高中数学说课稿

2021-07-29 说课稿

  作为一位杰出的教职工,很有必要精心设计一份说课稿,认真拟定说课稿,那么大家知道正规的说课稿是怎么写的吗?以下是小编帮大家整理的高中数学说课稿8篇,希望对大家有所帮助。

高中数学说课稿 篇1

  我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。

  一、教学理念

  新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。

  因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。

  二、教材分析

  三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。

  本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。

  难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。

  依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。

  三、教学目标

  [知识与技能]

  通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图。

  [过程与方法]

  通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。

  [情感态度与价值观]

  课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。

  四、教学过程(六问三练)

  1、设置情境

  《函数y=Asin(ωx+φ)的图象(第二课时)》说课稿。

高中数学说课稿 篇2

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  (二)教学内容

  本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

  知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

  能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

  情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

  三、重难点分析

  一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

  要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

  五、课堂设计

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景,引出“三个一次”的关系

  本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“>”则变成一元二次不等式x2-x-6>0让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

  为此,我设计了以下几个问题:

  1、请同学们解以下方程和不等式:

  ①2x-7=0;②2x-7>0;③2x-7<0

  学生回答,我板书

高中数学说课稿 篇3

  说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

  下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

  一、 背景分析

  1、学习任务分析

  平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

  本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

  2、学生情况分析

  学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

  二、 教学目标设计

  《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:

  (1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

  (2)体会平面向量的数量积与向量投影的关系。

  (3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

  从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

  综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

  1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

  2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

  并能运用性质和运算律进行相关的运算和判断;

  3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

  三、课堂结构设计

  本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

  即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

  四、 教学媒体设计

  和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

  1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

  2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

  平面向量数量积的物理背景及其含义

  一、 数量积的概念 二、数量积的性质 四、应用与提高

  1、 概念: 例1:

  2、 概念强调 (1)记法 例2:

  (2)“规定” 三、数量积的运算律 例3:

  3、几何意义:

  4、物理意义:

  五、 教学过程设计

  课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:

  活动一:创设问题情景,激发学习兴趣

  正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:

  问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?

  问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

  期望学生回答:物理模型→概念→性质→运算律→应用

  问题3:如图所示,一物体在力F的作用下产生位移S,

  (1)力F所做的功W= 。

  (2)请同学们分析这个公式的特点:

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。

  问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。

  问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。

  活动二:探究数量积的概念

  1、概念的抽象

  在分析“功”的计算公式的基础上提出问题4

  问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?

  学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。

  2、概念的明晰

  已知两个非零向量

  与

  ,它们的夹角为

  ,我们把数量 ︱

  ︱·︱

  ︱cos

  叫做

  与

  的数量积(或内积),记作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5

  问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:

  角

  的范围0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符号

  通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。

  3、探究数量积的几何意义

  这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。

  如图,我们把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,记做:OB1=│

  │cos

  问题6:数量积的几何意义是什么?

  这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。

  4、研究数量积的物理意义

  数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

  问题7:

  (1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。

  (2)尝试练习:一物体质量是10千克,分别做以下运动:

  ①、在水平面上位移为10米;

  ②、竖直下降10米;

  ③、竖直向上提升10米;

  ④、沿倾角为30度的斜面向上运动10米;

  分别求重力做的功。

  活动三:探究数量积的运算性质

  1、性质的发现

  教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:

  (1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?

  (2)比较︱

  ·

  ︱与︱

  ︱×︱

  ︱的大小,你有什么结论?

  在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。

  2、明晰数量积的性质

  3、性质的证明

  这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。

  活动四:探究数量积的运算律

  1、运算律的发现

  关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9

  问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?

  通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。

  学生可能会提出以下猜测: ①

  ·

  =

  ·

  ②(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜测①的正确性是显而易见的。

  关于猜测②的正确性,我提示学生思考下面的问题:

  猜测②的左右两边的结果各是什么?它们一定相等吗?

  学生通过讨论不难发现,猜测②是不正确的。

  这时教师在肯定猜测③的基础上明晰数量积的运算律:

  2、明晰数量积的运算律

  3、证明运算律

  学生独立证明运算律(2)

  我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:

  当λ<0时,向量

  与λ

  ,

  与λ

  的方向 的关系如何?此时,向量λ

  与

  及

  与λ

  的夹角与向量

  与

  的夹角相等吗?

