作为一名辛苦耕耘的教育工作者,时常需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。那么说课稿应该怎么写才合适呢?以下是小编帮大家整理的数学说课稿初中5篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学说课稿初中 篇1
各位评委、各位老师大家好!今天我说课的课题是八年级下册第五章第4节《数据的波动》(第一课时)。现我就教材、教法、学法、教学流序、板书五个方面进行说明。(恳请在座的各位专家、同仁批评指正。)
一、说教材:
1.本节课的主要内容:
探究数据的离散程度及认识“极差”“方差”“标准差”三个量度及其实际意义。主要是运用具体的生活情境,让学生感受到当两组数据的“平均水平” 相近时,而实际问题中具体意义却千差万别,因而必须研究数据的波动状况,分析数据的差异,逐步抽象出刻画数据离散程度的“极差”“方差”“标准差”的三个量度,并掌握利用计算器求方差与标准差。
2.地位作用:
纵观本章的教材安排体系,以数据“收集—表示—处理—评判”的顺序展开。数据的波动是对一组数据变化的趋势进行评判,通过结果评判形成决策的教学,是数据处理解决现实情景问题必不可少的重要环节,是本章学习的最终目的与落脚点。通过本节的学习为处理各种较为复杂的现实情境的数据问题打下基础。
3.教学目标:
依据课标对本节知识的提出的“探索如何表示一组数据的离散程度,会计算极差与方差,并会用它们表示数据的离散程度”要求,确定以下目标:
(1)知识目标:a、掌握刻画数据离散程度的“极差”“方差”“标准差”三个量度。b、会动手与利用计算器计算“方差”“标准差”。
(2)过程与方法目标:a.经历感受表示数据离散程度的三个量度的探索过程(“极差”“方差”“标准差)。b.通过数据分析的学习,培养学生探索数学规律的能力(“平均数相同的两组数据,极差越小,波动越小,越稳定”;“一组数据方差越小,波动越小,越稳定”)c.突出关键环节,判断两组数据稳定性就是抓住计算其方差进行比较。d.在具体实例中体会样本估计总体的思想。
(3)情感目标:通过解决生活中的数学问题,培养学生认真参与、积极交流的主体意识,通过数据分析,培养学生善于用数学的眼光认识世界,进一步增强学生的数学素养。
4.重点与难点:重点:
理解刻画数据离散程度的三个量度——极差、标准差与方差,会计算方差的数值,并在具体问题情境中加以应用。
难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。
二、说教法
教学过程是教师与学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这一原则与本节教学目标,我采用如下的教学方法:
1.引导发现法。数据分析的三个量度,是十分抽象的概念,要引出三个概念,必须借助学生熟悉的生活情景。我设计了一个连接奥运会中韩射箭运动员的场景,并用表格记录环数,让学生运用已有的知识进行评判,通过学习分析具体的生活实例来发现当两组数据的“平均水平”相近,无法用平均数来刻画时,引入一种新的量度,逐步抽象出“极差”“方差”“标准差”。以此,打开教学突出教学难点的缺口,充分激活学生思维,调动其主动性与积极性。
2.比较法。在极差与方差的应用中,让学生在比较中发现用已有的知识还是难以准确的刻画一组数据的离散程度,从而引入新的量度。
3.练习巩固法。通过练习,强化巩固概念,熟练计算器的操作。进一步理解本节知识对于实际问题的意义。这样更能突破重点、解决难点,在运算中深刻理解“极差”“方差”“标准差”的内涵。使学生的分析问题与解决问题的能力得到进一步的提高。
4.选用一个贴近学生生活实际的背景。通过一个实际问题情境的导入与比较,抓住重点,突破难点,让学生直观地估测甲、乙两名选手的成绩,回顾有关数据的另一个量度 “平均水平”,同时让学生初步体会“平均水平”相近,但两者的离散程度未必相同,仅有“平均水平”还难以准确地刻画一组数据,从而顺理成章地引入刻画数据离散程度的一个量度—极差;然后,设计了一个“做一做”,因承上面场景的情境,增加了一名选手丙,旨在通过丙与甲、乙的对比,发现有时平均水平相近,极差也相同,但数据的离散程度仍然存在差异,仅用极差还难以精确刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量度—标准差与方差。指导学生动手计算平均数、极差、方差、标准差,并依次比较,让学生在比较中发现问题。
