五年级数学说课稿

2021-08-30 说课稿

  作为一名人民教师,编写说课稿是必不可少的,说课稿可以帮助我们提高教学效果。怎么样才能写出优秀的说课稿呢?以下是小编为大家收集的五年级数学说课稿9篇,欢迎阅读与收藏。

五年级数学说课稿 篇1

  尊敬的各位老师:

  大家好!我是泰山小学的高崇辉老师,我今天说课的题目是比的基本性质。

  首先,我来说一说教材,我讲的是九年义务教育五年制小学数学第九册63页比的基本性质,教材是在学生已经掌握了比和分数、比和除法的关系以及分数的基本性质和除法的商不变的规律的基础上进行教学的,根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:

  1、通过自主探索、比较类推出比的基本性质,掌握化简比的方法,并会利用比的基本性质把一个比化成最简单的整数比。

  2、培养学生的迁移类推、抽象概括能力。

  3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。

  并将理解并掌握比的基本性质,作为本节课的教学重点,应用比的基本性质把比化成最简单的整数比作为本节课的教学难点,在教学中我主要采用了探究学习的方法,教学媒体的使用:多媒体。

  接着我来说一说本节课的教学过程和设计意图。

  一、创造生活情境,激发学生学习兴趣

  上课伊始我询问学生:“同学们喜欢喝蜂蜜水吗?”大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的蜂蜜水,这不小明的妈妈给小明准备了两杯蜂蜜水,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?电脑演示多媒体课件演示:第一杯360毫升的水,40毫升蜂蜜;第二杯180毫升的水,20毫升蜂蜜;同学们会兴致盎然,想尽各种办法帮助小明。有的同学会根据商不变的规律确定选哪杯都可以,因为360毫升的水是40毫升蜂蜜的9倍,180毫升的水是20毫升蜂蜜的9倍即360÷40=180÷20;有的同学会根据分数的基本性质确定选哪杯都可以,因为40毫升蜂蜜是360毫升水的九分之一,20毫升蜂蜜是180毫升水的九分之一即40/360=20/180,学生会想尽各种办法帮助小明解决这个问题。

  这部分的设计意图是每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外同学的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时感受到“数学源于生活”。

  二、引导学生发现规律,总结比的基本性质

  1、 猜想规律

  师:刚才同学们利用商不变的规律,分数的基本性质帮小明解决了问题。你们还记得它们的内容各是什么吗?

  学生在师生互动,生生合作中说出商不变的规律,分数的基本性质的内容。屏幕出示文字内容。

  我接着询问在分数的基本性质里,有哪些词很关键?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?

  这回你们又会想到什么呢?(比的基本性质)那么,比的基本性质该是怎样的呢?本节课我们就一起来研究探讨它。

  (板书课题:比的基本性质)

  2、 实践探究

  师:观察除法的基本性质(手指向商不变性质)与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?把你的想法在小组里说一说。

  (1)小组讨论

  (2)汇报结果:学生根据讨论结果发表意见。

  (3)师生共同总结比的基本性质的内容。

  (4)强调

  学习了比的基本性质,你认为哪些词语是很重要,你想提醒同学们注意点什么?(同时、相同、0除外)

  这一部分的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考,在有理有据表达、建立在对意义求真求准的对比中生成、完善了概念。也让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。

  三、 教学例1

  1、说明。利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数(板书:最简分数)。同样,应用比的基本性质,可以把比化成最简单的整数比。(板书:最简单的整数比)

  2、讨论:怎么理解“最简单的整数比”这个概念?在小组里议一议。

  3、指名汇报,形成共识:

  ㈠必须是一个比;㈡前项、后项必须是整数,不能是分数或小数;㈢前项与后项互质。

  4、化简比

  出示例1把下面各比化成最简单的整数比。

  (1)14:21 (2)1/6 :2/9 (3)1。25:2

  学生板演,其余同学各抒己见说出不同方法。

  师生共同总结整数比、分数比、小数比的化简方法。

  这一部分的设计意图是“最简单的整数比”是本节课教学的难点。这里摒弃了由典型的个例入手解释“最简单整数比”的从特殊到一般的认识过程,采用让学生先讨论、后汇报对这个概念的理解认识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。同时,教师试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了“跳一跳,可摘到果子”式的充要铺垫。学生在小组内部交流基础上进行组间的合作交流,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力,使学生思维进入高潮。

  四、实践运用

  我设计了四部分练习题。

  第一部分填空题包括3道题:

  1、3:8=(3×2):(8×□)

  2、15:10=(15÷□):(10÷5)

  3、5:3=(5×□):(3×□)

  这一部分的设计意图是学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填“除0以外的所有相同的数”,培养学生的开放性思维。

  第二部分根据比的基本性质判断下列各题

  (1)4 :15=(4×3):(15÷3) ( )

  (2)3/5:4/7=(3/5×6):( 4/7×6) ( )

  (3)10 :15=(10÷5):(15÷3) ( )

  (4) 7 :9 =(7+5):(9+5) ( )

  第三部分应用比的基本性质解决生活中的问题

  师:上课前老师统计了咱们班参加课外活动小组的人数,下面同学自己读题,然后试着解决这些问题,如果遇到困难同桌之间或小组之间可商量解决。

  我们班共有学生48人,男生28人,女生20人:

  (1)请写出我们班男生和女生的人数比,并将这个比化成最简单的整数比。

  (2)在课外小组活动中,我们班参加美术小组的人数占全班人数的1/4,参加科技小组的人数占全班人数的3/8,请写出参加美术小组和科技小组的人数比,并将这个比化成最简单的整数比。

  (3)参加体育小组的人数是舞蹈小组的1。5倍,请写出参加体育小组和舞蹈小组的人数比,并将这个比化成最简单的整数比。

  从学生熟悉的生活情境入手,把学生引入到现实情境中进行“再创造”

  活动有利于让学生感受到数学就在身边,使原来枯燥乏味的数学题有了“应用味”,使学生对数学产生浓厚的兴趣和亲切感,会用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。从而培养学生的实践能力。另外尊重学生各性,让课堂成为学生发挥个性的天地,成为自我赏识的乐园。

  第四部分思考题

  1:8=(1+4):(8+□) 6:10=(6-3):(10÷□)

  让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。

  五、评价体验

  比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。

  这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。

  以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。

五年级数学说课稿 篇2

尊敬的各位专家评委,早上好!

  今天我执教的《真分数和假分数》是人教版五年级下册第四单元的内容。是在分数意义的基础上学习真假分数,拓展对分数意义的理解。虽然这是一节全新的概念课。可要学生识记它的概念并不难,但概念的教学不应以概念获得为目的,不能为教概念而将概念具体化——也就是说不能先有概念定义,再去寻找使之具体化的材料、实例。因此不能用机械的方法让学生识记概念内容,而应通过具体的分数抽象出真假分数的概念,进而有效地拓展运用。基于这样的思考和理解,本节课我确立了以下教学目标:

  1、认识真分数和假分数的意义及特征,了解假分数的产生过程。

  2、理解真分数和假分数的意义及特征。

  3、结合具体情境渗透数形结合的数学思想,培养学生全面思考问题的习惯。

  为了达成以上教学目标;突出重点:理解真分数与假分数的意义;突破难点:理解真假分数特征。我在教学中努力做到以下三个“一”。

  遵循一个规律:——概念形成的规律。

  本节课的设计就是在遵循学生对概念认知的发展规律基础上,利用“数形结合”,凸显先“过程”后“对象”的认知顺序,充分理解概念。借助数轴和图形理解真分数、假分数与1的关系,将概念深化。

  真假分数概念的形成,本节课分4步走:

  1、就是通过填四分之几这个分数了解学生起点。用图形表示出来,以了解学生对分数意义的理解。

  2、运用图片建立假分数的表象:通过怎样表示5/4?让学生产生了认知上的矛盾:1个单位“1”不够时,怎么办?让学生在辨析中明白5/4的意义。

  3、在分类活动中构建真分数与假分数模型。在概念的形成过程中,让学生充分表达自己的想法,“4/4”到底划到哪一类中,引导学生通过比较、分析。最后产生看书的必要性。

  4、完善概念的认知。数学概念一旦形成,既要通过练习巩固概念,更要关注概念外延的有效拓展。因此,在教学中,我让学生从数轴上判断真假分数的特征.从找规律中,拓展对真分数概念的认知,借助特殊的假分数,理解假分数有大于1,也有等于1的情况。尤其是最后的题组练习。从最基础的分类,引导发现,再到用字母表示,引导学生从具体到抽象,将具体、繁多的分数提升到“b/a”这一个分数表示形式,把书教薄,将知识系统化。

  渗透一种思想:——“数形结合”的思想。

  在课的开始阶段让学生用图形表示出相应的分数,这里是第一次借助数形结合的思想,通过图形让学生直观的理解5/4,感受假分数的产生过程。图形与分数的一一对应让学生初步感知真、假分数与1的大小关系。第二次借助数形结合的思想是利用真假分数在数轴上的位置,再一次感受真假分数与1之间的关系。同时借助数轴的让学生感受真假分数“无限”性,这里话虽没挑明,但学生已能感受到了真分数和假分数的个数都是无限的。

  培养一个习惯——全面思考的习惯。

  我们的孩子在思考问题时往往习惯于唯一答案,不会全面思考问题,更不善于分类思考问题。因此在含有字母的分数中,除了完成判断的同时更注重分类思想的渗透,让学生从小接触不确定因素——a/6是真分数还是假分数?让学生学会全面的思考问题,课堂中我充分发挥评价语的导向作用,使学生学会从不完整到完整的表述。这个环节的教学时间的比重是比较大的,为的就是将学生思维不断提升,从形象的呈现分数判断到让学生形成抽象的符号化思想。

  总之,我认为概念教学是不可能一步到位的。因此,我力求在概念建模后层层递进,不断地进行延伸,拓展概念的内涵和外延,完善概念的理解认知,进一步使概念变得立体丰厚。

  以上只是我对本节课的一些想法,敬请各位专家批评指正!

