数学说课稿

2021-06-23 说课稿

  在教学工作者实际的教学活动中,常常需要准备说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。怎样写说课稿才更能起到其作用呢?以下是小编为大家整理的数学说课稿7篇,仅供参考,希望能够帮助到大家。

数学说课稿 篇1

  “十几减9”是20以内退位减法教学的第一课,它是在学生掌握了10以内的加减法、20以内的进位加法的基础上进行教学的,它既是为学生学习退位减法铺路,又为四则计算奠定基础。本节课教材在编排上注意体现新的教学理念,设计的情境有利于学生了解现实生活中的数学,让学生初步感受数学与日常生活的密切联系。本节课教材共安排了两道例题,主题图为我们提供的资源是元旦游园会的场景图,通过气球中的问题“还有多少个?”引出不同的计算方法,体现学生的不同思维过程和方法,体现算法多样化。例1展示的是十几减9的两种基本算法(“做减想加”、“破十法”)学生只需掌握其中的一种。本节课的教学,要使学生理解十几减9的算理,会用十几减9 的一般方法(或破十、或做减想加)正确计算。为了达到本目的,本节课的教学主要从以下几个方面进行教学。

  一、引导学生在具体情境中学习十几减9的知识。

  为了让学生掌握十几减9的减法,教材为我们提供了丰富的教学资源。教学时,我充分利用主题图,引导学生在活动中学习十几减9的减法。

  二、动手操作,体会破十法和做减想加的算理。

  学生掌握十几减9的计算方法有快有慢,理解有深有浅。为了让那些学有困难的学生理解十几减9的算理,我加强了学生的操作活动。如在教学例一(12-9)时,设计的学具有两种颜色(10朵红花、2朵黄花),让学生思考:从12中去掉9,该怎么去?学生能很快从10朵红花中拿掉9朵,剩下的1朵红花和2朵黄花合起来就是12-9的结果。通过操作活动,学生能很快理解“破十”的道理,从而达到运用“破十法”计算的目的。

  三、鼓励算法多样化,又教给学生一般的优化的计算方法。

  学生数学思维水平参差不齐,应此学生计算方法也是参差不齐,有的需要借助直观学具进行计算,有的能“做减想加”来计算。为了使大多数学生通过学习,达到义务教育所要求的标准,使大多数学生掌握一般的较优的计算方法,由此在鼓励学生算法多样化的同时,侧重让学生理解“做减想加”和“破十法”的计算算理,目的使大多数学生能掌握这普通的长久发挥的数学方法。

数学说课稿 篇2

  一。教材分析

  1.教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从学生活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够"跳一跳,够得到".

 (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

 (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

数学说课稿 篇3

  教学目标

  (一)使学生理解和掌握被乘数、乘数末尾有0的乘法的简便算法。

  (二)培养学生分析推理的能力。

  教学重点和难点

  重点:简便算法的方法及书写格式。

  难点:简便算法的算理。

  教具和学具

  教具:口算卡片。

  教学过程设计

  (一)复习准备

  1.算出每组题中第1题的积,然后很快说出下面两题的积。

  322= 143= 1204=

  3220= 1403= 12040=

  32200= 14030= 120400=

  2.板演。

  下面各题,用竖式怎样计算比较简便?

  2840 280040 28034

  指定三名学生分别在黑板上演算。

  订正时提问:

  (1)写竖式时,被乘数和乘数怎样对位?

  (被乘数与乘数0前面的数的末位对齐。)

  (2)计算时,用被乘数与乘数哪几位上的数相乘?

  (用被乘数与乘数0前面的数相乘。)

  (3)乘完以后,怎样落0?第(1)题为什么落一个0?

  (284=112,2840与 284比,一个因数不变,另一个因数扩大10倍,积也扩大10倍,所以在112后面添写一个0。)

  第(2)题与第(1)题比较,为什么多落两个0?