三、说学法:
教给学生方法比教给学生知识更重要。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间与空间,我主要设计的学法指导是:
(1)引导观察分析法:链接运动员设计场景,引导学生观察把环(用眼),关注收集的数据,积极思考,分析两名运动员设计的稳定程度(动脑),指导学生动手计算(动手)。让学生学会观察问题,分析问题与解决问题。
(2)引导比较鉴别法:在教学过程中,每出现一个新概念或一个新公式,采取的方法是:一是引导学生读,二是解释关键词语,三是让学生动手计算、巩固知识,加深理解概念的内涵,四是回头看实际情形,认识数据的变化规律,在实际背景中比较形成正确的决策。
(3)引导练习巩固:注重“做一做”的练习中强化、观察、切入公式特点、计算、分析、判断的方法的巩固,通过强化加深学生对三个量度的理解与应用。让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容与知识。
(4)引导自学法:学生自学掌握计数器计算方差与标准差的操作功能。
四、说教学程序:
1.创设情境,导入新课:
<1>、展示情景(链接奥运会中韩运动员设计的情景)。
<3>、分析思考寻求解决方案(观察表格数据求平均数)。
2、新课:
(由学生已经掌握的知识来引出课题,吸引学生的注意力与提高学习本节知识的兴趣)
<1>、概念介绍:
<3>、引进概念
<5>、计算引例中的方差与标准差。(作用:一是巩固“方差”的计算方法;二是用方差来刻画引例中的数据离散程度,加深学生对方差意义的理解。三是会用运“方差”来解决实际问题的方法)。
<2>、P—235随堂练习(1)(通过这道习题巩固运用所学知识分析解决实际问题的能力)
4、小结谈体会:教师引导回顾所学概念;让学生谈学习、运用的体会。
5、布置作业:P—199(1)(2)(3-选作题):
五.说板书设计
板书设计为表格式,这样的板书简明清楚,重点突出,加深学生对重点知识的理解与掌握,同时便于比较与记忆,有利于提高教学效果。
数学说课稿初中 篇2
一、说教材:
(一)、教材内容:
本节课在初中数学中起着比较重要的作用,准备通过本节课的学习,使学生从感性到理性形成一个飞跃。
(二)、教学目标:
根据新课程标准关于数学目标设计的基本理念,在分析课标和教材的基础上,我把本节课的教学目标划分为以下四个方面:知识与技能、数学思考、解决问题、情感与态度。具体说来:
(1)、知识与技能:掌握中点四边形的形状,熟悉特殊平行四边形的判定技能。
(2)、数学思考:如何从问题出发,有效组织学生进行独立思考、合作学习,通过综合法的证明过程,体会证明的有关思维方法。
(3)、解决问题:通过一题多变,建立思考情境,形成独立思考、合作交流的学习模式,培养理性说理能力。
(4)、情感态度与价值观:通过师生活动以及交互性多媒体教学软件的使用,培养学生的自觉性、积极性,使学生发现数学中所蕴涵的美,并激发他们向深层的未知世界不断探索的学习热情。
(三)、教学重难点:
根据数学课程标准对本学段这部分知识的建议,我把本节课的教学重点确定为让学生理解中点四边形是平行四边形,或为矩形、菱形、正方形。难点是探索出中点四边形为特殊平行四边形的决定因素。
(四)、教具准备:
为了使学生能上好这节课,我制作了多媒体课件及演示教具,并对学生可能提出的疑问做了多方面设置。
二、说教学方法:
根据学生以往的学习经验,及九年级学生思维的感官性,所以本节课安排由学生通过实际操作去探索中点图的特征。也为使课堂生动、有趣、高效,准备将整节课以观察、思考、讨论贯穿于整个教学环节之中,并准备通过实验观察,启发式教学法和师生互动式教学模式进行教学,教学中,最大限度的调动学生学习的积极性和主动性,以利于最优化的达到教学目的。
教学过程中注意师生之间的情感交流,培养学生“多观察、动脑筋、大胆猜、勤钻研”的研讨式学习模式,培养学生归纳总结能力。为突破难点,我在教学中适当补充练习题进行教学,重在引起学生对新知的巩固和掌握。
三、说学生学法:
(1)知识掌握上:在学生学习任意四边形中点图的基础上,再加上九年级学生理解力强,所以本课安排学生通过动手操作去探索三角形相似的条件不存在太大的问题。
