概率是多少?
2、一副扑克牌(去掉大、小王),任意抽取其中一张,抽到方块儿的概率是多少?抽到黑桃的概率呢?
(六)、请你设计:
通过上题的研究,我们知道,给以一定数量的球进行摸球活动,我们可以确定出摸到各种球的概率。反之,知道了摸到各种球的概率,你能否确定出球的数量。请同学们看以下练习:
用4个除颜色外完全相同的球设计一个摸球游戏。
(1)使得摸到白球的概率为1/2
(2)使得摸到白球的概率为1/2,摸到红球和黄球的概率都是1/4
你能用8个除颜色外完全相同的球分别设计出满足如上条件的游戏吗?
(七)、走进生活:
某超市为了促销商品,设立了一个不透明纸箱,装有1个红球,2个白球和12个黄球,并规定:顾客每购买50元的商品,就能获得一次摸球的机会,如果能摸到红球、白球或黄球,顾客就可以分别获得一把雨伞,一个文具盒或一支铅笔。甲顾客购买商品80元,他获得奖品的概率是多少?他得到一把雨伞、一个文具盒或一支铅笔的概率各是多少?
(八)、归航点贝:
现在同学们能不能解决导入中提出的问题了?看样子同学们的收获不少,哪位同学总结一下?
等可能条件下的概率说课稿 篇3
说教材
1.教材内容
本节选自浙教版《义务教育课程标准实验教科书·数学·七年级下册》第三章第三节。本节课主要通过几个简单的引例来说明可能性的大小可以用数来表示,这些数是1,0和大于0小于1的数,由此给出概率的定义,导出等可能性事件的概率公式。本节设置的几个例题目的主要是巩固等可能事件的概率公式。
2.教材的地位与作用
本节课是在学生通过具体情境了解必然事件、不确定事件、不可能事件等概念,并在具体情境中了解事件发生的可能性的意义,会用例举法(包括列表、画树状图)统计在简单问题情境中可能发生的事件的种类的基础上,对其中的可能性事件的进一步学习和提高。有关概率的概念,本教科书将在八年级下册学习“频数和频率”的基础上,主要安排在九年级上册学习,因此学习本节课主要是为以后的进一步学习打下扎实的基础。
说目标
1.教学目标
依据教材的内容和大纲要求,我确定了以下教学目标:
(1)了解概率的意义。
(2)了解可能性事件的概率公式。
(1)会辨别等可能事件。
(2)会用例举法(包括类表、画树状图)计算简单事件发生的概率。
(3)进一步认识游戏规则的公平性。
通过新旧知识的联结,激发学生的求知欲及进一步探索的乐趣,进一步加强了学生应用数学的意思。
2.教学重点与难点
重点:概率的意义及其表示。
难点:等可能性事件发生的条件比较复杂的情况下计算概率。
说教法
1.教法分析
基于本节课的特点和新课程标准的要求,我将采取发现与探究相结合的教学方法。根据学生的心理特点,遵循“循序渐进”原则,精心编排、设计题目,由简到难,层层递进,达到面向全体的目的。
2.学法指导
源于生活、用于生活是学习数学的主旨。本节课从学生的生活实际出发,创设教学情境,导出概率公式,教学中通过大量的实际例子,让学生知道什么是等可能性,怎样认识事件发生的可能性是否相等。
3.教学手段
利用多媒体辅助教学,扩大教学容量,提高教学效率。
说教学过程
1.创设情境,引入新课
引例小花、小君和小芳三个朋友准备一起出去玩,她们要玩跳大绳,两人摇绳一人跳。小花愿意先摇绳,但小君和小芳都想先跳,于是她们决定用抽签的办法来决定:做4个纸团,其中只有一个纸团里写有“跳”字,由小君从中任取一个纸团,抽出有“跳”字的纸团,就决定由小君先跳,这个办法公平吗?如果不公平,怎样改正才会使之公平?
2.师生互动,探讨新知
从引例中得到,在客观条件下使小君、小芳两人抽到“跳”的可能性大小相等(也称机会均等),那样才是公平的。而事实上,我们在日常生活中,常常会遇到指明可能性大小的情况,我在教学中举了一些描述实际生活中有关可能性大小的几个例子:
(1)小明百分之百可以在一分时间内打字50个以上.即小明在一分时间内打字50个以上的可能性是百分之百.
(2)小华不可能在7秒内跑完100米.即小华在7秒内跑完100米的可能性是0.
(3)通过随机摇奖,要把一份奖品奖给10个人中的一个.每人得奖的可能性是十分之一.
接着请学生结合生活经验独立举一些类似的例子。
最后教师归纳出概率的定义。在教学中给出概率的定义后,我还要求学生回答引例中3个事件发生的概率。
接着教师给出一个求事件发生的概率公式:P(A)=事件A发生的可能的结果总数/所有可能的结果总数。着重强调学生容易疏忽的适用条件:事件发生的各种可能结果的可能性都相等。还可请一些学生再举一些实例来说明这些辨别各种可能性是否相等。
3.讲解例题,综合运用
根据学生的实际情况和心理特点,在弄清等可能性的含义后,我设计了以下一个实际问题,帮助学生加深对概率公式的理解。
多媒体显示:任意抛掷一枚均匀的骰子,当骰子停止运动后,朝上一面的数是偶数的概率是多少?是正数的概率是多少?是负数的概率是多少?
教学中,教师着重讲清解法的思路和方法步骤:
(1)先分析判断是否使用等可能事件的概率公式。
(2)统计所有可能的结果数和所求概率事件所包含的结果数。
(3)把它们代入公式求出概率。
1.练习反馈,巩固新知
练习(1)从你所在小组任意挑选一名同学参加诗朗诵活动,正好挑中你的可能性是多少?
(2)转盘上涂有红、蓝、绿、黄四种颜色,每种颜色的面积相同。自由转动一次转盘,指针落在红色区域的概率是多少?指针落在红色或绿色区域的概率是多少?
练习2(抢答题)
(1)一个布袋内有8个红球和2个黑球,它们除颜色外都相同.求下列事件发生的概率:
①从中摸出一个球,是白球
②从中摸出一个球,不是白球;
③从中摸出一个球,是红球;
④从中摸出一个球,是黑球
(2)20瓶饮料中有2瓶已个过了保质期。从20瓶饮料中任取1瓶,取到已过期的饮料的概率是多少?
(3)一次问题抢答的游戏中,每个问题有4个选项,其中只有1个是正确的。抢答者随意说出一个选项,这个选项恰好是正确答案的概率是多少?