  (2840=1120,280040与 2840比较,一个因数不变,另一个因数扩大100倍,积也扩大100倍,因此,在1120后面再添写两个0)

  第(3)题在什么时候才落0?

  (乘数两位数与被乘数0前面的数乘完以后,再把被乘数的0落下来。也就是先得出2834=952,28034与 2834比较,一个因数不变,另一个因数扩大10倍,积也扩大 10倍,因此在952后面添写1个0。)

  (二)学习新课

  1.谈话导入:

  同学们已会计算乘数是两位数及被乘数、乘数末尾有0的乘法,现在我在复习题(3)乘数后面添一个0,就成了乘数是三位数。那么,乘数是三位数时,被乘数、乘数末尾有0的乘法怎样进行简便计算呢?(板书课题:被乘数、乘数末尾有0的乘法)

  2.教学例7。

  想一想:下面两道题用竖式怎样计算简便?

  280340 2800340

  让全体同学在本上试算,教师巡视,看到不同的竖式,让学生写在黑板上。着重讨论下面两个竖式:

  讨论:

  (1)写竖式时,被乘数与乘数是怎样对位的?这样对位的目的是什么?

  (先把被乘数与乘数0前面的数的末尾对齐,目的便于先把0前面的数相乘。)

  副标题#e#

  (2)2834等于多少?(2834=952)

  28034等于多少?(28034=9520)

  这时,教师把被乘数末尾的0用黄粉笔描一下。

  (3)280340等于多少?根据什么再补一个0?

  (280340=95200,与28034比较,一个因数不变,另一个因数扩大10倍,积也扩大10倍,在9520后面添写一个 0。)

  这时教师把乘数末尾的0用红粉笔描一下,把9520后面的0用红粉笔描一下。

  (4)280034等于多少?(280034=95200)

  这时教师把被乘数末尾的两个0用黄粉笔描一下,把积952后面的两个0也用黄粉笔描一下。

  (5)2800340等于多少?积根据什么再补一个0?

  (2800340=952000,与 280034比较,一个因数不变,另一个因数扩大10倍,积也扩大10倍,所以在95200后面再添写一个0。)

  教师在乘数后面的0用红粉笔描一下,在积95 200后面的0也用红粉笔描一下。

  3.引导学生小结。

  提问:遇到被乘数、乘数末尾有0的乘法,列竖式时应注意什么?先怎样乘?然后怎么办?

  教师明确:被乘数、乘数末尾有0的乘法,可以先把0前面的数相乘,然后看被乘数和乘数的末尾一共有几个0,就在乘得的数的末尾添写几个0。

  (三)巩固反馈

  1.先想一想,每道题的竖式怎样写能使计算简便,再算出来。

  全体学生在课本上填写,指定一名学生在投影片上做。订正时,看重让学生说一说列竖式时应注意什么,先怎样计算,然后怎么办。

  2.检查下面两题的计算有没有错误。

  指定一名学生说出错在哪里,错误原因,然后全体学生在本上计算出正确结果。

  4.课后练习:

  练习十四、第7,8,9题。

  课堂教学设计说明

  被乘数、乘数末尾都有0的乘法,在乘数是两位数的乘法时已经学过,本节课是在此基础上加以推广。因此,新课前先复习乘数是两位数、乘数与被乘数末尾有0的乘法,同时复习刚学过的积的变化规律,目的是使学生进一步理解被乘数、乘数末尾有0的乘法简便计算的算理。在此基础上出示例7,乘数是三位数且被乘数、乘数末尾都有0的乘法。

  例7的教学是采用让学生试算的方式,着重提出三个关键性的问题组织学生讨论,使学生明确竖式怎样对位,先怎样乘,然后怎样把0落下来,并联系积的变化规律,知道为什么这样做。

  组织练习时也围绕这一重点,着重练习乘数书写位置和最后积应补几个零。这样抓住关键,有针对性地练习,可提高课堂效率,有利于提高学生的计算能力。

  板书设计

  被乘数、乘数末尾有0的乘法

  例7

数学说课稿 篇4

  一、说教材

  1、教材的地位和作用:

  平行四边形是在学习了平行线和三角形之后编排的,是平行线和三角形知识的应用和深化。同时又是为了后面学习矩形、菱形、正方形、圆,甚至高中立体几何打基础的,起着承上启下的桥梁作用。

  平行四边形在生产生活实践中应用也很广泛,学习他可以把理论和实际联系起来,更好地为实现科技现代化服务。

  在前一章《三角形》的学习中,学生对几何“证明”开始入门,通过本章的学习可以使学生的推理论证的能力得到进一步的巩固和提高,对培养和发展学生的逻辑思维能力也有一定的帮助。

  为此,根据教学大纲的要求和编写教材的意图,结合学生认知规律和素质教育的要求,确定本课的教学目标和重、难点如下:

  2、教学目标:

  (1)双基目标:使学生掌握平行四边形的概念和性质,理解平行线间距离,并会运用平行四边形的性质解决简单的问题。

  (2)能力目标:培养学生观察、分析、猜想、归纳知识的自学能力和培养学生联想、类比、转化、推导、论证、演绎、抽象知识的数学思维品质。

  (3)非智力目标(思想目标):渗透从具体到抽象,特殊到一般,未知到已知的数学思想以及事物之间互相转化的辨证唯物主义观点。

  3、教学重点:

  理解并掌握平行四边形的概念、性质以及性质的应用。

  4、教学难点:

  平行四边形性质的灵活应用。

  二、说教法

  “教学有法,教无定法,贵在得法”,行之有效的教法是取得良好教学效果的保证,按教学论中教为主导,学为主体的原则,教师的任务是制定目标,组织教学活动,控制教学活动的进程,并随机应变、排除障碍,承认和尊重学生的主体地位。为了适应素质教育,培养学生的能力,本节课采用“五点”教学法。具体如下:

  1、以“问题”为学生学习的“起点”;

  2、以“范式”为学生学习的.“焦点”;

  3、以“变式”为学生学习的“重点”;

  4、以“创新”为学生学习的“难点”;

  5、以“评价”为学生学习的“疑点”;

  三、说学法

  教学活动是教与学的双边相互促进的活动。在教学活动中,学生始终是学习的主体,为了激发学生自主学习科学的方法,真正做到课堂教学中面向全体学生,针对本课内容和以上教法,采用的学法如下:

  四、说过程

  1、设问激趣,导入新课(起点):

  首先复习四边形的概念、明确四边形的性质,然后用特殊化方法设计一问题:若四边形的两组对边分别平行,则该四边形是什么样的四边形?这样导入新课的目的是使学生在已有的知识基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣,并提高学生的发散思维能力,让学生敢于探索和猜想。

  2、诱导思维,以诱达思(焦点):

  其次通过设问、质疑,进一步引导学生区分平行四边形与一般四边形,进而猜想出平行四边形的特殊性质。同时教师整理出一种推导平行四边形性质的范式,再让学生联想范式,演绎其他推导模式,这样做的目的是让学生去观察、猜想出平行四边形的性质,在教师的范式的有诱导下,达到演绎数学论证过程的能力。

  3、变式问题,突出“重点”:

  通过具体问题的观察、猜想、演绎出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质。通过投影不同层次的典型习题给不同层次的学生练习,让学生自己去掌握“重点”。

  4、引导创新,化解“难点”:

  设计“无图形”和“无结论”问题,引导学生读题、审题、画图、观分析、猜想、归纳,然后把问题中所有可能的结论推导出来,通过这种开放式问题的解决,既达到突出“重点”,又化解“难点”的目的。

  5、反馈补缺,消除“疑点”:

  在学生自主探索学习的过程中,遇到自己无法解决的疑难问题时,教师做适当的评价和提示,以弥补学习不足之处,从而达到消除“难点”的目的。

  6、总观全课,找到收获:

  教师对此课学生的表现作一小结、评价,特别是对“两头”的学生予以表扬,告诉学生本节是本章及以后学习的基础,要求他们在以后学习中会用平行四边形的性质去解决实际问题。

  7、布置做业:

  有针对地布置少量重、难、疑点知识的家庭作业,可以把“单一性结论”问题改为“无结论”问题,以巩固知识。

数学说课稿 篇5

  一、说教材

  本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识。

  二、说教学目标

  (知识与技能)

  1.经历用方程组解决实际问题的过程,体会方程组是刻画现实世界中含有多个未知数的问题的有效数学模型;

  2.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

  (过程与方法)

  学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答

  (情感态度与价值观)

  培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。

  三、说教学重、难点

  (教学重点)以方程组为工具分析,解决含有多个未知数的实际问题

  (教学难点)确定解题策略,比较估算与精确计算

  四、说教法

  教法设计:回顾练习(5分钟),自主探究(5分钟),小组交流(5分钟),成果展示(10分钟),疑难点拨(10分钟),课堂运用(5分钟),小结发言(5分钟)。

  教法设计意图

  1.回顾练习

  内容:

  用适当的方法解方程组

  (2)既是方程的解,又是方程的解是()

  A.B.C.D.设计意图:巩固二元一次方程组的解法

  2.自主探究

  出示问题:养牛场原有30只母牛和15只小牛,一天约需用饲料675一周后又购进12只母牛和5只小牛,这时一天约需用饲料940kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20kg,每只小牛1天约需用饲料7~8kg.你能否通过计算检验他的估计?

  为了解决这个问题,请认真看P.105页的内容.

  思考:判断李大叔的估计是否正确的方法有2种:

  (1)先假设李大叔的估计正确,再根据问题中给定的数量关系来检验.

  (2)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量,再来判断李大叔的估计是否正确.

  5分钟后谁能帮助李大叔解决问题,并能解决简单的实际问题?

  学生按照自学指导看书,教师巡视,确保人人学得紧张高效.

  设计意图:引导学生独立思考,培养自主学习的能力

  3.小组交流

  组内成员讨论各自的探究成果,对不足和错误进行补充与更正

  最终提炼出最佳方法.

  设计意图:培养合作学习的习惯

  4.成果展示

  各组在黑板上展示解题的方法(也就是设,列的步骤),然后由发言人讲解详细的做法.

  设计意图:培养分析与解决问题能力

  5.疑难点拨

  (1)根据问题中给定的数量关系求出平均每只母牛和每只小牛1天各约需用饲料量——列出方程组

  (2)方法的多样——2种解法

  设计意图:突破难点,打开思考路线,指导规范解题

  6.课堂运用

  实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.

  捐款(元)

  5

  10

  20

  50

  人数

  6

  7

  设计意图:巩固解决实际问题的方法与步骤

  7.小结发言

  谈出本节课的收获与困惑

  设计意图:通过各小组的小结,从审,设,列,解,答五步规范实际问题的解法.

  五、说作业安排

  作业安排一定要按照学生的层次性分类定量的进行(我一般将学生分成三类:特优生,优秀生,待优生)

  设计意图:从不同层次有效的提高学生对知识的掌握程度

数学说课稿 篇6

  本节课是高中数学第二册第七章《曲线和圆的方程》第五节《曲线和方程》,这是一节教学研讨课,是在大力提倡改革课堂教学模式、提高课堂效益、开发学生智力等多方面能力的前提下开设的,目的是努力寻求一种全新的课堂教学模式,能够让信息技术和数学课本知识有效的融合在一起,让学生知道,学习数学,不仅仅是做题目,而且是研究题目,提高了学生的学习数学的兴趣。

  一、教材分析

  《平面动点的轨迹》这部分内容从理论上揭示了几何中的“形”与代数中的“数”相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,同时也体现解析几何的基本思想。轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角平面几何等基础知识,其中渗透着运动与变化、数形结合的等思想,是中学数学的重要内容,也是历年高考数学考查的重点之一。