(2)知识障碍上:今天的新知,学生不易灵活应用,容易造成应用中的混淆现象,所以教学中灵活结合学生练习中可能存在的问题,进行简单明了、深入的分析讲解。
(3)思维特征上:根据九年级学生,不爱发表见解,希望得到老师表扬等特点,所以在教学中准备灵活抓住学生这一生理、心理特点,一方面实际操作、另一方面课件演示,尽量引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
(4)心理特征上:老师抓住学生对数学课感兴趣这一有利因素,引导学生认识到数学的科学性和应用性,学好数学有利于其他学科的学习以及学科知识的渗透性。
四、说教学程序设计:
教学设计应为教学目标展开,因此,我根据课改精神以及九年级学生的年龄特点、心理特征、学生学习水平。在确立了教学目标以后,将本节课的设计思路确立为以下几个环节:
1、创设情境导入新课,学生在已有认知的基础上,从旧知入手,创设情境,从而激发学生的学习兴趣。而后开门见山,给出课题,并引导学生探索的方法,从而使学生对本课形成整体观念。这样导入新课既为后面突破难点节省了时间,也激发了学生的学习兴趣,又引发了学生的求知欲,使他们带着浓厚的兴趣进入新课的学习。
2、动手操作探究规律:
在大屏上映出做一做的内容,是利用学生自己动手实践,得出结论,并通过问题来引导学生开展观察、分析、交流、总结等活动,培养学生从数学的角度去观察事物,思考问题并归纳问题。
因这部分内容是本节课的教学重点也是本节课的教学难点,为突破这一难点,准备安排十五分种的时间让学生亲自动手操作、合作交流得出结论。其间,我准备参与其中,并及时给个别学生加以引导,突出学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者的地位。在学生探索的基础上,老师提出让学生欣赏自己的作品,电脑显示老师的作品,设计这一环节的主要目的是让学生进一步明确答案,体会数学语言的严密性。另外,学生在操作的过程中特别强调先独立完成,再合作交流,从而体现合作是在自主的基础上进行的理念。
3、加深理解形成技能:我们教学要激发学生独立思考,让学生主动探索,养成良好的学习习惯,因此,我先结合“我会填”让学生学会初步应用新知,再结合“动脑做”请同学在动手操作的基础上,自动形成讨论组,对所提出的问题进行实际操作。并引导学生在动手中思维,在思维中动手。再结合“学习了,会用吗?”进一步体会数学知识的严密性,从而为突破难点打下坚实的基础。
4、练习应用感受新知:为提高对重点内容的理解和应用,在因材施教,
尊重学生的个性差异的基础上,特设计了一个全班的分组游戏,以达到本节课的高潮,游戏内容备有四套有梯次的套餐题,并且每一部分的出题都围绕着教学目的而展开。A套题着眼于基础知识的练习和巩固,使绝大部分学生都能领悟和理解。教学中,无须浪费更多时间,学生自行解决即可。B套题则多知识点交叉。必要时,老师要适时给以点播。C套题目的是让同学们都动手动脑。D套题则培养解题技能。安排这一内容的主要目的是提高学习兴趣,让学生在做对的基础上体味成功感,从而提高学习数学的信心。而竞赛后教师的点评更使学生认识到合作学习给大家带来的好处。
5、拓展延伸解决问题:通过一个探索性的作业,引导学生课下探究,进一步体会数学,感受数学。
五、说教学评价:
在教学中充分考虑到老师的神态、语言对学生学习过程的影响。同时从不同角度或侧面了解学生的跟课情况,以便及时调整教学过程,从而保证教与学的统一。我在这节课的设计中十分注意学生学习主动性的发挥,学生在进行操作、展示的过程中,及时给以评价,提高学生的自信心,从而体验数学,感受数学,形成对数学的正确认识,并得到情感态度与价值观的陶冶与升华。
本节课的设计思路基本这样,具体操作可能会有些疏漏,恳请各位领导、老师多提宝贵意见。
数学说课稿初中 篇3
一、本课数学内容的本质、地位、作用分析:
《从问题到方程》是苏科版数学教材七年级上册第四章第一节的内容。
方程是中学数学的重要内容,方程思想也是中学数学的重要思想之一。这节课设计的主要意图是想让学生意识到方程的出现是源于解决实际问题的需要,是刻画现实世界的有效的数学模型,为后面解一元一次方程以及用一元一次方程解决实际问题作铺垫,是后续学习的基础。从数学学科本身来看,方程是代数学的核心内容;从数学教学来看,它对于培养学生运用数学解决实际问题的应用意识、提高解决实际问题的能力和体现数学的应用价值都具有重要的作用和意义。