2.变式练习,拓展应用
多媒体显示:一个红、黄两色各占一半的转盘,让转盘自由转动2次,指针2次都落在红色区域的概率是多少?一次落在红色区域,另一次落在黄色区域的概率是多少?
6.反思总结,布置作业
引导学生总结本节课的所学知识,反思有什么样的收获,进一步激发学生的学习热情,也让参与反思的学生更多,在交流的过程中学会学习,完善自己的知识体系,然后布置作业,有助于学生应用能力及创新能力的培养。
等可能条件下的概率说课稿 篇4
各位老师,下午好,今天我要说的课题是:随机事件的概率
一、教材分析
1、教材所处的地位和作用
《随机事件的概率》是高中数学教材人教版教材必修3、第三章、第1节内容,是学生学习《概率》的入门课,也是学习后续知识的基础。
就知识的应用价值上来看:概率是反映自然规律的基本模型。概率已经成为一个常用词汇,为人们做决策提供依据。
就内容的人文价值上来看:研究概率涉及了必然与偶然的辨证关系,是培养学生应用意识和思维能力的良好载体。
2、重点:①了解随机事件发生的不确定性和频率的稳定性;
②正确理解概率的意义。
难点:①理解频率与概率的关系;
②正确理解概率的含义。
二、学情分析
1.学生心理特点
虽然高中学生有一定的抽象思维能力,但是概率的定义过于抽象,
学生较难理解。
2.学生已有的认知结构
(1)初中已经学习过随机事件,不可能事件,必然事件的概念
(2)学生在日常生活中,对于概率可能有一些模糊的认识。
(3)学生思维比较灵活,有较强的动手操作能力和较好的实验基础。
3.动机和兴趣
概率与生活息息相关,这部分知识能够引起学生的兴趣。
三、教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
1、知识与技能:
(1)由日常生活中的事件,理解必然事件、随机事件、不可能事件等概念。
(2)通过抛掷硬币实验,正确理解频率、概率概念,及其两者关系。
(3)利用概率知识,正确理解生活中的实际问题。
2、过程与方法:学生在课堂上经历试验、统计等活动过程,进一步发展合作交流的意识和能力。
3、情感、态度、价值观:
(1)通过试验,培养学生观察、动手和总结的能力,以及同学之间的交流合作能力。
(2)通过教学,培养学生把实际问题与数学理论相结合的能力,提高学生的探究能力。
(3)强化辨证思维,通过数学史渗透,培育学生刻苦严谨的科学精神.
四、教学策略
为了突出重点,突破难点,从而实现教学目标。在教学过程中计划进行如下操作:
1、教学手段
(1)精心设计教学结构,使学生经历质疑——解惑——应用的体验探究过程。
(2)努力创设情境案例,吸引学生的注意力,激发学生的兴趣
(3)合理设计数学实验,通过动手操作,培养学生“做”数学的精神,享受“做”数学带来的成功喜悦。
(4)充分利用软件辅助教学,便于课堂操作和知识条理化,教学更加生动形象,保证学生的注意力始终集中在课堂上。
2、教学方法
本节课贯彻“教师为主导、学生为主体、思维为核心”的教学思想,采取了以建构主义理论为指导,着重于学生实验、探索研究的启发式教学方法,结合学生分组讨论、归纳的教学方法。
五、教学用具:计算机、硬币、学生生日调查表
六、教学程序及设计的七个环节
1.情境引入:引出本章的课题,让学生体验学习概率的必要性和重要性
用“班级有无同生日的问题”引入课题
设计这个引入有两个理由:
(1)学生非常重视生日,对这个问题充满兴趣;
(2)学生普遍有一个错误的认识:“班里有同生日的人”是个小概率事件
当认知到“50个人中有两人生日相同的概率可以高达95%,基本上的班级都会有生日相同的人”,与原有的认识存大很大的差距,充分感受到概率的神奇;
事先合理设计表格,现场调查班级生日情况,发现确实有同生日的人,充分调动班级气氛,从而极大的激发学生学习概率的兴趣。(万一没有生日相同的学生,解说即使发生的可能性高达96。5%,也还是存在不发生的可能),再让学生举生活、学习等各方面的例子,再结合章头图,学生会感知到概率无处不在,概率是有用的,数学也是有用的,认识到学习概率的重要性。
2.明确课题:让学生明确本节课研究重点是随机事件的概率
通过区分四个事件的差异,引出事件的分类,并总结不可能事件、必然事件和随机事件的概念,明确本节课研究的重点是随机事件的概率。
例1的设计意图:加深对事件的分类和概念的理解,通过对“事件B”条件的改变,强调结果是相对条件而言的;
练习1的设计意图:引入典故“守株待兔” ,让学生用数学概率的知识来辨析这个典故,渗透数学的教育意义,也体现数学来源于生活。同时,学生会感知到:知道随机事件的概率的大小有利于我们做出正确的决策。
3.概念建构:寻求获得随机事件的概率的方法,并得出概率的概念,并对频率和概率作了对比和辨析
第一个步骤:引导学生用试验得到的频率去估计事件的概率
现场创设情景:学生现场“掰手腕“比试,引导学生感知到解决问题的最直接的方法就是试验。
第二个步骤:通过掷硬币试验,引出概率的定义,突破难点
(1)组织学生动手掷硬币。根据以往的实践为了追求比较好的试验效果,先对抛掷的方式作了一定的引导,保证试验的随机性,体现了教师为主导,学生为主体的一个教学理念。对于概念的理解,也会产生积极的意义。具体操作的环节如下:
严格按照书本的要求,让每位学生做10次抛掷硬币的实验,并将实验结果填入书本表格中。四个学生一组,将本组同学的实验结果统计好,填入表格中。充分利用excel软件辅助教学的强大功能,计算出各组频率并绘制出折线图。学生亲身体验到随机事件发生的不确定性,试验次数比较小时,频率是不稳定的,在汇总数据环节让学生观察表格,直观感知频率是不稳定的。
(2)通过计算机模拟试验,重复做大量的掷硬币试验,动态的让学生感知:每次试验频率是不确定的,但稳定在某个常数附近
(3)结合历史上数学家所做的大量独立重复试验,对比两张频率的折线图,得出结论,形成概率的统计定义。
这一段是本节内容的难点,需要把对数据、图表的直观印象转化为抽象的概率定义。而通过实验操作、观察图表、分组讨论、归纳总结,很好的突破了这一难点,并实现了通过抛掷硬币实验,正确理解频率、概率概念,及其两者关系。培养学生观察、动手和总结的能力,以及同学之间的团队精神这一教学目标。