  二、对数学目标的阐述

  “以知识为载体,注重学生的能力、良好的意志品质及合作学习精神的培养”是本教学设计中贯穿始终的一个重要教学理念。为此本课的知识目标设定为三条:

  (1)了解解析几何的基本思想、明确它所研究的基本问题

  (2)了解用坐标法研究几何问题的有关知识和观点

  (3)初步掌握根据已知条件求曲线方程的方法,同时进一步加深理解“曲线的方程、方程的曲线”的概念。

  三、对学生能力目标的培养

  本节课的设计着眼点是让学生集体参与、主动参与,培养学生动手、动脑的能力,鼓励多向思维、积极活动、勇于探索。知识的学习和能力的提高是同步的,从本课的设计不难看出对学生能力目标是:通过自我思考、同桌交流、师生互议、实际探究等课堂活动,获取知识。同时,培养学生探究学习、合作学习的意识,强化数形结合、化归与转化等数学思想,提高分析问题、解决问题的能力。

  四、对学生个性品质和情感教育的培养

  设计者试图利用动画演示轨迹的形成过程,使课堂气氛活跃,让学生感受动点轨迹的动态美,使课堂教学内容形象化,从而激发学生学习数学的兴趣和学好教学的信心。而鼓励学生积极思考、勇于探索,培养学生良好的意志品质,树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气则是本节课要达成的个性品质和情感目标。

  五、关于教学方法与教学法手段的选用

  新课程强调教师要调整自己的角色,改变传统的教育方式,教师要由传统意义上知识的传授者和学生的管理者,改变成为以学生为中心,让学生真正成为学习的主人而不是知识的奴隶,基于此,根据本节课的教学内容和学生的实际水平,采用的是引导发现法和计算机软件——《几何画板》实验辅助教学。

  六、、关于教学程序的设计

  1、创设情景,引入课题

  平面解析几何的核心是“坐标法”,用代数的方法研究几何图的性质。主要包括两个部分:求曲线的方程;通过研究方程研究曲线的性质。在传统的教学中,动点并不动。《几何画板》的特点是“动”。可以在动态中观察数学现象,探究几何图形的性质。在《几何画板》支持下,“动点”真的动起来了。在动态中观察,观察变动中不变的规律触及到问题的本质,可以更好地让学生参与到教学过程中来。让学生动手操作,发现数学规律。

  例 1、已知点P是圆上的一个动点,点A是X轴上的定点,坐标是(12、0)当点P在圆上运动时,线段PA的中点M的轨迹是什么?

  第一步:让学生借助画板动手探究轨迹

  第二步:要求学生求出轨迹方程、验证轨迹

  解法一:设M(x,y)则,由点p是圆上的点得,,化简得:

  2、问题提出,引入新课

  例2、已知B是定圆A内一定点,C是圆上的动点,L是线段BC的垂直平分线。交点为P,M为L与直径CD的交点,当点C在圆上运动时,探索直线L上哪个点的运行时椭圆?

  设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动发现、主动学习。

  第一步:分解动作,向学生提出几个问题:

  问题1:当点C在圆上运动时,直线 围成一个椭圆,上哪个点在这个椭圆上?(为什么)注意观察点P与点M

  问题2:CD是圆A的直径,直线L与CD交于M,求M的轨迹方程。

  问题3、改变点B的位置,当点B在圆外时,你的结论该做怎样的修改呢?

  学生活动:第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

  第二步:课堂完成学生归纳出来的问题1,问题2和3课后完成。

  整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。本节课学生精神饱满、兴趣浓厚、合作积极,与教师保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

  通过本节课的学习,学生不仅掌握了动点轨迹的求法,而且通过作图掌握了《几何画板》这个软件,通过方程的推导,更加熟悉了动点轨迹的求法,而且通过作图掌握了几何的基本思想“以数论形,数形结合”,提高了运用数形结合、等价转化等数学思想方法解决问题的能力,通过思路的探索和轨迹方程的推导,学生的思维品质得以优化,学会辩证地看待问题,享受了数学的美。