二、教学目标分析:
1、知识与能力目标:
①探索实际问题中的相等关系,并用方程描述;通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。
②在学生根据问题寻找相等关系并根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。
2、过程与方法目标:
让学生经历将一些实际问题抽象为方程问题的过程。经历运用数学符号和图形描述现实世界的过程。
3、情感态度与价值观目标:
①通过对多种实际问题的分析,培养学生克服困难的意志品质。
②体验在生活中学数学、用数学的价值,感受学习数学的乐趣。
4、教学重点、难点:
重点:
1、理解题意,寻求数量间的.相等关系并列出方程。
2、让学生初步感受方程是解决问题的方法。
难点:寻找实际问题中的相等关系。
三、教学问题诊断:
我设计了以下四个环节来完成教学的。
在(一)“体验问题,感受方程魅力”环节中,我现场用学生的年龄和老师的年龄编题,并设置了两个问题:
问题(1):算老师的年龄,激发了学生的好奇心,借此拉近老师和学生情感上的距离,激发学生学习兴趣。
问题(2):没有立刻解决,而是设置了一个悬念,激发学生的学习热情。引出了本课课题:从问题到方程!
最后通过天平的动画演示让学生感受方程是表达数量之间相等关系的“天平”,让学生对方程有直观的感受。
在(二)“解剖问题,建立方程模型”环节中,我也设计了两个问题:
问题一:排球联赛的题目:
这道题目是以问题串的形式呈现,从最简单的问题入手,不急于告诉学生是用方程来解决问题,而是由易到难,让学生逐步体会方程解法的优越性。
关于学生对问题(3)的解答,我预设了两种情况:
1、如果学生只会用算术方法,就继续让学生思考能否只列一个式子就能把问题解决,再进一步引导学生找出实际问题中的相等关系列出方程。
2、如果有个别学生用方程解法,就因势利导,让他和算术方法比较,感受方程解法在解决这个问题时更简便,体会方程解法的优越。
排球联赛的问题主要是让学生感到用算术方法解决复杂问题时的困难,体会方程解法的优越。
问题二:试一试的题目:
这是一开始上课时设置的疑问,通过对前一个问题的剖析,让学生尝试用方程来解决刚才设置年龄问题的悬念,体会到用方程方法解决这个问题简单易懂。同时师生共同归纳出用方程解决问题的几个关键步骤,为下面的教学做了铺垫。
在(三)“探究问题,领悟方程内涵”环节中,我设计一道有关气温变化的题目。用白居易的诗句“人间四月芳菲尽,山寺桃花始盛开”引出,让学生感受生活中处处有数学,数学离不开生活。我的预设如下:
1、这题由学生独立完成。学生在分析问题、寻找相等关系时,可能思路不同,得出的相等关系不同,从而所列方程也不同。只要是正确的,我都会加以鼓励,让学生都能体验成功的喜悦。
2、这里有一个难点就是如何理解“海拔每升高100m,气温下降0.60度”。我利用动画演示当海拔升高100米、升高200米、…升高xm时气温下降高度的变化,从而分化难点。
3、师生通过引导学生归纳总结从问题到方程的一般步骤,培养学生归纳概括的能力。为后面用方程解决问题埋下伏笔。
在(四)“运用模型,实践方程作用”环节中,我设计了两个问题让学生独立完成,实践方程作用。
学生可能会直接列方程而没有设出未知数,也可能在间接设未知数时不知道选择最简便的方法。所以本环节一方面培养学生运用知识解决问题的能力,另一方面规范解题格式,巩固所学内容。同时使学生进一步经历列方程研究实际问题的过程,培养学生将实际问题抽象为数学问题的能力,再次感受数学源于生活。
在学习感悟的环节中,主要让学生围绕两个问题谈谈自己在这节课中的收获。目的是明确知识,培养抽象概括能力,提高学生的思维水平。
最后以数学大师笛卡尔的名言小结,“夸大”方程的作用,在学生心目中产生名人效应,对今后方程的学习与应用更加充满兴趣,同时提高了学生的数学文化素养。
四、本节课的教法特点以及预期效果分析
本节课主要采用师生共同探究学习法进行教学,由教师引导,学生自主探索、观察、归纳。在教学设计中,以生活中的实际问题为例来创设情境,引导学生关注身边的事。在课堂上努力营造一种学生自主探究的氛围,引导学生去分析思考和归纳总结,进而达到对知识的“发现”和接受的目的。有意识地给学生创造一个欣赏数学、探索数学的平台,渗透给学生由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想。利用多媒体和动感天平演示来辅助教学,充分调动学生的积极性。
