《三角形边的关系》说课稿

2024-03-27 说课稿

  作为一名优秀的教育工作者,常常要根据教学需要编写说课稿,认真拟定说课稿,那么什么样的说课稿才是好的呢?下面是小编精心整理的《三角形边的关系》说课稿,仅供参考,希望能够帮助到大家。

  《三角形边的关系》说课稿 1

  今天我说课的内容是《三角形边的关系》,下面我将从教材分析、学法教法、教学程序等方面进行说课。

  首先,我来说对教材的理解和学情分析。

  《三角形边的关系》是北师大版四年级下册第二单元第四课时的教学内容,它包括三角形三条边之间的关系以及部分练习。在此之前,学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为今天探究三角形新的特性——任意两边之和大于第三边——做好了知识迁移基础。学好这部分内容,不仅可以为进一步学习三角形的面积打下坚实基础,还可以在动手操作、探索实验和应用数学方面拓展学生的知识面,发展学生的思维和解决实际问题的能力,同时也为将来学习其他平面图形和立体图形积累知识经验。

  教育家杜威提出”教育即生活”的教育思想。基于四年级学生刚刚经历三角形内角和是180度的探究过程,学生已具备初步的探究能力和强烈的探究愿望。课程标准提出“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上”。基于以上认识,结合教材,根据学生的知识现状和年龄特点,我确定了以下教学目标:

  1、学生经历三角形三边关系的探索过程,发现三角形任意两边之和大于第三边的规律,会判定指定长度的三条线段是否能围成三角形。

  2、结合动手实验、交流讨论等探索活动,提高学生观察、操作、独立思考,推理、概括的能力。

  3、经历实验中问题的提出和解决的过程,培养学生探索、求真的的科学精神,获得探索、发现的成功体验。

  教学的重点是:引导学生探索并发现“三角形任意两边之和大于第三边”。

  教学的难点是:三角形三边之间的关系——两边之和大于第三边,指的是“任意两边的和”都“大于第三边”,而学生往往会以偏概全。

  接下来,我说学法指导和教法设计。

  陆游曾在一首诗中写到:“纸上得来终觉浅,绝知此事要躬行”,说的就是知识的取得贵在实践,数学中的很多知识,只有自己去亲身体验,才能深知原因为何!所以我在设计课程方案时,将学生分成学习小组,让他们在猜想、质疑、探究、问题解决等过程中,经历想一想,比一比,画一画等活动,通过协作互助、小组讨论交流等活动来发现规律。

  这节课教材以三个相关联的问题串为主线,引发学生思考、探索等活动,针对三个由浅入深、循序渐进的问题串我采用讨论法、实验法、练习法实施教学。

  这样将课堂真正还给学生,让学生在轻松、和谐的课堂氛围中协作互动、自主探究,让学生在自主活动中得以发展。为达成教学目标,突出重点,突破难点,落实学法,我设计了这样的三个教学环节。

  (一)“创设情境、提出猜想”。

  1、创设这样的问题情境是基于学生对三角形两边的和大于第三边有一定的生活经验和感性认识,他们知道走哪条路更近,但却表达不出其中蕴含的道理,就使得对于三角形三边关系的探索内化成为学生的一种需要。

  2、提出猜想。把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲。爱因斯坦说过,源于兴趣的动力是无穷的。问题则是激发学生兴趣的心理动力。思维经常从问题开始,引发学习兴趣的内在动力。问题不管在学习中还是在生活中,都能引起学生的兴趣。

  (二)“动手操作、发现规律”。

  1、实验法初步感知(PPT)我这样先实验后讨论的.设计,意图是让学生带着问题进入活动二。

  2、深入实验、构建新知。学生经历实验的过程直观的发现规律。这里是预设孩子们发现的规律(PPT),只要孩子们能大胆发表自己的见解,不管正确与否,都要给予鼓励,并集中对以上的几个结论进行点评。

  3、画图法验证结论。

  设计三个层次的实验环节,意图是使学生亲身经历三次完整的、由易而难的科学的研究问题的过程,让学生在自主活动中获得成功的体验。

  (三)联系生活、解释与应用。

  1、前呼后应、快乐回归。

  让学生用规律解释“为什么小明上学走这条路最近?”目的是使学生能用所学知识解释生活中的问题,真正做到了数学来源于生活,最终又服务于生活。

  2、本着练习要有层次性、典型性、趣味性的原则,我设计了三个层次的练习:

  (1)基本练习。这部分的练习重在巩固基本的知识点,强化教学重点。

  (2)专题训练。此题设计使学生对三角形三边关系进一步理解,加深“两边之和等于第三边不能构成三角形”这个知识点的印象。

  (3)拓展练习。意图是为了体现因材施教的原则,在面对全体学生的情况下,促进学有余力的学生思维的发展。

  最后我来说板书设计。我将板书分为两部分,第一部分是将学生探究实验的过程简明概要地呈现,让学生对于三角形三边关系更加直观、一目了然,便于发现规律。

  第二部分是将学生探索发现的规律直观的进行呈现,突出重点。

  《三角形边的关系》说课稿 2

  一、说教材

  《三角形边的关系》是人教版义务教育课程标准实验教科书四年级下册第5单元的重要内容之一。教材先安排了一副紧密联系生活实际的情景图,导出所要研究的问题,接着介绍以实验的方法进行探究,目的是让学生知道三角形任意两边的和大于第三边,进而找到解决实际问题的数学原理。教材篇幅简短,但思路清晰,要点突出,教法学法寓于其中,方便教师教学。

  分析教材可以看出,教材编写者力图让学生通过动手实验,收集、整理和分析数据的探索过程,自己发现和得出结论。为了让学生获得更深的感受和体会,我遵循编写意图,对教材还做了适当的扩充处理,增加了一些环节,让教学过程更显层次性和动态性。

  这一内容的教学,能使学生在已经建立三角形概念和知道三角形稳定性特性的基础上,进一步认识三角形的另一个重要特性,丰富三角形的知识。同时,也为以后继续学习三角形与四边形及其它多边形的关系打下基础。

  经认真研读教材和课程标准,本节课我从知识与技能、过程与方法、情感态度与价值观三个方面制定如下教学目标:

  1.知道三角形任意两边的和大于第三边。

  2.通过动手实验、观察分析、总结发现的过程,进一步培养自主探究能力。

  3.加深认识数学与生活的联系,理解数学学习的现实意义,增强数学学习的情感。

  教学的重点是记住并理解三角形任意两边的和大于第三边。难点是自主发现并总结得到三角形三边之间的这种关系。

  二、说教法

  《义务教育数学课程标准》指出,教学要贯彻直观性、实践性、趣味性的原则。根据本课的内容特点,我将实践性原则摆在重要位置,将教学过程设置为学生自主活动的过程。主要采用的教学方法是谈话法、实验法、演示法、发现法等。教学中我将把这些方法有机结合在一起,灵活运用,期望实现最佳效果。

  三、说学法

  《义务教育数学课程标准》指出:学生的数学学习活动应当是一个生动活泼的、主动的和富有个性化的过程。遵循这一理念,考虑与上述教法相适应,突出主体性和实践性,本节课我引领学生立足三自,主动学习,即:自由探究,自我总结,自主运用。安排学生足够的时间和空间,把课堂还给学生。

  四、说程序

  为了上好这节课,我将整节课分为四个大环节,教学程序是:

  (一)创设情景,提出问题

  (二)动手实验,探究发现

  (三)反思明理,解决问题

  (四)自主运用,巩固深化

  以下对每个环节的具体做法展开说明。

  (一)创设情景,提出问题

  上课开始,复习提问:我们认识了三角形的一个什么重要特性?请例举它的用途。学生说后转入话题:我们这节课继续学习三角形的有关知识。

  接着对教材的情景图稍作改动并出示:

  让学生回答:小明上学应走哪条路呢?为什么?

  这是生活常识问题,四年级学生应该都能做出正确的判断。但教学意图不在乎学生正确回答这个问题,而在于隐含在已知问题背后的未知问题。

  学生回答后,我反问:小明应走中间这条路,你能用数学知识来说明道理吗?学生这时也许会感到困惑。问题摆到了面前,我顺势引导:让我们一起来探究吧!

  (二)动手实验,探究发现

  心理学家皮亚杰指出,活动是认识的基础,智慧从动手开始。本环节为学生搭建三个实验探究的平台。

  1.摆一摆,猜一猜

  我让学生拿出一根准备好的小棒,任意剪成三段,来摆三角形。

  学生操作后反馈情况。这时有的学生可能如愿以偿地摆成了三角形,有的学生却抓耳挠腮,左顾右盼,怎么也不能摆成三角形。

  于是我引导猜想:同学们,看来不是任意三根小棒都能摆成三角形的,那么,用三根小棒能否摆成三角形,可能跟什么有关呢?