4.概念深化:进一步明确频率与概率的区别与联系
我安排了两个练习
例2即时训练,设计意图是落实重点让学生熟练掌握用频率估计概率这一方法,强调频率的稳定性和概率的确定性;
练习2的设计意图是是为了说明每次试验的结果具有随机性,进一步提升本堂课的主题;
通过表格和图像两种语言,生动直观的让学生感觉到:
不同点:频率是随机的,在试验前不能确定;概率是确定的值,是客观存在的,与试验无关
联系:随着试验次数的增加,频率会稳定在一个常数附近,得到概率的估计值。
5.练习反馈
(1)练习3的设计意图:这个练习综合了本节课的重点,能很好的反馈落实情况,而且通过训练巩固了所学知识点
6.归纳小结
小结的作用是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结知识内容及研究方法,提高学生的反思、总结的意识和语言表达能力。同时我会补充帮助学生全面地理解,掌握新知识。特别地,在小结过程中会提出本节课的数学思想:实验、观察、归纳和总结。
7.课后探究
书本练习1
这个探究题的设计意图:一方面巩固本节课的内容,也为下节课的学习搭好桥梁。
七:板书
设计意图:合理、整洁的板书能够让学生对本节课内容结构更好的掌握
以上是我对这堂课的理解与设计,敬请各位专家批评指正,谢谢。
等可能条件下的概率说课稿 篇5
一、说教材:
课程标准强调《统计》教学必须从学生熟悉的生活情境和感兴趣的事物出发, 低年级要求:让学生经历简单的数据统计过程,使学生在具体的操作活动中,来体 验数据的收集、整理、描述和分析的整个过程,从中掌握一些基本的统计知识和方 法。教材选取的例题给我们 很好地提供了一个如何去使用教材,设计教学过程的 信息。
二、说学情:
上学期学生已经学习了比较、分类,能正确进行计数,所以填写统计表不会太 困难,关键在于引导学生学会收集信息,整理数据,画统计图,能利用统计图表中 的数据作出简单的分析,能和同伴交流自己的想法,体会统计的作用。 根据一年级学生的年龄特点和本课的要求,我制定了如下教学目标:
三、说教学目标:
1、借助情境,激发学生参与统计活动的兴趣,感受到统计活动的必要性。培养 学生初步的统计意识。
2、在情景中初步掌握数据的收集和整理的方法,经历统计的过程。
3、初步感知简单条形统计图及统计表,能将统计结果填入表内,会在格子纸上 画简单的统计图,能根据统计图表中的数据,提出和回答一些简单的问题。
4、让学生通过独立思考、观察交流等方式感受统计的意义和作用,初步培养学 生解决问题的能力,体会到生活中处处有数学,加深对数学的喜爱之情。 四、教学重点: 经历收集和整理数据的过程,初步认识统计图和统计表,正确填写统计图表。
五、教学难点:
引导学生体验数据的收集和整理过程,能看懂图表。能根据统计图中的数据,进 行简单分析,感受统计的意义和作用。
六、说教学理念与教法:
低年级儿童活泼好动,所以我从学生熟悉的生活情境和感兴趣的事物出发,为他 们提供观察和操作的机会。将整堂课的设计分成“创设情景------收集、整理资料 ------操作实践------拓展深化”四个层次,我以教材为基础,本着数学来源于生活 这一事实,力求从实际出发,增加学生对数学的亲近感,使学生乐学、激发学生学习 的主动性。 围绕教学目标,我在本节课的教学过程时,力求体现以下理念:
1、在生活中学数学 让学生学习现实的数学是新课程的要求。 所以“统计”这节课我紧密联系学生的生 活实际,创设学生熟悉的情境,从学生喜欢看动画片引入,激发兴趣,调动学生的探 究欲望。其次结合本校“播种习惯责任树,人人为树添果实”的活动,让学生在熟悉 亲切的生活背景素材中学习,既可以激发学生的学习兴趣,还能让学生感受到生活中 处处有数学。
2、在活动中学数学 让学生学习动态的数学是新课程的要求。 使学生形成统计观念, 最有效的方法是让 其真正投入到统计活动的过程中,所以我设计运用投票表决的活动,来确定最喜欢看 的是哪部动画片,从中让学生初步体验统计的过程,也就是经历分一分、排一排、数 一数的过程,学会数据的收集和整理。学生在经历“动态建构运动”之后,再让他们 独立观察教材提供的静止的画面上采集信息、分析、整理数据,进行填写统计表、绘 制统计图、说说统计作用。一方面巩固刚刚建构的统计方法,培养学生的动手实践和 独立解决问题能力;另一方面进行“间接思维” 训练,既锤炼学生思维的深刻性,培 养他们的观察能力与独立思考的能力。在统计红、黄、蓝苹果个数的活动中,不仅让 学生学会了解决实际生活问题,还让学生感悟到一个方格表示 2 人,那么 1 人可以用 半格来表示,为后续学习打下能力基础。学生在这些活动中通过实践操作,体验到了 知识的形成和发展过程,也认识了统计及其作用,获得了数学知识,发展了能力。
3、在问题中学数学 课程标准明确指出:学生是数学的主人,教师是数学学习的组织者、引导者与合 作者。在教学中,使学生通过自己的探讨感受到,要解决老师提的问题必须调查统计, 在调查统计后,学会思考,能根据数据回答和提出简单的问题,深化对统计意义的理 解,同时初步培养学生提出问题及解决问题的能力。
4、人人都得到发展 学生通过教学活动,理解和体验了统计的过程,体会到统计在生活中的意义和作 用。同时结合“习惯责任树”,进行德育教育,使学生获得全面发展。
七、说学法:
本节课在学生学习方法上力求体现:
1、联系生活实际解决身边问题,体验学数学用数学的乐趣。
2、在具体的生活情境中让学生亲身经历发现问题、提出问题、解决问题的过程。
3、通过动手操作, 独立思考,讨论交流等方式, 完善自己的想法,构建自己的学法。
学习方法分为以下三种:
1、自主学习法: 让学生去亲生体验数据产生的过程,使学生的认识不仅仅停留在表面,积极 组织学生人人参与,以学生为主体,结合教材内容,紧密生活实际,让学生自己 带着数学走入生活,解决和分析生活中的一些数学问题,通过学生的独立探究, 使学生经历学习过程, 获得成功的体验, 是学生在 “参与中体验, 在体验中发展” 。