在教学过程中我主要在以下几个方面做了新的尝试:
1、体现学生的主体意识。本设计中,教师始终把学生放在主体的地位,让学生通过对列算式与列方程这两种主要方法进行比较,分别归纳出它们的特点,让学生感受到从算术方法到代数方法是数学的进步,让学生通过合作与交流,得出同一个问题的不同解答方法,让学生对本节课的学习内容、方法、注意点等进行归纳。
2、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程。在寻找相等关系、设未知数及作业的布置等环节中,让学生展示不同层次的思维活动,经历合作探究新知的过程。
3、渗透方程建模的思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
数学说课稿初中 篇4
一、说教材
本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项伟大成就。勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。 据此,制定教学目标如下:
1、知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用。
教学难点:勾股定理的正确使用。
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
二、说教法和学法
1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序
本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:
一、回顾问:
勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。
二、新授课例
1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)
①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短?
②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗?
③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?
思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3)
思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。
三、课堂小练
1、课本P58练习第1,2题。
2、探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?
四、小结
直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。
五、布置作业
课本P60习题14.2第1,2,3题。
数学说课稿初中 篇5
今天我说课的课题是《勾股定理》。本课选自九年义务教育人教版八年级数学下册第十八章第一节的第一课时。
一、教学背景分析
1、教材分析
本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析
通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:
根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:
知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.
过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点
通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。因此我确定本课的教学
重难点为探索和证明勾股定理.