  师生共同证明运算律(3)

  运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。

  在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。

  活动五:应用与提高

  例1、(师生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  与

  的夹角为60°,求

  (

  +2

  )·(

  -3

  ),并思考此运算过程类似于哪种运算?

  例2、(学生独立完成)对任意向量

  ,b是否有以下结论:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(师生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  与

  不共线,k为何值时,向量

  +k

  与

  -k

  互相垂直?并思考:通过本题你有什么收获?

  本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。

  为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:

  1、 下列两个命题正确吗?为什么?

  ①、若

  ≠0,则对任一非零向量

  ,有

  ·

  ≠0.

  ②、若

  ≠0,

  ·

  =

  ·

  ,则

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,当

  ·

  <0或

  ·

  =0时,试判断△ABC的形状。

  安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,

  通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。

  活动六:小结提升与作业布置

  1、本节课我们学习的主要内容是什么?

  2、平面向量数量积的两个基本应用是什么?

  3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?

  4、类比向量的线性运算,我们还应该怎样研究数量积?

  通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下

  一节做好铺垫,继续激发学生的求知欲。

  布置作业:

  1、课本P121习题2.4A组1、2、3。

  2、拓展与提高:

  已知

  与

  都是非零向量,且

  +3

  与7

  -5

  垂直,

  -4

  与 7

  -2

  垂直求

  与

  的夹角。

  在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。

  六、教学评价设计

  评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:

  1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定

  性的评价。

  2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

  3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

  4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

高中数学说课稿 篇4

  一、教学目标

  1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.

  2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验.

  3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.

  4.培养学生求真务实、实事求是的科学态度.

  二、重点、难点、关键

  重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.

  难点:把三角函数理解为以实数为自变量的函数.

  关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).

  三、教学理念和方法

  教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.

  根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学.

  四、教学过程

  [执教线索:

  回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业]

  (一)复习引入、回想再认

  开门见山,面对全体学生提问:

  在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?

  探索任意角的三角函数(板书课题),请同学们回想,再明确一下:

  (情景1)什么叫函数?或者说函数是怎样定义的?

  让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:

  传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.

  现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.

  设计意图:

  函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.

  (情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?

  学生口述后再投影展示,教师再根据投影进行强调:

  设计意图:

  学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.

  (二)引伸铺垫、创设情景

  (情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!

  留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.

  能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.

  设计意图:

  从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程.

  教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

  师生共做(学生口述,教师板书图形和比值):

  把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.

  根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:

  设计意图:

  此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).

  (情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?

  追问:锐角α大小发生变化时,比值会改变吗?

  先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化.

  引导学生观察图3,联系相似三角形知识,

  探索发现:

  对于锐角α的每一个确定值,六个比值都是

  确定的,不会随P在终边上的移动而变化.

  得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数.

  设计意图:

  初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念.

  (三)分析归纳、自主定义

  (情境5)能将锐角的比值情形推广到任意角α吗?

  水到渠成,师生共同进行探索和推广:

  对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):

  终边分别在四个象限的情形:终边分别在四个半轴上的情形:

  ;

  (指出:不画出角的方向,表明角具有任意性)

  怎样刻画任意角的三角函数呢?研究它的六个比值:

  (板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:

  α=kππ/2时,x=0,比值y/x、r/x无意义;

  α=kπ时,y=0,比值x/y、r/y无意义.

  追问:α大小发生变化时,比值会改变吗?

  先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化.

  再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.

  综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).

  因此,六个比值分别是以角α为自变量、以比值为函数值的函数.

  根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此

  投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:

  (图六)

  指导学生识记六个比值及函数名称.

  教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).

  引导学生进一步分析理解:

  已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便.

  设计意图:

  把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解.

  (四)探索定义域

  (情景6)(1)函数概念的三要素是什么?

  函数三要素:对应法则、定义域、值域.

  正弦函数sinα的对应法则是什么?

  正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα.

  (2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:

  三角函数

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定义域

  引导学生自主探索:

  如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围.

  关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.

  对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}..........

  教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆.

  (关于值域,到后面再学习).

  设计意图:

  定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握.