2、交流互补法: 通过同学之间相互讲解、演示、操作等方法让学生开动脑筋,互相讨论,找 出解决问题的途径并利用生生对话,互相启发,碰撞出只会的火花,以交流促发 展。
3、练习促进法: 通过有针对性地练习,使学生形成技能技巧,达到举一反三的目的。
八、说教学过程设计
(一)创设情境,激趣导入 开始提问: “同学们, 你们都喜欢小动物吗?你最喜欢什么小动物?” 这样的问题, 贴近学生的生活,能激发学生的学习兴趣,调动学生学习的积极性。学生说出自己 喜欢的小动物,用什么记录呢?用什么方式能让我们一眼看出喜欢那种小动物的人 最多,哪种最少呢?引出课题“统计”
(二)探究与体验 统计时,我们要记录数据,记录是,你准备用什么符号来记录?引导学生表达自 己喜欢的记录方法。在学生已有的知识和经验的基础上鼓励学生用自己喜欢的方法 把喜欢每种小动物的人数统计出来,加深学生对数据统计过程的体验,体现统计方 -2- 式的开放性。 通过展示统计表的填写过程,引导学生回顾以前学过的知识。从统计表中,提问 学生知道了什么?能提出什么问题?通过观察统计表,培养学生发现问题、解决问 题的能力,进一步体会统计的作用。 当我们顺利清晰的将数据记录后, 如何使我们的数据一目了然呢?给学生们留下 讨论的空间与时间,然学生们讲述自己的方法。 最终教师引出条形统计图的概念及应用。 但是, 在解决较大数据的时候, 格子不够用怎么办?继续讨论并要学生给出方法 及结论。 我们可以将一格表示多个数, 从而使我们的统计图在统计较大数据时, 依旧通用。 (三)自主学习,合作研讨 统计天气变化, 从解决学生身边的实际问题入手, 使学生体会数学与生活的密切 联系。并进一步体会统计的必要性及统计的作用。 再次大胆放手,让学生小组合作完成统计任务,独立完成统计表和统计图,再次 经历数据的整理过程,初步感悟较简单的统计方法。 在这个环节中, 学生根据记录数据独立完成统计表和统计图并提出问题、 解决问 题,再一次体验了数据的整理、描述、分析的过程。
(六)教师小结,激励评价 这节课很快就要结束了, 哪位同学能说说这节课你有什么收获, 你觉得最成功的 是什么? 本课设计让学生通过的学习,在内心感受到统计知识与生活的密不可分,通过 师生、生生的交流和交往,开展各种灵活多样的研究活动,有利于提高学生的交际 能力和表达能力。有利于培养学生的合作意识和合作能力。
等可能条件下的概率说课稿 篇6
教学目标
1、让学生理解必然事件、不可能事件、随机事件的概念;
2、让学生经历试验等活动会判断必然事件、不可能事件、随机事件。
3、培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。
重点难点
重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
难点:必然事件、不可能事件、随机事件的区别与转化关系。
教学过程
3.1第一学时
教学活动
活动1
教学过程:
一、创设情境,导入新课:(摸出红球表示运气好)
1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。
2、教师再拿出事先准备好的另一只装的全部是白球的不透明箱盒子,让坐在教室右边部分的三四位同学摸球,而学生摸出的全部是白球,摸到白球的学生个个唉声叹气,叹自己运气怎么就不好呢。
师:真的是教室左边部分的同学运气好,右边部分的同学运气不好吗?我们一起来观察两个盒子里的秘密。
3、教师揭秘,分别展示两个不透明盒子里的球,学生观察第一个盒子里全部是红球,第二个盒子里全部是白球。
师:这个游戏公平吗?
生:不公平。
师:为什么不公平呢?请大家思考
生1:第一个盒子里装的全部是红球,必然摸到红球。第二个盒子里装的全部是白球,摸到红球显然是不可能的。
师:回答得非常好,请坐。
师:如果现在让大家来摸球,你们可以确定摸出的球是什么球吗?
生2:在第一个盒子里摸球,摸出的球肯定是红球,在第二个盒子里摸球,摸出的球肯定是白球。
概念:(1)在一定条件下,必然会发生的事件叫做必然事件。
(2)在一定条件下,不可能发生的事件叫做不可能事件。
师:怎样使游戏公平呢?
生:把球混装在一起。
4、教师将两箱子里的球混装在一个盒子里,让同学们摸出红球,结果学生有的摸出红球,有的摸出白球。
师:你们能事先预测摸出的球是什么球吗?
生:不能。
概念:(3)在一定条件下,可能发生也可能不发生的事件叫做随机事件。
学生阅读三个概念。
师:你们能举出一两个生活中的随机事件吗?
(学生有的说抽签,有的说投篮,有的说掷硬币,有的说掷骰子等)
师:下面我们就分别来做抽签游戏和掷骰子游戏。
二、抽签游戏,体验新知
问题1 5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:
(1)小军首先抽到的号共有几种可能?
(2)抽到的序号小于6吗?
(3)抽到的序号会是0吗?
(4)抽到的序号会是1吗?
学生阅读问题1后,强调本活动是小军一人首先抽签的重复试验.
1、活动准备:
(1)检验签的序号是否完整,签的形状、大小是否相同。
(2)观察每次抽签条件是否相同。
(3)在座每位同学记录每次抽签结果。
2、抽签活动:让四位学生扮演小军角色配合老师进行抽签演示试验,抽签的同学宣布抽签结果。
3、整理、分析数据
(1)试验的数据分别是什么?有多少个?
(2)这些数据的出现有规律吗?
(3)以上数据中,最小的序号是几号?最大的呢?
(4)每个序号出现的频数各是多少?序号1到5都出现了吗?
4、回答书中的问题,并判断以下三事件是什么事件:
(1)抽到的序号小于6。
(2)抽到的序号是0。
(3)抽到的序号是1。
三、掷骰子游戏,验证新知
问题2小伟掷一个质地均匀的正方体骰子,骰子的六个面上分
别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,
(1)可能出现哪些点数?
(2)出现的点数大于0吗?
(3)出现的点数会是7吗?
(4)出现的点数会是4吗?