数学说课稿 篇7

  一、说教材:

  1、教学内容:

  本节课的教学内容是人教版数学第十一册第五单元《圆》的第一节内容《圆的认识》,主要内容有:用圆规画圆、了解圆各部分名称、掌握圆的特征等。

  2、教材简析:

  圆是一种常见的平面图形,也是最简单的曲线图形。学生已经对圆有了初步的感性认识,教学时,可以让学生回答日常生活中圆形的物体,并通过观察使学生认识圆的形状。再指导学生独立完成画圆的操作过程,掌握圆的画法。经过讨论使学生认识圆的各部分名称,掌握圆的特征。

  3、教学目标:

  (1)使学生认识圆,知道圆的各部分名称。

  (2)使学生掌握圆的特征,理解和掌握在同一个圆里半径和直径的关系。

  (3)使学生通过观察、实验、猜想等数学活动过程认识圆,进一步发展空间观念和初步的探索能力。

  (4)、教学重点:使学生认识圆,掌握圆的特征。

  (5)、教学难点:会用字母表示圆心、半径、直径;理解并掌握在同圆(或等圆)中直径与半径的关系。

  (6)、学情分析:

  在小学阶段,学生的空间观念比较薄弱,动手操作能力比较低;对于乡镇学生,家庭辅导能力较低,学生接受能力较差;学生的学习水平差距较大,小组合作意识不强,鉴于以前学习长、正方形等是直线平面图形,而圆是曲线平面图形,估计学生在动手操作、合作探究方面会存在一些困难。

  二、说教法学法:

  学生的学习过程是一个主动建构的过程,教师要激活学生的先前经验,激发学习热情,让学生在经历、体验和运用中真正感悟知识。在动手中引导学生认识圆,理解圆的特征,有目的、有意识地安排了让学生折一折、画一画、量一量、比一比等动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论,用心去辨析同学们的答案。

  教学中理应发挥学生的主体作用,淡化教师的主观影响,让学生自己在实践中产生问题意识,自己探究、尝试,修正错误,总结规律,从而主动获取知识。

  本节课我采用了多媒体教学手段,主要运用操作、探究、讨论、发现等教学方法。学生的学法与教法相对应,让学生主动探索、主动交流、主动提问。通过多媒体的直观演示将演示、观察、操作、思维与语言表达结合在一起,使学生对圆有一个形象的感知。同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习的意识与创新意识。

  三、说教学过程:

  (一)情景导入

  谈话导入,说说生活中在哪儿见过圆?(圆形钟面、硬币、光碟、圆形桌面车轮、…)。见过平静的水面吗?如果我们从上面往下丢进一颗小石子(配上石子入水的声音,并播放水纹),你发现了什么?出示大自然中的各种景象,让学生从中找一找圆,感受圆在大自然中的重要性,再利用身边的物体或工具,自己动手画一个圆。

  (二)动手实践,发现新知

  (1)找圆心、认识半径、直径

  首先让学生把事先准备好的圆形纸对折后打开,用笔和直尺把折痕画出来,并在圆形纸的其他位置上重复上面的折纸活动二、三次。操作后,问:“你发现了什么?”通过自学课本让学生自己去了解它们的名称和特征。让学生积极主动地参与知识的形成过程。

  我这样设计意在于让生从动手操作,观察比较中知道折痕的交点叫圆心,连接圆心和圆上的线段叫半径,过圆心并且两端都在圆上的线段叫直径。

  (2)研究圆的直径半径的特征以及相互关系。

  我想让学生画几条直径和半径,并让学生量一量,比一比,把自己的发现先在组内交流再大组汇报,学生汇报时让学生想一想是不是所有的直径都相等任何直径都是半径的2倍呢能举例说明吗。我出示两张大小完全不同的圆形纸片,问:“这两个圆的半径相等吗?”学生恍然大悟,必须加上“在同一个圆内”这个前提。从而更深刻地理解了圆的特征,起到了水到渠成的作用。接着让学生用字母表示出同一个圆内直径与半径的关系。我这样设计意在于让生学生通过动手、测量、观察、比较等活动,让学生知道在同圆或等圆中,所有的直径都相等,所有的半径都相等,直径是半径的2倍。