五年级数学说课稿 篇3

  【教材分析】 《打电话》是义务教育课程标准实验教科书人教版数学第十册P132页的教学内容。本堂课结合学生生活中熟悉的素材,合唱队在假期接到一个紧急任务,老师要打电话尽快通知到每个队员。让学生帮助老师设计一个打电话的方案,并从中寻找最优的方案。通过这个综合应用,让学生进一步体会数学与生活的密切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。

  【学生分析】 四年级上册的“数学广角”中教材安排了有关优化思想的学习,通过日常生活中的一些简单事例,让学生尝试在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。

  【教学目标】

  1.通过画图的方式发现事物隐含的规律,培养归纳推理能力。

  2.进一步体会数学与生活的密切联系以及优化思想在生活中的应用,培养应用数学知识解决实际问题的能力。

  3.渗透“优化”、“化归”的思想。

  【教学重点】寻找打电话以及类似问题的最优方案

  【教学难点】发现规律,培养归纳推理能力

  【教学设想】

  1.合理使用教材,遵循课本教材。

  合理使用教材是一堂课成功的关键。教材采用通知15人来探究方案和规律,这个数据太大,难度较大,从几次试教证明教学效果不好,本教学设计改用从通知7个人比较简单的数据入手,更符合学生知识储备水平和可接受水平,能够更好地使学生得到发展。

  2.在“比较”中“优化”规律。

  本课时在寻找打电话的最优方案过程中,学生由于知识水平的差异,设计的方案也不同,如有“逐个通知”的方案,有“分组通知”的方案,当然也会出现“所有人不空闲”的方案。通过对这三种方案的展示点评与纵向比较,让学生经历解决问题的过程,并且体验到方法的多样性与优化思想。在发现规律的过程中,通过“要通知500个人需要的时间?”这个问题,让学生对发现的规律进行横向比较,从而体验到翻倍这一规律的价值所在,同时也在比较中优化了规律。

  3.在“游戏”中体验规律的存在。

  本节课,为了降低学生的学习难度,增加学习的趣味性,我特意在二个地方设计了“游戏”这一环节。首先是在课前谈话过程中,和学生一起玩“找朋友”这个游戏,一方面可以缓解学生的紧张感,另一方面可以初步渗透“打电话”的规律,为解决本节课的难点服务。其次是在理解最优打电话的方案的时候,通过表演这个方案的过程,让学生直观地理解这个最优方案的形成过程,主要是照顾到班级后20%学生对这个方案的理解。

  4.多样练习,渗透“化归”思想。

  所谓“化归”,可以理解为转化和归结的意思,一般我们都理解为“转化”思想。理论上理解为“化归”方法是指数学家们把待解决的问题,通过某种转化过程,归结到一类已经能解决或比较容易解决的问题中,最终获得原问题的解答的一种手段和方法,简单地说,化归就是问题的规范化、模式化。

  本节课主要是围绕“打电话”展开,探究“打电话”过程中的最优化方案及随之而产生的规律。像这样的规律不仅蕴藏在“打电话”这一事件中,其实生活中的许多地方都有这一规律的存在,“打电话”只是这些事件的缩影。因此,在练习中,我呈现的是有关植物生长方面的练习和实际生活中“找朋友”这一游戏的练习,将这两个事件中蕴藏的规律转化到“打电话”这一事件上,让学生运用已经知道的规律使问题得到解决。

  【教学过程】

  一、创设情境,提出问题

  在课的开始,我创设了一个生活情境,让学生想办法通知7个人,,这是个紧急通知,怎么办?学生会考虑到许多现代通讯技术进行通知,这时教师就提出如果用打电话的方式进行通知,而且每分钟可通知1人,一共需要几分钟呢?怎样通知呢?让学生通过画图的方式设计电话通知的方案。在这个过程中,我考虑到让学生理解这个内容本身是有一定难度的,对书本的例题做了适当的修改,将15人,改成了7人,这样更贴近学生的生活实际,适合学生的知识基础。

  二、探究活动,解决问题

  这一环节,让学生在展示自己设计方案的同时,与其他同学的方案进行比较,让他们从逐一通知到分组通知的比较中感受到方案的优化过程,从而擦出智慧的火花,由此而猜想“要通知到这7个人,时间最少要几分钟呢?怎样设计呢?”帮助学生找到最优的通知方案,一方面通过游戏理解这个方案的优化所在,另一方面为班级后20%学生理解这个方案服务。

  三、探索规律,应用规律

探索这个最优方案中的规律是本节课的难点。为了学生突破这个难点,我首先以游戏做铺垫,通过“如果再多给你1分钟,最多会有多少人知道这个消息呢?”让学生产生猜想,在图示和游戏的基础上学生会验证自己的猜想,同时也让学生感受到这个方案中规律的存在。其次,让学生在表格中发现规律。学生在以前已经

  接触过找规律这个知识点,并且也有了找规律的一些技能,因此,他们凭借已有知识会发现表格中所蕴藏的规律。再次,通过归纳、优化规律,让学生体会到每一次通知到的人数是前一次人数的翻倍!