1、学生学生阅读问题2后,猜测以上问题的结果。并判断以下三事件是什么事件:
(1)出现的点数大于0。
(2)出现的点数是7。
(3)出现的点数是4。
2、掷骰子活动
(1)教师演示规范掷骰子的方法。(避免学生活动时骰子乱蹦,骰子转动的时间过长)
(2)学生分组,小组内每位同学都可掷骰子,但是必须记录每次掷的结果。(愿每个小组内的同学合作)
(3)小组内掷骰子活动。
(4)像问题1一样整理、分析数据
3、验证猜测结果的准确性。
四、抢答游戏,应用新知
教材P128练习
五、反思小结,回味新知
1 、这节课你学到了什么?
2、你体会到了什么?
3、最让你难忘的是什么
六、课后演练强化新知
作业:教科书P134页的习题25.1第1题。
活动2【测试】课堂测评
袋中只有5个红球,能摸到红球。
打开电视机,正在播动画片
袋中有3个红球,2个白球,能摸到白球。
将一小勺白糖放入水中,并用筷子不断搅拌,白糖溶解。
测量某天的最低气温,结果为-150℃
早晨的太阳一定从东方升起。
小红今年15岁,她一定在念初三。
任意掷一枚硬币,正面向上。
一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来,
砸在水泥地面上,没有摔破。
等可能条件下的概率说课稿 篇7
1、 说教材
作为教学体系的一个重要分支,概率的内容虽然相对比较抽象,但其中包含丰富的辩证思想,而且在现实生活中也有着广泛的应用。初三阶段概率的求法主要涉及三个方面,即古典概率、几何概率、和统计概率。本节课是求概率方法的第一节课,针对古典概型的问题,通过列举所有等可能结果来计算随机事件发生的概率。其中,对于有序地、不重不漏地列举所有可能出现的结果,分类的意识至关重要,这种意识也为继续研究古典概率包括高中的排列组合提供了一种思维方法。
另一方面,学生在学习本节课之前,已经对事件的可能性有了初步的认识,并且能够计算简单事件发生的可能性。但是,真正列举事件的结果,学生并没有经验,也很难想到列表和画树状图这些列举方法,这是学生认知上的难点。但是作为教师也不能直接告诉学生怎样列,让学生简单的记忆和模仿,所以在教学过程中要尽量鼓励和引导学生主动探究和构建知识结构,利用分类的方法有序地列举,亲身经历列表和画树状图这两种方法的形成过程,并在应用中逐渐加深理解。
2、 说目标
(1)在具体情境中了解概率的意义,初步学会利用列举法(列表、画树状图)计算随机事件发生的概率。
(2)经历利用有序分类思想合理列举随机事件所有可能发生的结果的过程,提高学生化复杂问题为简单问题的能力,发展思维的条理性。
(3)鼓励和引导学生主动探究和建构知识结构,培养勇于探索的学习精神;在利用概率解决某些实际问题的过程中增强应用意识。
其中,运用列举法(列表、画树状图)计算随机事件的概率是本节的教学重点。而如何有序地列举所有可能发生的结果并把结果直观地呈现出来,则是本节课的教学难点。
3、 说教学方法
根据本节课教学内容的特点和学生的实际情况,在教学过程中采用了启发与探究相结合的教学方法,并利用计算机辅助教学,增强课堂实例的直观性和启发性。
4、 说教学程序
具体教学过程分为:复习旧知,形成概念;经历过程,形成方法;尝试应用,发展认知;课堂小结,布置作业。
(1)复习旧知,形成概念。
学生已经学习过事件与可能性,并且能求简单事件发生的可能性,所以,老师首先利用当时的一道题,启发学生回忆:
罐子里有10枚除颜色外都相同的棋子,其中有关4枚黑子, 6枚白子, 从罐子里随意摸出一枚棋子, 求摸出一枚黑子的可能性。
我们已经知道一个事件发生的可能性有大小之分, 而表示这个可能性大小的数值, 我们就称之为概率。本节课我们就来进一步理解概率, 学习概率的求法。
教师板书概率的定义, 并引导学生明确三个问题:
表示一个事件发生的可能性大小的数值, 称为这个事件的概率.
(1) 概率的记法: P(事件)。
(2) P( 必然事件 )=1, P( 不可能事件 )=0。
(3) 概率是反映随机事件发生可能性的大小, 比如说概率是0.01, 说明该事件发生的可能性比较小, 并不是说100次之中必然发生1次。
然后,教师向学生列举生活中有关概率的一些问题:
北京气象台天气预报:“明天白天,阴转小雨,降水概率是60%……”
啤酒瓶盖掉地上,盖面朝上的概率有多大?
在2004年雅典奥运会女排决赛中,规定五局三胜,在俄罗斯2︰0领先的情况下,中国队夺得金牌的概率有多大?
……
通过这些实例,一方面让学生体会概率在现实生活中的作用,另一方面引出接下来的学习任务:我们应该怎样计算概率?
2、经历过程,形成方法。
例1:亮亮的`妈妈在网上申购2008奥运会门票,结果只申购到一张,一家三口人谁去呢?妈妈就让亮亮想一个办法。亮亮想到自己刚刚学过概率的知识,就提出这样一个方案:同时掷两枚硬币(通常把标有币值的一面称为正面,另一面为反面),如果都是正面朝上,爸爸去;如果都是反面朝上,妈妈去;如果是一正一反,亮亮去。说完之后,爸爸和妈妈相视之后会心一笑:同意!你知道爸爸妈妈为什么会心一笑吗?
为什么选用这个题目,是因为此例看似简单,但是对于事件中所有可能结果个数的分析有可能激起学生的认知冲突,有助于突出本节课的学习重点和难点,而对情境加以丰富,是为了更好地激发学生学习的热情。
对于这个问题的分析,学生讨论的焦点自然集中在结果是三种还是四种的问题上,教师从以下两个方面来帮助学生理解这个问题:
第一, 从表面上看,“一正一反”和“一反一正”给我们的感觉一样,但是对于每一枚硬币而言,结果是不同的,如果我们把这两枚硬币命名为“A”和“B”,“A正B反”和“A反B正”显然是不同的结果,所以可能的结果是四种而不是三种。
第二, “两个反面”、“两个正面”和“一正一反”三种结果出现的可能性是不同的,出现一正一反的可能性要大一些,这时,实验的所有结果不是等可能的。
之后,教师让学生解释问题情境中爸爸妈妈为什么会心一笑,让学生感受到其中暖暖的亲情。
从这个例子中,我们知道要正确计算随机事件发生的概率,就必须准确列举实验中所有等可能的结果。对于一个复杂的问题,怎样才能不重不漏地列举出所有可能的结果呢?