二、教材处理
根据学生情况,为有效培养学生能力,在教学过程中,以创设问题情境为先导,运用直观教具、多媒体等手段,激发学生学习兴趣,调动学生学习积极性,并开展以探究活动为主的教学模式,边设疑,边讲解,边操作,边讨论,启发学生提出问题,分析问题,进而解决问题,以达到突出重点,攻破难点的目的。
三、教学策略
1、教法
“教必有法,而教无定法”,只有方法恰当,才会有效。根据本课内容特点和八年级学生思维活动特点,我采用了引导发现教学法,合作探究教学法,逐步渗透教学法和师生共研相结合的方法。
2、学法
“授人以鱼,不如授人以渔”,通过设计问题序列,引导学生主动探究新知,合作交流,体现学习的自主性,从不同层次发掘不同学生的不同能力,从而达到发展学生思维能力的目的,发掘学生的创新精神。
3、教学模式
根据新课标要求,要积极倡导自主、合作、探究的学习方式,我采用了创设情境——探究新知——反馈训练的教学模式,使学生获取知识,提高素质能力。
四、教学过程
(一)创设情境,引入新课
利用多媒体课件,给学生出示20xx年国际数学家大会的场面,通过观察会徽图案,提出问题:你见过这个图案吗?你听说过勾股定理吗?从现实生活中提出赵爽弦图,激发学生学习的热情和求知欲,同时为探索勾股定理提供背景材料,进而引出课题。
(二)引导学生,探究新知
1、初步感知定理:这一环节选择教材的图片,讲述毕达哥拉斯到朋友家做客时发现用砖铺成的地面,其中含有直角三角形三边的数量关系,创设感知情境,提出问题:现在也请你观察,看看有什么发现?教师配合演示,使问题更形象、具体。适当补充等腰直角三角形边长为1、2时,所形成的规律,使学生再次感知发现的规律。
2、提出猜想:在活动1的基础上,学生已发现一些规律,进一步通过活动2进行看一看,想一想,做一做,让学生感受不只是等腰直角三角形才具有这样的性质,使学生由浅到深,由特殊到一般的提出问题,启发学生得出猜想,直角三角形的两直角边的平方和等于斜边的平方。
3、证明猜想:是不是所有的直角三角形都有这样的特点呢?这就需要我们对一个一般的直角三角形进行证明.通过活动3,充分引导学生利用直观教具,进行拼图实验,在动手操作中放手让学生思考、讨论、合作、交流,探究解决问题的多种方法,鼓励创新,小组竞赛,引入竞争,教师参与讨论,与学生交流,获取信息,从而有针对性地引导学生进行证法的探究,使学生创造性地得出拼图的多种方法,并使学生在学习的过程中,感受到自我创造的快乐,从而分散了教学难点,发现了利用面积相等去证明勾股定理的方法。培养了学生的发散思维、一题多解和探究数学问题的能力。
4、总结定理:让学生自己总结定理,不完善之处由教师补充。在前面探究活动的基础上,学生很容易得出直角三角形的三边数量关系即勾股定理,培养了学生的语言表达能力和归纳概括能力。
(三)反馈训练,巩固新知
学生对所学的知识是否掌握了,达到了什么程度?为了检测学生对本课目标的达成情况和加强对学生能力的培养,设计一组有坡度的练习题:A组动脑筋,想一想,是本节基础知识的理解和直接应用;B组求阴影部分的面积,建立了新旧知识的联系,培养学生综合运用知识的能力。C组议一议,是一道实际应用题型,给学生施展才智的机会,让学生独立思考后,讨论交流得出解决问题的方法,增强了数学来源于实践,反过来又作用于实践的应用意识,达到了学以致用的目的。
(四)归纳小结,深化新知
本节课你有哪些收获?你最感兴趣的地方是什么?你想进一步研究的的问题是什么?通过小结,使学生进一步明确掌握教学目标,使知识成为体系。
(五)布置作业,拓展新知
让学生收集有关勾股定理的证明方法,下节课展示、交流.使本节知识得到拓展、延伸,培养了学生能力和思维的深刻性,让学生感受数学深厚的文化底蕴。
(六)板书设计,明确新知
本节课的板书设计分为三块:一块是拼图方法,一块是勾股定理;一块是例题解析。它突出了重点,层次清楚,便于学生掌握,为获得知识服务。
【实用的数学说课稿初中合集五篇】相关文章:
4.初中的数学说课稿