  让学生讨论交流意见,然后提出猜想:用三根小棒能否摆成三角形,跟小棒的长短有关。

  【设计意图:在这个实验,剪出小棒的长度没有规定,教学既无刻意安排,也未设置陷阱,力图真实自然,让学生积极主动。自然生成的结果能更好地促进学生再思考。】

  实验2:摆一摆,想一想

  这次实验以4人为小组进行合作学习。要求从214厘米长的若干根小棒中任选两根,与固定一根10厘米长的小棒摆三角形,看能否摆成。并边摆边填表记录结果,想一想,三根小棒存在怎样的长度关系能够摆成三角形。

  固定的小棒长

  (厘米)

  第一根小棒长

  (厘米)

  第二根小棒长(厘米)

  能否摆

  成三角形

  三根小棒之间的长度关系

  10

  10

  10

  10

  10

  这次实验为学生提供了大显身手的机会。学生通过实验1对三角形边长的特点有了初步的感知和粗浅的认识,加之猜想和合作讨论,可能在表中填写如下数据(见课件)。此时,我着重请在实验1中用3根小棒没有摆成三角形的同学来谈一谈,这一次是依据怎样的想法来摆三角形的。

  学生可能会这样汇报:(配动画演示)

  老师,上次我没有摆成三角形,是因为较短两根小棒合起来比第三根短,所以中间连不起来。这次我把较短的一根换成稍长一些的一根,使得较短的两根合起来比第三根小棒长的时候,就可以摆成三角形了。

  也可能这样汇报:(配动画演示)

  老师,我刚才之所以没有摆成三角形,是因为较短两根小棒合起来刚好和第三根小棒一样长,这样中间都顶不起来了,这时只要把最长的这根换成较短一些的,就能摆成三角形。

  通过上述实验,学生可能会初步得到一个结论:两根小棒的长度和大于第三根就能摆成三角形。

  为了引导学生验证这个结论的正确性,我安排下面第三个实验。

  实验3:摆一摆,算一算

  本次实验,我用两个问题引导学生再次动手操作和周密思考,促使学生获得正确认识和结论。

  问题1:是不是只要两根小棒的长度和大于第三根,就一定能摆成三角形?

  问题出来后,学生可能陷入了认知矛盾冲突,不置可否。此时,我及时从表中选出一组不能摆成三角形的数据(1、7、10)反问学生:10厘米的'小棒和1厘米的小棒相加长度大于第三根7厘米的小棒,怎么还是摆不成三角形?这里面还隐藏着什么我们没有发现的秘密?然我们继续动手合作去发现吧!

  问题2:将你表中每组的3个数据,分别两两相加,再与第三个比较,看看两个数的和与第三个数比较,有怎样的大小关系?

  这个问题提出后,学生的好奇心可能再次被激发。我用课件举例一组数据的算法,如3+810,3+108,8+103。让学生照着做。

  最终学生在比较分析计算的数据和电脑课件的直观演示下,可能完整地得到结论:任意两根小棒的长度和大于第三根小棒,这三根小棒就能摆成三角形。

  教学至此,难点得以突破,获得完整的认识。

  【设计意图:在问题引导的设计上我花了一些心思,力图扣住要害,抓准本质,用两个简洁的提问帮助学生搭建最终解决问题的脚手架。】

  通过以上三次实验,学生在操作、猜测、计算和思考中,对于用三根小棒摆三角形的问题有了比较深刻的体会,该到教学总结提升的时候了。这时我对学生说:在用小棒摆成的三角形里,小棒被看成了三角形的边,如果直接画出三角形,你知道三角形的边有怎样的关系吗?能从上面的探究中得到启发吗?

  让学生说一说,然后总结并板书:三角形任意两边的和大于第三边。继续谈话:这就是本节课我们共同学习探究的知识三角形边的关系(板书课题)。

  (三)反思明理,解决问题

  我再次出示上课开始的情景图,重新亮出问题,启发思考:现在你能用数学知识说明小明上学应走中间一条路的道理吗?让学生互相交流,认识到:图中每连接三个地点的路线共有三条,刚好是一个三角形,根据三角形任意两边的和大于第三边的关系,走中间的路相当于走三角形的一条边,而走其它路都相当于走了三角形的两条边,相比之下,走中间的路肯定最近。

  通过这个环节的反思明理,既让学生学会了用数学知识解决问题,又深深感到,数学就在我们的生活中,更爱学数学。

  (四)自主运用,巩固深化

  为了帮助学生及时巩固知识,我设计了有层次的训练,让学生在自主运用中达到熟练。

  1.辨一辨:哪组小棒能摆成三角形(教材练习十四第4题)。

  2.写一写:自己写3组数,每组数有3个,构成三角形三边的长。

  3.想一想:李叔叔买回一根12米长的木料,准备截成三段,做成三角架,如果三角架的每条边正好是整米数,那么他做成的三角架可以有几种不同的形式?