  (五)符号判断、形象识记

  (情景7)能判断三角函数值的正、负吗?试试看!

  引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:

  (同好得正、异号得负)

  sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负

  设计意图:

  判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键.

  (六)练习巩固、理解记忆

  1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值.

  要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义.

  课堂练习:

  p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值.

  要求心算,并提问中下学生检验,--------

  点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).

  补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值.

  师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略.

  2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.

  提问,据反馈信息作点评、修正.

  师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。

  取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义.

  强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值.

  设计意图:

  及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终.

  (七)回顾小结、建构网络

  要求全体学生根据教师所提问题进行总结识记,提问检查并强调:

  1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)

  2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)

  3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)

  设计意图:

  遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力.

  (八)布置课外作业

  1.书面作业:习题4.3第3、4、5题.

  2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况.

  教学设计说明

  一、对本节教材的理解

  三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.

  星星之火,可以燎原.

  直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础.

  三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.

  二、教学法加工

  数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力.

  在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时.

  教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力.

  将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了.

  教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学.

  三、教学过程分析(见穿插在教案中的设计意图).

高中数学说课稿 篇5

  【一】教学背景分析

  1.教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.

  2.学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3.教学目标

  (1) 知识目标:①掌握圆的`标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题.

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识.

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣.

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4. 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用.

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题.

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  好学教育:

  【二】教法学法分析

  1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.

  2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程. 下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图.

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.

  (二)深入探究——获得新知

  问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2.如果圆心在,半径为时又如何呢?

  好学教育:

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.

  (三)应用举例——巩固提高

  I.直接应用 内化新知

  问题三 1.写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点.

  2.写出圆的圆心坐标和半径.

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.

  II.灵活应用 提升能力

  问题四 1.求以点为圆心,并且和直线相切的圆的方程.

  2.求过点,圆心在直线上且与轴相切的圆的方程.

  3.已知圆的方程为,求过圆上一点的切线方程.

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.

  III.实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

  好学教育:

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.

  (四)反馈训练——形成方法

  问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.

  2.求圆过点的切线方程.

  3.求圆过点的切线方程.

  接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.

  (五)小结反思——拓展引申

  1.课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:.

  ②已知圆的方程是,经过圆上一点的切线的方程是:.

  2.分层作业

  (A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.

  3.激发新疑

  问题七 1.把圆的标准方程展开后是什么形式?

  2.方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  好学教育:

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.

高中数学说课稿 篇6

  一、教材分析

  1、教材的地位和作用:

  函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数及指数函数的图像和性质,同时也为今后研究对数函数及其性质打下坚实的基础。因此本节课内容十分重要,它对知识起着承上启下的作用。

  2、教学的重点和难点:

  根据这节课的内容特点及学生的实际情况,我将本节课教学重点定为指数函数的图像、性质及应用,难点定为指数函数性质的发现过程及指数函数与底的关系。

  二、教学目标分析

  基于对教材的理解和分析,我制定了以下教学目标:

  1、理解指数函数的定义,掌握指数函数图像、性质及其简单应用。

  2、通过教学培养学生观察、分析、归纳等思维能力,体会数形结合思想和分类讨论思想,增强学生识图用图的能力。

  3、培养学生对知识的严谨科学态度和辩证唯物主义观点。

  三、教法学法分析

  1、学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也逐步形成,但由于年龄的原因,思维尽管活跃敏捷,却缺乏冷静深刻。因此思考问题片面不严谨。

  2、教法分析:基于以上学情分析,我采用先学生讨论,再教师讲授教学方法。一方面培养学生的观察、分析、归纳等思维能力。另一方面用教师的讲授来纠正由于学生思维过分活跃而走入的误区,和弥补知识的不足,达到能力与知识的双重效果。

  3、学法分析

  让学生仔细观察书中给出的实际例子,使他们发现指数函数与现实生活息息相关。再根据高一学生爱动脑懒动手的特点,让学生自己描点画图,画出指数函数的图像,继而用自己的语言总结指数函数的性质,学生经历了探究的过程,培养探究能力和抽象概括的能力。

  四、教学过程

  (一)创设情景

  问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 次后,得到的细胞分裂的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