  在应用规律的时候,我通过设计基本练习、重点练习、拓展练习等几种形式的练习,既深化了知识,又激发了学习兴趣,培养了学生综合运用所学知识解决简单的实际问题的能力,体现了学生学习数学的认知规律,同时也体现了不同的人学习不同的数学,不同的人在数学上得到不同的发展。

五年级数学说课稿 篇4

  一、说教材

  1、教学内容:人教版六年制数学第十册 p50

  2、教材分析:地位作用:本节课是在学生学过了整数的四则计算,了解了自然数的`基础上学习的。通过约数和倍数的学习,为后面进一步学习质数、合数、最大公约数、最小公倍数作好铺垫,也是以后学习约分、通分,分数的四则运算打下基础。

  3、教学目标:

  ⑴知识与技能:能结合具体情景探索掌握整除的意义,理解约数和倍数的含义,学会正确判断一个数是不是另一个数的约数和倍数。

  ⑵过程与方法:通过直观分析,让学生充分经历知识的形成过程,体验成功的乐趣。

  ⑶情感、态度与价值观:培养学生分析、比较、抽象、概括和判断的能力。渗透事物之间相互联系、相互依存的辩证关系。

  4、重点:理解整除、约数和倍数的意义。

  难点:理解整除的意义。

  关键:通过分析、讨论,得出整除的特征。相互依存的理解。

  二、说教法

  1、通过直观分析让学生充分感知,然后经过比较归纳,最后概括整除的意义,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知 、巩固和深化新知的目的。

  2、采用快乐教学法,激发学生的学习兴趣,鼓励学生积极发言,参与学习过程和敢于质疑,引导学生自己动口、动脑,以及采用判断、游戏等多种形式的巩固练习,使学生的学习不成为一种负担,而是一种快乐,把数学课上得有趣、有益、有效。

  三、说学法:

  通过本节教学使学生学会运用观察、分析、讨论的教学手段理解掌握新知识,学会有目的地观察、思考、对比分析问题、概括知识的方法。

  四、说教学程序

  (一)揭示课题与学习目标

  今天这一堂课我们学习的内容是“约数和倍数的意义”,通过学习要求大家做到:①掌握整除的意义,在此基础上理解约数和倍数的意义。②学会正确判断一个数是不是另一个数的约数或倍数。

  [开门见山将具体清晰的学习目标,呈现给学生,发挥目标的导向和激励功能,使学生明确学习任务,产生积极的学习心向,从而主动地参与学习过程。]

  (二)复习铺垫:复习自然数、整数。同学们已经知道什么是自然数,你能举例子吗?它的单位是什么?

  [数的整除的生长点是在整数的基础上,所以学生必须理清数的概念。 ]

  (三)学习新知

  A、初步感知整除

  1、口算(小黑板出示) 15÷5= 1.5÷5= 24÷4= 3.6÷0.9=

  16÷3= 80÷20= 6÷5= 23÷7=

  [将课本中的题组适作改变,为紧接着的概括整除概念提供更丰富的感性

  材料。]

  2、学习整除的意义

  ①学生分组自由讨论,汇报各组的分组依据,引导得出:按商的情况:除尽、除不尽可以分成两组。

  15÷5=3 1.5÷5=0.3 16÷3=5……1 80÷20=4

  24÷4=6 3.6÷0.9=4 23÷7=3……2 6÷5=1.2

  ②学生继续自由讨论,对第一组除尽进行分组,汇报分组依据,引导得出: a.被除数、除数、商都是整数; b.被除数、除数、商不都是整数。

  [学生自由发挥,充分暴露学生的思维过程,对学生的发散思维起到了促进作用。]

  ③观察第一组,说说第一组的特点,得出: a.没有余数;b.被除数、除数、商都是整数。例如:15÷5=3 我们就说“15能被5整除”。 那么:24÷4=6 80÷20=4可以怎么说呢?学生试说。

  [ 让学生模仿举例,并练习叙述这种关系,为抽象概括整除的意义做好铺垫。]

  B、深入学习整除的意义。

  如果用字母a表示这样的

  被除数,字母b表示这样的除数,那么想一想,整数a 除以整数b,在什么样的情况下才可以说“a 能被b整除”。

  看书P28的内容,再齐读整除的意义。

  [借助字母a、b启发学生抽象概括出整除的意义,使学生的概念能力得到较好的培养,对照教材,使概念更具科学性。]

  C、练习(幻灯出示)

  下面哪些除法算式可以说被除数能被除数整除?为什么?

  32÷8=4 10÷30=0.3 35÷0.7=50 51÷17=3

  20÷9=2……2 4.8÷1.2=4 4.2÷6=0.7 60÷5=12

  学生回答后,提问: 哪些除法算式的被除数能被除数除尽?整除与除尽有什么关系?

  [在这里通过练习,使概念在思维中具体化,也自然地完成了整除和除尽的关系。]

  ②下面的每一组的第一个数能不能被第二个数整除?为什么?

  28和7 100和20 13和10 15和1

  [让学生用语言表述进行分析、判断练习,使学生对整除的概念逐步达到“掌握”的层次。上面教学过程的展现,主要的目的在于引导学生逐步形成概念,训练分析、综合抽象、概括和具体化的思维能力。]

  3、学习约数和倍数的意义

  前面我们讲了什么叫整除,那么什么叫约数和倍数呢?

  ①如果整数a能被整数b整除,那么a就叫做b的倍数,b就叫做a的约数。 学生试说黑板上的整除式子。

  ②辨析:能不能说15是倍数,5是约数,为什么?得出:约数和倍数是相互依存的,不能单独讲。

  ③指出:在这一单元里我们所说的约数和倍数一般指除0外的自然数。

  ④看书P29 质疑

  [学生掌握了整除的概念,对于约数和倍数的理解是水到渠成,所以在这里也不多费周折。而是直接出示了约数和倍数,讨论约数和倍数的相互依存关系,不着痕迹地完成辩证唯物主义观点的渗透。]

  (四)巩固练习

  1、课本P30 第3、4题。

  2、下面的说法,对吗?