我启发学生思考:你怎样列举学校的所有教室?学生想到可以按照楼层列举,也可以按照年级列举,这实际上就是利用分类的思想方法把复杂问题化为相对简单的问题来列举,做到不重不漏。
回到例1,学生通过讨论,就可以想到以下列举的方法:
方法一:第一枚硬币为正,有(正,正)(正,反);第一枚硬币为反,有(反,反)(反,正)。
方法二:两枚硬币相同,有(正,正)(反,反);两枚硬币不同,有(正,反)(反,正)。
方法三:出现正面的个数为0,有(反,反);出现正面的个数为1,有(正,反)(反,正);出现正面的个数为2,有(正,正)。
……
在第一种分类列举的方法中,我们首先分为第一枚为正、第一枚为反两大类,在各类中又分别分为第二枚为正、为反两小类,把结果写在后面,这时我们用一些线条把它们连起来,就形成了一种树状结构图,我们把它称为树状图;如果我们把第一枚的正、反两类写在左边,把第二枚的正、反两类写在上面,并把结果写在中间,就形成了表状结构图,于是就得到了画树状图和列表这两种直观、形象、易于操作的列举方法。
3、尝试应用,发展认知。
例2 有两组牌,第一组牌面数字是1、1、2,第二组牌面数字是1、2、3,牌面朝下.随机从组牌中各取出一张,判断这两张牌面的数字之和为几的概率最大。
在设置这个问题时,教师特意在两个地方增加了难度,其一是第一组出现两张相同的牌;其二是在设计所求问题时,没有问两张牌面的数字之和是某一个数字的概率,而是判断数字之和为几的概率最大。这样做的目的是尽量让学生体会列表和画树状图这两种方法的必要性和应用过程,而不是轻易地直接列举所有可能的结果,口算出答案。
因为学生已经初步形成了列举方法,所以能够比较顺利地解决。
教师在学生回答的基础上,板书解答过程。(略)
然后,教师提出问题:你可以归纳列举法求概率的一般步骤吗?
对于这个问题,学生一方面曾经学习过求可能性的步骤,另一方面也经历了完整的解题过程,所以比较容易归纳:
(1) 列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否相等;
(2) 如果都相等,再确定所有可能出现的结果个数n和其中出现所求事件A的结果个数m;
(3) 用公式计算所求事件A的概率,即P(A)=m/n。
例3 甲、乙、丙三人互相传球,由甲开始发球,并作为第一次传球,经过三次传球后,球仍回到甲手中的概率有多大?
相对来讲,此题较难。一方面难以列表,另一方面在画树状图时不会确定是哪几层。教师给学生一定的时间独立分析,在学生回答的基础上启发他们:此题背景是三人传球,而且传三次,用列表的方法难以操作;如果用树状图的方法,谁作为树的第一层、第二层?此时,我们仍然借助分类的方法分析,甲第一次传球可能给乙,也可能给丙,那么我们就把第一次传球的对象作为第一层。进一步分析,如果是乙,那么第二次传球的对象就有可能是甲和丙……,依次进行下去,我们就可以画出树状图了。
在用树状图法解题之后,教师启发学生思考:为什么不能用列表法列举?你认为什么情况下能用列表法,什么情况下不能用?
有了亲身经历,学生很容易能够明确:如果事件是三步或者三步以上的实验时,难以用列表法,此时应该采用画树状图法。
接下来,安排了两个练习题,其中的练习1比较简单,既可以画树状图法也可以列表;而练习2是三步实验的事件,是让学生体会画树状图法的优势。
练习1:小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘可以分成几个相等的扇形,游戏者同时可以转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么就成功配成了紫色,用列表法求游戏者获胜的概率是多少。
练习2:甲口袋有两个相同的小球,它们分别写有字母A、B,乙口袋装有三个相同的小球,它们分别写有字母C、D、E,丙口袋装有两个相同的小球,它们分别写有字母H、I,从三个口袋各随机取出一个小球,求取出的三个小球上全是辅音字母的概率是多少?
至此,学生通过亲身经历列举法的各种方法,在应用过程中,主动建立和完善对列表法和画树状图法的认知,初步体会分类思想在有序列举过程中的作用,初步掌握运用列举法计算简单事件发生的概率。
4、课堂小结,布置作业。
根据本节课的教学目标,教师启发学生从以下三个方面进行小结:
(1)表示一个事件发生的可能性大小的数值称为概率。正确计算随机事件发生概率的关键是不重不漏地列举所有可能出现的结果。列举时可采用列表法、画树状图法或其他分类列举的方法,如果事件是三步或三步以上的实验时,采用画树状图法较为方便。
(2)不管是哪一种列举方法,列举的过程都是分类分类讨论思想方法的应用,我们常常借助分类的方法把复杂问题转化为简单问题来解决。
(3)概率在现实生活中有着广泛的应用,我们应该尝试利用概率的知识来解决身边的一些问题。
为了落实列表和画树状图求概率的基础知识和基本技能,教师布置了如下作业:课本154页3、4、5。
等可能条件下的概率说课稿 篇8
一、教材分析
概率是高中数学的新增内容,它自成体系,是数学中一个较独立的学科分支,与以往所学的数学知识有很大的区别,但与人们的日常生活密切相关,而且对思维能力有较高要求,在高考中占有重要地位。
本节内容在本章节的地位:《条件概率》(第一课时)是高中课程标准实验教材数学选修2—3第二章第二节的内容,它在教材中起着承前启后的作用,一方面,可以巩固古典概型概率的计算方法,另一方面,为研究相互独立事件打下良好的基础。
教学重点、难点和关键:教学重点是条件概率的定义、计算公式的推导及条件概率的计算;难点是条件概率的判断与计算;教学关键是数学建模。
二、教学目标
根据上述教材分析,考虑到学生已有的认知结构心理特征,我制定如下教学目标:
基础知识目标——掌握条件概率的定义及计算方法
思想方法目标——归纳、类比的方法和建模思想
能力培养目标——培养学生思维的灵活性及知识的迁移能力
根据这两年高考改卷的反馈信息,考生在概率题的书面表达上丢分的情况是很普遍的,因此本节课还想达到:
表达能力目标——培养学生书面表达的严谨和简洁
个性品质目标——培养学生克服“心欲通而不能,口欲讲而不会”的困难,提高探索问题的积极性和学习数学的兴趣
三、教法
在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以生为本,遵循学生的认知规律,坚持以教师为主导,学生为主体的教学思想,体现循序渐进的教学原则,我采用引导发现法、分析讨论法的教学方法,通过提问、启发、设问、归纳、讲练结合、适时点拨的方法,让学生的思维活动在老师的引导下层层展开,让学生大胆参与课堂教学,使他们“听”有所“思”,“练”有所“获”,使传授知识与培养能力融为一体。
四、学法
以建构主义为指导,采用以启发式教学为主,同时结合师生共同讨论、归纳的教学方法,根据学生的认知水平,为课堂设计了:
①创设情景——引入概念
②类比推导——得出公式
③讨论研究——归纳方法
④即时训练——巩固方法
⑤总结反思——提高认识
⑥作业布置——评价反馈
六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。
五、教学过程
创设情景——引入概念
首先引入两个实际问题,激发学生的兴趣。
【实例1】3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,最后一名同学抽到中奖奖券的概率是多少?若第一个同学没有抽到中奖奖券,则最后一名同学抽到中奖奖券的概率是多少?