  学生回答: 与 之间的关系式,可以表示为 。

  问题2:折纸问题:让学生动手折纸

  学生回答:①对折的次数 与所得的层数 之间的关系,得出结论

  ②对折的次数 与折后面积 之间的关系(记折前纸张面积为1),得出结论

  问题3:《庄子。天下篇》中写到“一尺之棰,日取其半,万世不竭”。

  学生回答:写出取 次后,木棰的剩留量与 与 的函数关系式。

  设计意图:

  (1)让学生在问题的情景中发现问题,遇到挑战,激发斗志,又引导学生在简单的具体问题中抽象出共性,体验从简单到复杂,从特殊到一般的认知规律。从而引入两种常见的指数函数① ②

  (2)让学生感受我们生活中存在这样的指数函数模型,便于学生接

  受指数函数的形式。

  (二)导入新课

  引导学生观察,三个函数中,底数是常数,指数是自变量。

  设计意图:充实实例,突出底数a的取值范围,让学生体会到数学来源于生产生活实际。函数 分别以 的数为底,加深对定义的感性认识,为顺利引出指数函数定义作铺垫。

  (三)新课讲授

  1.指数函数的定义

  一般地,函数 叫做指数函数,其中 是自变量,函数的定义域是R。

  含义:

  设计意图:为 按两种情况得出指数函数性质作铺垫。若学生回答不合适,引导学生用区间表示:

  问题:指数函数定义中,为什么规定“ ”如果不这样规定会出现什么情况?

  设计意图:教师首先提出问题:为什么要规定底数大于0且不等于1呢?这是本节的一个难点,为突破难点,采取学生自由讨论的形式,达到互相启发,补充,活跃气氛,激发兴趣的目的。

  对于底数的分类,可将问题分解为:

  (1)若 会有什么问题?(如 ,则在实数范围内相应的函数值不存在)

  (2)若 会有什么问题?(对于 , 都无意义)

  (3)若 又会怎么样?( 无论 取何值,它总是1,对它没有研究的必要.)

  师:为了避免上述各种情况的发生,所以规定 。

  在这里要注意生生之间、师生之间的对话。

  设计意图:认识清楚底数a的特殊规定,才能深刻理解指数函数的定义域是R;并为学习对数函数,认识指数与对数函数关系打基础。

  教师还要提醒学生指数函数的定义是形式定义,必须在形式上一模一样才行,然后把问题引向深入。

  1:指出下列函数那些是指数函数:

  2:若函数 是指数函数,则

  3:已知 是指数函数,且 ,求函数 的解析式。

  设计意图 :加深学生对指数函数定义和呈现形式的理解。

  2.指数函数的图像及性质

  在同一平面直角坐标系内画出下列指数函数的图象

  画函数图象的步骤:列表、描点、连线

  思考如何列表取值?

  教师与学生共同作出 图像。

  设计意图:在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a对于函数值变化的影响。对于 时函数值变化的不同情况,学生往往容易混淆,这是教学中的一个难点。为此,必须利用图像,数形结合。教师亲自板演,学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图像,目的是使学生更加信服,加深印象,并为以后画图解题,采用数形结合思想方法打下基础。

  利用几何画板演示函数 的图象,观察分析图像的共同特征。由特殊到一般,得出指数函数 的图象特征,进一步得出图象性质:

  教师组织学生结合图像讨论指数函数的性质。

  设计意图:这是本节课的重点和难点,要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。

  师生共同总结指数函数的性质,教师边总结边板书。

  特别地,函数值的分布情况如下:

  设计意图:再次强调指数函数的单调性与底数a的关系,并具体分析了函数值的分布情况,深刻理解指数函数值域情况。

  (四)巩固与练习

  例1: 比较下列各题中两值的大小

  教师引导学生观察这些指数值的特征,思考比较大小的方法。

  (1)(2)两题底相同,指数不同,(3)(4)两题可化为同底的,可以利用函数的单调性比较大小。

  (5)题底不同,指数相同,可以利用函数的图像比较大小。

  (6)题底不同,指数也不同,可以借助中介值比较大小。

  例2:已知下列不等式 , 比较 的大小 :

  设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

  (五)课堂小结

  通过本节课的学习,你学到了哪些知识?

  你又掌握了哪些数学思想方法?