  3、说说下面的数中( )是( )的约数,( )是( )的倍数。

  1 3 4 8 12 15 16

  [加深练习的难度,巩固所学知识,又为后面的公约数、公倍数的学习奠定基础]

  4、游戏,学号符合要求的的起立。

  [临近下课,学生易于疲劳,注意力也易涣散,安排此游戏在于提高学生的学习兴趣,又加深对所学知识的理解。]

  (五)课堂作业P16

五年级数学说课稿 篇5

  一、教材分析,学情解析,目标定位

  (一)教材分析:

  《方程的意义》是学生学习了四年用算术思想解题后,在掌握了用字母表示数的基础上进行教学的,同时也是今后学习运用方程解决整数、小数、分数和百分数问题的重要基础。

  《方程的意义》对于学生来说是一堂全新数学概念课,是算术思维的一种提升,是数的认识上的一个飞跃,在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式解发展到列出方程解,从未知数只是所求结果到未知数参与运算,思维空间增大,这又是数学思想方法上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。

  (二)教学目标:

  结合教材的特点和学生已有的知识生活经验以及新课标中概念教学的理念,本节课的教学目标为:

  1、借助生活情境理解方程的意义,能从形式上判断一个算式是不是方程,区分等式与方程,理解等式与方程的关系,使学生初步理解等式的基本性质。

  2、使学生在观察、分析、分类、抽象、概括和交流的过程中,经历从现实问题抽象成方程的过程,渗透集合思想。

  3、感受数学探索的乐趣,培养学生认真观察,善于思考的学习习惯,加强数学知识与现实世界的联系。

  (三)教学重难点

  列方程时的数量关系与列算式时的思维过程有着明显不同。用算术方法列算式时的数量关系是充分运用已知数量的运算得出未知数量,它把已知和未知完全隔裂开来,已知条件作为一方,要求的问题为另一方。而列方程的数量关系,是把已知和未知融合起来,共同参与运算。从列算式求答案的习惯思维转向列方程表示等量关系,学生的思维会有一定的困难。

  基于以上的思考,本节课的教学重点确定为:方程意义的理解以及在具体情境中建立方程的模型,理解等式与方程的关系,使学生初步理解等式的基本性质。教学难点是经历由问题抽象成方程的过程,渗透集合思想。

  (四)学情分析:

  课前我们对学生进行了调研,调研内容主要有三项:

  一、求未知数

  这道题主要是为解方程做准备。在这道题中,学生的书写格式错误较多,占40.2;会方法但计算错误的同学占10.9;格式计算都正确的同学占48.9。所以,在后面讲解方程的教学中,我们要规范学生的书写格式,讲清算理和算法,提高计算能力。

  二、给式子分类,并写出每类的特点。

  设计这道题的目的是想看看学生能否依据一定的标准进行分类,清楚分类的标准,为课上的分类做准备。通过调研,我们发现因为学生的关注点不同,所以分类的标准不同。有些学生关注的是式子当中的字母,所以根据有无字母把式子分为两类,一类式子当中有字母,一类没有字母,这样的学生占25;有些学生关注的是式子中的等于号,所以根据式子左右是否相等把式子分为两类,一类是等式,一类是不等式,这样的学生占26.1;有一些学生关注的是式子中的运算符号,所以分的类别较多,还有一些学生不知道根据什么来分,这样的学生占48.9。尽管一直以来学生总是在写等式,但对等式的概念学生并不清楚。所以,课上我们要让学生进一步理解等式的本质特征,真正理解等式的概念。

  三、你们在生活中见过与跷跷板类似的物品吗?

  设计这道题的目的是想了解一下学生是否知道天平,为课上应用天平列式做准备。课下我们又找个别学生进行了访谈,让他们说一说天平与跷跷板有什么相同之处。通过调研,我们发现学生基本上知道天平,只有个别学生不知道。

  (五)教法:

  新课程标准指出“以学生发展为本”必须为学生身心的全面发展和素质提高提供更为有利的条件。那么教师只能通过组织者、合作者、引导者的身份,使学生主动参与到整个学习过程中。根据小学生的认知特点和规律及教材特点,这节课,我们主要采用“直观教学法”、“演示操作法”、“观察法”等教学方法,为学生创设一个宽松的数学学习环境,使得他们能够积极自主地,充满自信地学习数学,平等交流各自对数学的理解,并通过相互合作共同解决所面临的问题。我设计了如下三个方面的教学手段:

  1、用直观的操作和演示,让每位学生理解和归结出结论。

  2、恰当运用现代教学手段,突出重点突破难点,努力促进本节课教学目标的实现。

  3、充分利用身边的事物,创设情境,激发兴趣,让学生能在轻松、愉快而且有趣的氛围中理解、掌握知识。

  (六)、学法

  为了使学生获取“方程的意义”这部分的知识,在课堂教学中,我们注重学生学习知识的过程,给学生充分的时间和空间,在特定的数学活动中自主探究、合作交流,激发学生的学习积极性,增强学生学习知识的自信心。让学生动眼观察,亲自参与,动脑思考,动口表达,真正理解和掌握方程最基本的知识,培养学生探索、发现和创新能力。

  二、教学过程

  教学活动主要安排了五个环节:

  1、创设情景,抽象出等量关系,理解等式的性质

  等式是方程的生长点,学生在前几册教材里对等式已经有了初步的认识,为了有利于方程概念的建立,我在教学中借助学生熟悉的跷跷板首先让学生体会等式的含义。

  活动一:感知平衡,体会等式含义,理解等式性质。

  课件出示一架跷跷板,请学生仔细观察后说一说玩跷跷板可能会出现哪些情况?再请学生用一个式子表示跷跷板现在所处的状态。然后告诉学生像这样用等于号连接的式子就叫等式,紧接着就提问学生:什么样的式子叫等式?对“等式”的概念进行了强化。这个提问及时准确。接着,利用跷跷板理解等式的性质,即等式两边同加同减,左右两边仍然相等。然后启发并引导学生思考:如果等式两边同乘同除,等式会怎么样?通过学生举例,总结出等式的性质。从学生熟悉的生活情境入手,既让学生从跷跷板“平衡”中体会到等式的含义,又能较好地激发了学生学习的乐趣。这样的安排符合学生的认知特点。

  活动二:观察发现,抽象出不同的式子

  创设具体情境,让学生观察天平从不平衡到平衡的变化过程,通过天平的动态变化得出若干个不同的式子。然后提问学生:以上的式子都是等式吗?它含有未知数吗?让学生思考,交流后说出:有的是等式,有的是不等式。这样由“扶”到“放”,引导学生通过自己的观察、思考、动口说一说,培养了学生探究新知的思维品质,促进思维的发展。这样设计,主要是给学生创造一个用眼观察,用脑思考的机会,让他们亲自感知了多个含有未知数的式子的来源,将“重视结论”的教学转变为“重视过程”的教学,不生硬的塞给学生现成的结论,让学生充分经历方程模型的生成过程。同时也为下一个教学环节——给式子分类做好准备。

  2.引导分类,抽象出方程的意义

  运用刚才得出的式子进行分类,并让学生说说分类标准,然后从学生按照等式不等式的标准分类的教学资源中直接导出本节课的课题:方程,在此基础上,再次让学生观察,讨论与交流,找到方程的特点,从而进一步得出方程的意义。在分类的过程中,尊重学生的想法,肯定他们分类的方法。这样的设计主要是给学生创造了一个大胆设想、敢于发现、抽象概括的机会,使学生从感性认识上升到理性认识,真正体会到自己获取知识、发现知识的成功乐趣。

  3.讨论比较,辨析、概念——等式与方程的关系

  为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过同桌合作用自己的方法创作“方程”与“等式”的关系图,并用自己的话说一说“等式”与“方程”的关系:方程一定是等式,但等式不一定是方程。。这是一道富有思维容量的习题,不但锻炼了学生的思维,培养了学生思维的灵活性和深刻性,而且能激发学生的创新意识,使学生的积极性、创造性得到保持与发展,同时渗透集合思想。

  4.巩固深化,拓展思维——练习

  在这一环节中,我们设计了“介绍方程”、“写方程”和“判断方程”三个活动。为了激发学生学习的兴趣,我们设计了“如果你是方程,你怎样介绍自己”之后让学生自己写一个方程,这样一个介绍,一个练写,不仅使学生爱做,而且还让学生进一步理解了方程的意义。然后让学生看式子进行判断,辨析;出示“方程一定是等式,等式也一定是方程”这句话让学生分析这句话对吗?说出理由。通过这些活动加深理解消化巩固所学的知识,并应用所学知识灵活解决实际问题。特别是方程的判断,能引起学生强烈的争论,让学生在争论中巩固方程与等式的概念,方程与等式的异同,使教学达到高潮,极大的调动了学生学习的积极性,把学生的注意力高度集中到巩固新知的过程中。

  5.小结新知,明确收获

  让学生说一说自己本节课的收获,目的在于让学生对本节课的新知进行一次梳理,通过总结概括再次让学生体验到探索新知的乐趣。

五年级数学说课稿 篇6

  本节课是五年级上册第五单元《找规律》中第一课时内容。这一内容是学生在四年级时学习了两种物体间隔排列的规律,以及对几种物体进行搭配或排列的规律的基础上进行学习的。而且在低年级的学习中,学生也多次经历寻找数或图形简单排列规律的过程。这节课,在学生原有的基础上,引导学生探寻一些数学规律,并应用规律解决相关的实际问题,激发学生学习数学的兴趣,初步培养探索规律的意识和能力。 本节课我分这样几个环节来进行教学。

  (一)游戏导放,体验规律,揭示课题。

  男女生记忆力大比拼,一下子把学生的情绪调动起来,激发学生学习兴趣。同时初步让学生感受第二组数有序、重复出现的规律。从而引出课题。

  (二)观察场景,感知物体的有序排列

  这个环节,我以国庆节的情景作为导入,出示教材例1的场景图,让学生认真观察,通过观察,找出盆花 、彩灯、彩旗的排列规律,学生边讲解,课件圈出规律,直观体验物体的有序排列。

  学生看出各种事物的摆放顺序并不难,但说不到位,所以课中要提高交流的质量, 如盆花,学生同位交流中一般说 “一蓝一红一蓝一红这样排列的”在集体交流中我引导学生理解“2盆为一组重复排列”。