  (3)学习画圆方法

  在教学画圆的过程中,我同样会放手让同学们大胆的动脑,动手探索不同的画圆方法。学生可能会想到借助圆形物体画圆,用绕线钉子画圆,还有用圆规画圆等等。最后我会让学生自学画圆的方法,通过学生的汇报,我引导他们归纳出画圆的一般步骤:

  第一、定点(也就是定圆心的位置),

  第二、定长(也就是定半径的长度),

  第三、旋转画圆。让学生尝试画圆,碰到困难时,教师才给予适度指导。如:圆规的正确握法等。画任意圆是不难的,较难的是给定直径长度画圆。为了突破这一难点,学生画圆时,由不熟练到熟练,由画任意圆到按给定半径长度画圆,再到给定直径长度画圆,循序而渐进。再次借助多媒体演示,感知圆的形成,结合实际操作,关键让学生体会圆规两脚的距离即半径,体会圆心决定圆的位置,半径决定圆的大小,有利于加深对圆的特征的认识。

  圆的画法是本课时又一个教学难点,我采用操作法与尝试法相结合,力求花最少的时间获得最佳效果,充分发挥学生的主体作用,培养他们的探索精神和尝试精神。

  (三)巩固练习

  通过判断题、选择题、看图回答问题来进一步考察学生对于圆各部分名称、半径与直径长度关系的掌握情况。再抽学生回顾本节课所学知识点,加深印象。

  (四)感受数学应用与生活,增强学习兴趣。

  提出问题车轮为什么会是圆的?让学生知道把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.通过这样的延伸,使学生初步感受数学知识来源于现实生活,又服务于现实生活,进一步体会数学与生活的联系,增强学习和应用数学的信心。

  (五)布置作业,培养学生创新意识。

  通过欣赏生活中的圆,感受圆的美与神奇,明白生活中因为有了圆而变得格外多姿多彩。布置课后作业,利用圆规和直尺创作一幅美丽的作品,培养学生自主学习的意识与创新意识。

  四、说板书设计:

  板书就像一份微型教案,将圆的三个部分与圆各部分之间关系用简易的文字概括出来,简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆,理清文本脉络,体现教学过程与教学目标的统一。

  五、教学反思:

  1、密切联系生活实际,体会数学就在身边。我事先也准备一些图片让同学们了解在自然现象、建筑物等都能找到圆的足迹,让学生知道圆在生活中很多很多,调动了学生学习的积极性。

  2、课前我给学生布置了两个任务:一是剪一圆形纸片,二是寻找生活中的圆。通过这两个任务使学生对圆有了初步的感知,为学生进一步认识圆做好了充分的准备。

  3、重视引导学生用多种感官参与知识的形成过程。我在引导学生认识圆的各部分名称,理解圆的特征,以及教学圆的的画法时,有目的、有意识地安排了动手实践活动,启发学生用眼观察,动脑思考,动口参加讨论。

  4、不足之处。

  (1)时间把握的不太准。

  (2)自主探索环节效果不太明显。

  (3)学生预习不到位,今后需要加强预习的指导。

  以上,对本课进行了说明,我的说课到此结束,谢谢各位评委老师。

【【热门】数学说课稿模板汇编7篇】相关文章:

1.【热门】说课稿模板汇编10篇

2.【热门】说课稿模板汇编4篇

3.【热门】说课稿模板汇编5篇

4.【热门】说课稿模板汇编9篇

5.【热门】说课稿模板汇编六篇

6.【热门】说课稿模板汇编四篇

7.【热门】说课稿模板汇编五篇

8.【热门】说课稿模板汇编8篇

上一篇:语文说课稿 下一篇:说课稿