  你能将指数函数的学习与实际生活联系起来吗?

  设计意图:让学生在小结中明确本节课的学习内容,强化本节课的学习重点,并为后续学习打下基础。

  (六)布置作业

  1、练习B组第2题;习题3-1A组第3题

  2、A先生从今天开始每天给你10万元,而你承担如下任务:第一天给A先生1元,第二天给A先生2元,,第三天给A先生4元,第四天给A先生8元,依次下去,…,A先生要和你签定15天的合同,你同意吗?又A先生要和你签定30天的合同,你能签这个合同吗?

  3、观察指数函数 的图象,比较 的大小。

高中数学说课稿 篇7

  大家好!~今天我要讲的是必修课程数学1中《集合》的相关内容。

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象。

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合。

  (3)元素:集合中每个对象叫做这个集合的元素。

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1。 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写。 (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了。

  (2)互异性:集合中的元素一定是不同的。

  (3)无序性:集合中的元素没有固定的顺序。

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合。记作N

  (2)正整数集:非负整数集内排除0的集。记作N*或N+

  (3)整数集:全体整数的集合。记作Z

  (4)有理数集:全体有理数的集合。记作Q

  (5)实数集:全体实数的集合。记作R

  注:(1)自然数集包括数0。

  (2)非负整数集内排除0的集。记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3—x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x—3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1。1,第1— 4题

高中数学说课稿 篇8

  高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。

  一、内容分析说明

  1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:

  (1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。

  (2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。

  (3)二项式定理是解决某些整除性、近似计算等问题的一种方法。

  2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的

  试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的

  近似值。

  二、学校情况与学生分析

  (1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。

  (2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。

  三、教学目标

  复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:

  1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。

  (2)会运用展开式的通项公式求展开式的特定项。

  2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。

  (2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。

  3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。

  四、教学过程

  1、知识归纳

  (1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?

  ②学生一起回忆、老师板书。

  设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。

  ②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。

  (2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。

  ③巩固练习 填空

  设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。

  ②变用公式,熟悉公式。

  (3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.

  展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.

  2、例题讲解

  例1求 的展开式的第4项的二项式系数,并求的第4项的系数。

  讲解过程

  设问:这里 ,要求的第4项的有关系数,如何解决?

  学生思考计算,回答问题;

  老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,

  ②第4项的系数与的第4项的二项式系数区别。

  板书

  解:展开式的第4项

  所以第4项的系数为 ,二项式系数为 。

  选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。

  例2 求 的展开式中不含的 项。

  讲解过程

  设问:①不含的 项是什么样的项?即这一项具有什么性质?

  ②问题转化为第几项是常数项,谁能看出哪一项是常数项?

  师生讨论 “看不出哪一项是常数项,怎么办?”

  共同探讨思路:利用通项公式,列出项数的方程,求出项数。

  老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。

  板书

  解:设展开式的第 项为不含 项,那么

  令 ,解得 ,所以展开式的第9项是不含的 项。

  因此 。

  选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。

  ②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。

  例3求 的展开式中, 的系数。

  解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。

  板书

  解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。

  而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。

  所以 的展开式中 的系数为

  例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.

  解:展开式中前三项的系数分别为1, , ,

  由题意得2× =1+ ,得n=8.

  设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.

  有理项为T1=x4,T5= x,T9= .

  3、课堂练习

  1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.

  答案:C

  2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是

  A.14 B.14 C.42 D.-42

  解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·

  (-1)r·x ,

  当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)

  解析:∵(x +x )n的展开式中各项系数和为128,

  ∴令x=1,即得所有项系数和为2n=128.

  ∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3时,x5项的系数为C =35.

  答案:35

  五、课堂教学设计说明

  1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。

  2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。

  六、个人见解

【精选高中数学说课稿模板集合八篇】相关文章:

1.高中数学集合的说课稿

2.高中数学说课稿模板集合十篇

3.精选高中数学说课稿模板汇编9篇

4.精选高中数学说课稿模板汇编五篇

5.精选高中数学说课稿模板汇编6篇

6.有关高中数学说课稿模板集合十篇

7.精选高中数学说课稿模板锦集六篇

8.高中数学说课稿模板九篇

上一篇:小学语文说课稿 下一篇:小学语文说课稿