  (三)自主探究, 体会多样的解题策略。

  本环节,我给学生创设了这样的一个平台,先是提出这样的问题:照这样摆下去,左起第15盆什么颜色的花?接着让学生就这个问题自主探究、讨论、交流得出解决问题的三种策略,即是画一画、数一数、算一算,尤其注重分析计算法。让学生理解算式中每个数的意义,特别是除数和余数,突破难点。然后引导学生通过比较认识到计算法的简便实用。最后引导学生逐步归纳出用计算法解决类似的问题应注意三点:(1)找准物体的规律;(2)分组、确定除数;(3)列式计算。

  (四)提高练习,加深理解。

  练习中的第二大题,前两题让学生说说重组后图形的排列规律,解决问题,巩固新课,让学生通过观察比较得出:“总数一样,每组规律不一样,结果也不一样”。每三小题是开放题,学生找到“每组第二个是三角形”这个规律,设计图形,学生在观察不同的设计中感受到,“不同的规律也可以通过设计得到相同的答案”这时学生对算理的深入理解,解决问题技能逐渐熟练。

  (五)生活万像,再现规律。

  最后,多媒体播放日升日落、四季更替、月圆月缺、红绿灯、十二生肖等大自然和生活中的规律现象。让学生深切体会到数学与日常生活的连系,近一步体验数学规律的价值。

五年级数学说课稿 篇7

  一、说教材

  (一)教材分析:

  1、教学内容:最小公倍数第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解最小公倍数的概念的过程。

  2、结合学情与新课程标准对本环节的要求,分析教材编写意图:

  五年级学生的生活经验和知识背景更为丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。

  在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出4和6的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。

  (二)对教材的处理意见

  1、教材中铺砖对于理解公倍数与最小公倍数的意义,比较抽象,不利于建立对概念的理解。所以把“原来铺墙砖”的题目改为“找两人的共同休息日”来建立概念。原因有三:首先,学生的学习内容应该是现实的、有意义的、富有挑战性的;其次,有效的数学活动必须建立在学生的认知发展水平和已有的知识经验基础之上;再者,课堂中最有效的时间是前15钟,做好这段时间的教学,有利于提高学习效率。从而把这一比较难理解的环节放在后面。

  2、新授课中补充生活实例,引导学生从意义的理解来,解决实际问题,通过解决问题来理解意义。理由是:数学教学应密切联系学生的现实生活,使学生感到数学就在自己身边。

  3、课堂习题进行了有明确针对性与目的性的改变。(后述)

  (三)教学目标及教学重、难点

  1、教学目标

  (1)理解两个数的公倍数和最小公倍数的意义。

  (2)通过解决实际问题,初步了解两个数的公倍数和最小公倍数在现实生活中的某些应用,体验解决问题策略的多样化。

  (3)渗透集合思想,培养学生的抽象概括能力。

  2、教学重点

  公倍数与最小公倍数的概念建立。理由是:《标准》中要求4—6年级的学生能找出10以内任意两个自然数的公倍数与最小公倍数,因此,本节课的重点应放在学生对数的概念的认识上。

  3、教学难点

  运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。理由是:《标准》中指出人人学有价值的数学,让学生通过观察、操作、反思等活动获得基本的数学技能。但小学生的生活实际问题的解决能力普遍较低,所以要达到《标准》中的要求这无疑是重点中的难点。

  二、说学法

  1、学情分析

  小学生的动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

  2、学法指导

  通过动手,让学生在月历纸的上动手找一找,圈一圈;通过动口,在概念揭示前,学生动口说一说。给学生机会说动手之后的感悟,还可以在个人表达的同时倾听他人的说法。

  三、说教法

  为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中。

  1、利用情境引入新课,通过月历探索新知。

  学生在月历上找日期,清楚形象的看到两个数的倍数关系

  2、顺其自然地渗透概念,初步理解公倍数和最小公倍数。

  学生探索后,用自己的语言梳理新知,学生便能在环环相扣的教学进程中顺理成章的理解概念,沟通二者之间的联系。

  3、创设问题情境,尝试应用,方法提炼。

  结合教学内容特征,创设富有生活情趣的问题情境,利用学生的生活经验与知识背景,鼓励学生解决简单的实际问题,激活学生的数学思维,提高解题技能。

  4、巩固练习、不断刺激,不断巩固提升。

  四、教学具准备:

  印有月历纸、多媒体课件。

  五、具体的教学过程:

  我设计的总体理念:让学生在自主参与的基础上感悟、理解、应用、巩固。将直观演示与抽象思维相结合。我的教学流程如下:

  (一)、利用学具,导入新课(本环节为解决教学重点)

  1、学生在预先发放的月历纸上按照老师的要求,在上面找出4和6的倍数的日期。

  2、引导学生观察所找出的日期数,有意识地引导学生发现日历上的有特征的数,从而引出公倍数与最小公倍数。

  3、把生活问题提炼为数学问题,学生用自己的语言概括公倍数与最小公倍数的概念。

  (二)、创设情境,应用知识:(本环节为解决教学难点)

  1、出示同学排队的题目。理由是:用富有生活问题的情境,激发学习兴趣,再次打通生活与数学的屏障。

  2、合作交流解决问题,方法提炼。

  (三)、练习巩固(讲清练习的层次)