【实例2】有5道快速抢答题,其中3道理科题,2道文科题,从中无放回地抽取两次,每次抽取1道题,两次都抽到理科题的概率是多少?若第一次抽到理科题,则第二次抽到理科题的概率是多少?
每个实例有两个问题组成,后一个问题多一个限制条件,教师引导学生对比两个实例中前后问题的区别和联系,概括出条件概率的定义。
由于判断事件的类型对选择概率公式起着决定性影响,因此在引入定义后让学生再做一组判断题练习以巩固对定义的理解。
【练习】判断下列是否属于条件概率
⒈、在管理系中选1个人排头举旗,恰好选中一个的是三年级男生的概率
⒉、有10把钥匙,其中只有1把能将门打开,随机抽出1把试开,若试过的不再用,则第2次能将门打开的概率
⒊、某小组12人分得1张球票,依次抽签,已知前4个人未摸到,则第5个人模到球票的概率
⒋、两台车床加工同样的零件,第一台的次品率未0.03,第二台的次品率为0.02,两台车床加工的零件放在一起,随机取出一个零件是发现是次品,则它是第二台机床加工的概率是多少?
⒌、箱子里装有10件产品,其中只有一件是次品,在9件合格品中,有6件是一等品,3件二等品,现从中任取3件,若取得的都是合格,则仅有1件是一等品的概率
通过以上练习使学生能准确区分条件概率与一般概率。
等可能条件下的概率说课稿 篇9
深入其境方知教材别有洞天,品尝其味才知教材魅力无限。深入解读课标,明晰知识结构,就会在教学实践中找到切入点、结合点,有的放矢地进行教学,实现课堂的高效。
今天我说课的内容是人教版小学数学第一学段“统计与概率”专题。下面我主要从以下三个方面与大家进行交流。一,说课标,说《统计与概率》专题的总体目标和第一学段目标及第一学段课程内容;二,说教材,说教材的编写特点、编排体例、知识和技能的立体式整合;三,说建议,说教学建议、评价建议及课程资源的开发和利用。
一、说课标:
1、总体目标:
经历在实际问题中收集和处理数据、利用数据分析问题、获取信息的过程,掌握统计与概率的基础知识和基本技能。体会统计方法的意义,发展数据分析观念,感受随机现象,获得分析问题和解决问题的一些基本方法,体验解决问题方法的多样性,发展创新意识。 积极参与数学活动,对数学有好奇心和求知欲。体会数学的特点,了解数学的价值。
2、第一学段目标:
知识与技能:
经历简单的数据收集、整理和分析的过程,了解简单的数据处理方法。(新课标将“掌握”变成了“了解”,降低了要求。而且把“初步感受不确定现象”这一目标放在了第二学段。)
数学思考:
能对调查过程中获得的简单数据进行归类,体验数据中蕴涵着信息。(原课标中要求学生能选择有用信息进行类比,此处降低了要求。)
问题解决:
能在教师的指导下,从日常生活中发现和提出简单的数学问题,并尝试解决,体验与他人合作交流解决问题的过程。
情感态度:对身边与数学有关的事物有好奇心,能参与数学活动,了解数学可以描述生活中的一些现象,感受数学与生活有密切联系。
3、第一学段课程内容:
1、能根据给定的标准或者自己选定的标准,对事物或数据进行分类,感受分类与分类标准的关系。(原课标中要求对物体进行比较、排列,新课标此处不做要求)
2、经历简单的数据收集和整理过程,了解调查、测量等收集数据的简单方法,并能用自己的方式(文字、图画、表格等)呈现整理数据的结果。
3、通过对数据的简单分析,体会运用数据进行表达与交流的作用,感受数据蕴涵信息。(原课标中要求学生会求简单的平均数,新课标中此处不做要求,而且新课标中把可能性的知识放在了第二学段。)
新课程标准根据“统计与概率”部分第一、二学段内容和要求的变化,对“统计与概率”部分的教学顺序进行重新设计,并对具体内容进行了修订。
① 第一学段调整教学内容,降低教学要求。只分别在一下、二下、三下安排统计的教学。
就现行一年级数学教材来说,将一年级上册“分类”单元的教学内容移到一年级下册,将分类与统计结合编排为“分类与整理”,体现分类与统计的关系。
将一年级下册“统计”单元的内容后移。
二、说教材
(1)编排特点(所教年级)
1.内容的选择注意联系学生的生活实际,激发学生学习的兴趣。
如统计学生体重的变化和视力情况、统计学生参加什么课外小组、过往车辆,调查同学们喜欢吃什么蔬菜等。
2.注意让学生经历数据的收集、整理、描述的过程。
使学生在收集、整理、描述数据的过程过程中既学习一些简单的统计知识,又初步了解了统计的方法,认识统计的意义和作用;如通过统计学生喜欢什么动物卡片、什么玩具、喜欢吃什么主食、喜欢什么体育比赛等,了解到大家的爱好、特长是什么,知道一些生活常识等等,使大家体验到统计确实是很有用的。
3.让学生进一步认识统计的意义和作用。
本册统计教学内容注重对统计数据的分析,根据统计结果作出简单的合理的预测,初步体会统计对决策的作用。如例2及后面的做一做、练习二十二的第2、3、4题,让学生根统计结果据预测20分钟后来的第一辆车最有可能是什么车?根据五年级比二年级近视的人多,根据一周每天电视机销售情况和学生需要增添什么图书等提出合理化建议,初步体会统计对决策的意义。
(2).编排体例:
课例的设置包括主干系统和辅助系统,主干系统包括课例和例题,例题基本上是由主题图、导入框和情景问题组成。辅助系统内容丰富,包括:做一做、练习题。
(三)、知识与技能的立体式整合
统计知识部分:包括分类、统计表、统计量和统计图
分类出现在一年级上册
统计表是出现在一下的单式统计表和出现在二下的复式统计表。统计表数据呈现暗示学生可以根据表填图,反过来也可以根据统计图来填表。