  1、学会用最基本的方法求两个数的最小公倍数。

  2、用这样的知识解决生活中的问题。

  (1)找生日。基本——拓展

  (2)铺墙砖。用数学方法来解释生活现象,隐含着求公因数与求公倍数的联系。

  (四)、课堂小结

  学生回忆整堂课所学知识。学生通过这一环节可以将整个学习过程进行回顾、按一定的线索梳理新知,形成整体印象,便于知识的理解记忆。

五年级数学说课稿 篇8

  一、教材分析:

  《组合图形的面积》是人教版五年级上册第五单元的内容。在三年级时,学生已经学习了长方形与正方形的面积计算,在本册又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。发展学生的空间观念,为下面立体图形的学习做好铺垫。

  学生分析

  本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法。 根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。尤其是对转化思想的渗透,学生在探索组合图形面积的计算方法时,应该能通过自主探索、合作交流,达到方法的多样化。但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。

  教学目标

  (1)在自主探索的活动中,理解计算组合图形的多种方法。

  (2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

  (3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。感受计算组合图形面积的必要性,产生积极的数学学习情感。

  3、教学重、难点

  教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

  教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

  二、说教法、学法

  1、说教法

  为了突出重点,突破难点,我设计时主要是让学生自主探索,在具体的情境中领会转化的数学思想,体会并掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法解决实际问题。

  (1)多媒体教学法

  利用多媒体教学课件引发学生的兴趣,调动学生的情感投入,分割图形的几种方法通过课件的演示,学生一目了然,直观形象,印象深刻,计算方法水到渠成,从而更好的突出重点、突破难点。

  (2)自主探索和合作交流教学法

  动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

  2、说学法

  (1)自主观察思考

  学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。

  (2)小组合作学习

  小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。

  (3)学习归纳

  以前总是老师帮助学生对所学的知识进行总结,现在由学生自己来对所学的知识进行归纳总结,这样可帮助学生对新知的学习得到进一步的提高。

  三、说教学过程

  为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。

  所以制定了以下教学环节:

  (一)开门见山引出课题

  1、生活中我们经常会遇到一些这样的数学问题(课件演示:淘气的家)

  (1)淘气家物体表面是什么图形?图形的面积如何计算?

  (2)引出组合图形

  (二)自主学习中探讨组合图形的面积

  2、组合图形面积计算方法

  (1)、小组分工合作将组合图形转化成熟悉的图形

  (2)、学生总结出组合图形的转化方法:分割和添补

  (3)、分小组计算出这个组合图形的面积

  (三)、巩固练习

  出示淘气家墙面的缩影图,计算出粉刷墙面时所需的涂料

  (四)、拓展学习

  分小组合作,动手拼出自己喜欢的图形并计算出所拼图形的面积

  (五)、本课小结

  你学到了什么?

五年级数学说课稿 篇9

  一、教材分析

  “分数与除法的关系”这一教学内容,是小学数学第十册,第五单元中第一小节的授课内容,本节课承接了分数的意义等知识,又为今后学习,单位名称的转化和分数的大小比较等内容做好知识的铺垫,所以让学生很好的掌握分数与除法之间的关系,体会量与率的区别十分重要。

  二、教学目标

  本节课的指导思想是以培养学生动手操作能力,创新能力以及收集信息和处理信息的能力,发展学生空间观念。

  分数与除法的关系这一小节的目标有以下几点:

  1、知识目标:是理解并掌握分数与除法的关系,知道如何用分数来表示除法算式的商。

  2、能力目标:培养学生动手操作的能力,合作交流的能力,发展学生的逻辑思维和分析处理问题的能力。

  3、情感目标:在生生合作中学会倾听,收集他人的信息,在师生合作中,大胆创新勇于发现,不畏艰难。勇于探索和思考,培养学生转化的思想。

  三、课前准备

  本课材的内容是由以下几部分组成的:

  第一部分:是将1个物体平均分,来体会除法算式与分数的商的结果之间的联系。

  第二部分:是将3个物体来平均分,来体会每份的多少?它的商与除法之间的关系。

  第三部分:是本节的升华,总结分数与除法间的关系,归纳字母表示关系式。

  第四部分:是教学有关单位名称之间的转化。

  本节的重点是理解分数与除法之间的关系。而本节的难点是具体体会每一个商的由来,它具体表示的意义,也就是通过分数与除法之间各部分关系的教学,实际上要将分数的意义在学生的感性认识上进行一次升华。本节课我采取利用具体实物,图形相结合的教学手段来进行教学,教学过程的设计采取在大量的数活动和数学信息中感知知识产生和发展的过程。

  在教学的进行中,要充分创设让学生主动探究的学习氛围,设计生动有趣,富有个性的数学活动,在学习中使学生获得有价值的数学,实实在在的学好基础知识,让每个学生通过学都得到不同程度的发展营造民主、和谐、活跃的学习空间,培养学生学习数学的能力。

  材料准备:一米长的绳子一条,每个学生准备三个大小相同的圆纸片,水彩笔、直尺等文具。

【五年级数学说课稿模板汇编9篇】相关文章:

1.数学说课稿模板汇编5篇

2.数学说课稿模板汇编8篇

3.数学说课稿模板汇编7篇

4.数学《数学广角》说课稿模板

5.关于数学说课稿模板汇编8篇

6.人教版数学说课稿模板汇编八篇

7.有关数学说课稿模板汇编8篇

8.【实用】数学说课稿模板汇编6篇

上一篇:二年级数学说课稿 下一篇:小学五年级语文说课稿