统计量包括平均数、中位数和众数
平均数出现在三年级下册,《中位数》出现在五年级上册, 《众数》出现在五年级下册。
统计图的知识贯穿在小学各个年级。
一年级上册:象形统计图。
一年级下册:以一当一的条形统计图。
二年级上册:以一当二的条形统计图。
二年级下册: 以一当五的条形统计图。
三年级下册:横向单式条形统计图、起始格与其他格代表的单位量不一致的条形统计图。
四年级上册:《复式条形统计图》。
四年级下册:《折线统计图》。
五年级下册:《复式折线统计图》。
六年级上册:《扇形统计图》。
六年级下册《分析、判断、预测》
概率方面:
三年级上册:《可能性》,概率的起始部分,只停留在质的体验上,为后继可能性的大小、等可能性打基础。
五年级上册:《统计与可能性》从三年级上册的定性向定量过渡,培养概率思维观察分析社会生活中事物。
综上所述统计与概率知识反映出的阶段性与发展性的设计特点是非常清晰与明显的, “统计与概率”的教学要求是相互渗透,循序渐进,逐步深化的,第一学段内容是第二学段内容的基础和前提,第二学段内容是第一学段内容的螺旋上升和自然发展。这样的安排符合学生的学习规律和年龄特点,更好地体现了义务教育阶段数学课程的基础性、普及性和发展性,从而使“人人都能获得良好的数学教育”成为现实。
三、说建议
(一)说教学建议
(1)注意调动学生的积极性,让学生发挥主体作用。
由于学生已经学过单式统计表,复式统计表的填写可让学生自主探索后合作交流,最后全班进行讨论达成共识,明确单式统计表和复式统计表的联系和区别,充分发挥学生的主体作用。
(2)注意让学生体会统计对决策的意义和作用。
根据统计表回答问题,可让学生独立思考,要让学生多发表想法,对体重过轻或过重的同学提出合理的建议,体会统计的意义和作用。
(3)可以根据本地的实际情况,灵活选取素材进行教学。
没有条件进行现场统计的学校,可通过放录像或做游戏的形式进行统计,统计时注意用画正字记录,便于用1格表示5个单位。学生可在教师引导下独立完成统计图,如果统计中出现不是整5的数据,可在条形图上方把数据标明,条形图位置要基本准确。
(4)注意培养学生实践能力、合作精神和创新精神。
有条件的学校可进行社会调查,培养学生的实践能力、合作精神和市场经济意识,体会统计在经济活动中的作用。
(二)、评价建议
评价的目的是全面了解学生的学习情况,激发学习热情,促进学生的全面发展。评价也是教师反思和改进教学的有力手段。
1.恰当评价学生的基础知识和基本技能
结合生活情境考察学生初步的统计意识和解决简单问题的能力。如:能否运用适当的方法收集数据,在收集数据的基础上能否将这些数据进行分类、整理和描述,能否确定自己的方案。
2、注重学生情感态度的评价
科学界已指出:真正决定人类智慧的不是智商,而是情商。而情商可以经过后天的培养。因此,教师应注重在教学过程中给予学生一定的情感评价,这样会促进学生产生极大的学习热情。课堂中要对学生学习态度、学习兴趣与自信心等进行评价。在评价语言上,注意采用鼓励性语言,发挥评价的激励作用,通过评价让学生体验到学习的快乐、成功的喜悦。
3、注重对学生学习过程的评价。
评价过程应关注学生的个性差异,保护学生的自尊心和自信心,要做到客观、公正地挖掘每一个学生学习中的闪光点,正确评价每一个孩子,促进学生全面发展。
4、、体现评价主体多元化和评价方式的多样化
采取教师评价和学生自己评价、同伴互评、家长评价相结合。评价方式要多样化。包括书面测验、口头测验、开放式问题、活动报告、课堂观察、课后访谈、课内外作业、成长记录等,我们一小每班都建立了QQ群,老师和学生也建立了博客,采取网上交流的方式进行评价也是非常可行的。
(三)、课程资源的开发与利用
生活处处皆数学,身边处处是资源。课程资源的开发与利用,可以帮助学生顺利地走入数学课堂,学习数学知识。
(1)开发利用文本资源。教科书、教师用书、教与学的辅助用书、教学挂图都是文本资源,我们要充分利用这些文本资源。
(2)开发利用多媒体资源。我们第一小学班班有电脑,有多媒体设备,我们要合理的开发和利用它们,制作内容丰富、情景生动、有实用价值的课件,充分发挥多媒体教学的作用。。
(3)开发利用社会、家庭方面的资源
如学生学习了统计知识后,让学生到生活中找哪些地方用到了统计图表,在家里调查水费、电费等,学生通过调查,发现身边处处有数学,增强了学生学习数学的兴趣。让学生体会数学来源于生活,更应用于生活。
(4)开发利用生成性资源
生成性资源是指在课堂教学中,师生之间,生生之间的合作对话交流,随机生成的超出教师预设方案之外的新情况,教师要及时捕捉,准确辨别,有效调控,使这些生成性资源变成教育资源。学生中学习过程中出现的错误,教师不要回避,要把这些错误信息看做是孩子们思维的火花,通过错误资源,判断孩子出现的问题,从而加深对知识的理解。如教学中提出的问题,学生的作品,学生学习过程中出现的问题、课堂实录等都是生成性资源。
数学是一棵参天大树,它的根深深地扎在我们的现实世界中,只有不断地学习数学研究数学,才能感受到数学的无穷魅力。
以上是我对《统计与概率》专题第一学段的解读,有不足之处请专家、评委批评指正!
【等可能条件下的概率说课稿】相关文章:
等可能条件下的概率的说课稿02-20
可能性和概率说课稿11-04
可能性和概率说课稿02-13
《可能性和概率》说课稿范文06-12
《概率》说课稿08-20
什么是概率说课稿08-31
统计与概率说课稿01-23
《什么是概率》说课稿03-30
可能性和概率的教学设计08-27