  【这道题目有一定难度,能够综合培养学生深入理解知识、灵活运用知识、学会有序思考、发展逻辑思维等多方面作用】

  附:板书设计

  三角形边的关系

  三角形任意两边的和大于第三边

  a+bc

  aba+cb

  b+ca

  c

  这是我本节课的板书设计:此板书把图形、文字和算式有机的结合在一起,直观性和逻辑性强,能够显示学生探究知识的过程,有助于突出本节课的教学重点和难点。

  《三角形边的关系》说课稿 3

  一、说教材

  通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。

  根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。

  (一)教学目标

  1、通过创设问题情景、直观演示、观察比较,初步感知三角形边的关系。

  2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。

  3、能判断给定长度的三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

  4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

  (二)教学重点

  1、引导发现不能摆成三角形的原因,并探讨能摆成三角形的边的性质。

  2、理解、掌握“三角形任意两边之和大于第三边”的.性质。

  (三)教学难点

  引导探索三角形的边的关系,并发现“三角形任意两边的和大于第三边”的性质。

  二、学情分析

  在正式学习三角形三边关系之前,学生在生活中已经了解了一些关于三角形三边关系的感性经验,这些经验构成了学生学习的认知基础。过程中,学生在抽象概括三角形三边之间的关系时,可能在数学语言的描述上会有一定的困难,表达上也可能不够严密,但只要学生表达的意思对,教师就应该积极的给以肯定,同时教师要给学生更多探讨的空间和交流的机会,毕竟数学模型的建立和思维的发展需要经历一个渐近思辩的过程。

  三、说教法和学法

  在“活动参与、自主建构,联系生活、运用数学”的设计理念指导下,我的教学思路是:问题引领、动手操作、探究规律,并在解决生活实际问题中促进每一位学生获得不同的发展。

  (一)创设问题情景,激发学生学习兴趣

  我先给学生创设情景,引起悬念,让学生在动、观察、感知的基础上,激发学生学习数学的兴趣。

  (二)动手操作、合作探究、自主建构数学规律

  新课标强调要从学生已有的生活经验出发,在设计课程方案时,充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。让学生动起来,活起来,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。

  (三)联系生活,体会数学应用价值

  现实生活中存在着大量的数学问题,学生学习数学已不仅仅局限于教材之内,而是扩大到了生活的每个角落。因此,我将有意识地引导学生从数学的角度,应用所学的知识“三角形任意两边的和大于第三边”去解决生活中实际问题,让学生学有价值的数学。通过解决生活中的问题,让学生感受到数学源于生活,更要服务于生活。

  四、说教学程序设计

  (一)创设情境,使学生对三角形三边关系的探索成为一种需要。

  (二)自主探究,经历、体验三角形三边关系的形成、发展过程。

  (三)巧设练习,促进思维的发展,体验数学的意义和价值。

  《三角形边的关系》说课稿 4

  今天我说课的题目是《三角形三边的关系》。

  首先我对教材进行简单的分析:

  一、说教材

  本节课内容是人教版义务教育课程标准实验教科书《数学》第八册第82页例3。这一内容是在学生初步了解三角形的定义的基础上,进一步研究三角形的组成特征。三角形三边关系定理不仅给出了三角形三边之间的大小关系,更重要的是提供了判断三条线段能否围成三角形的标准,熟练灵活地应用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力,它还将在以后的学习中起着重要的作用。

  新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。引悟教育的目标,强调在教师的引导作用下,由“获得知识结论快乐”转变为“探究发现知识快乐”。依据新课标的精神、引悟教育的目标、学生的知识现状和年龄特点,以及这一教学内容在教材中所处的地位与作用,我制定了以下教学目标:

  (一)教学目标

  1、通过创设问题情景、实践操作、观察比较,初步感知三角形边的关系。

  2、学生通过动手实践、猜想验证、自主探索、合作交流发现三角形任意两边之和大于第三边。

  3、能判断给定长度的`三条线段是否围成三角形,能运用三角形任意两边之和大于第三边这一知识解决生活中的简单的实际问题,感受到生活中处处有数学。

  4、通过学习发展学生的空间观念,使学生体验成功的喜悦,激发学生学习数学的兴趣。

  (二)教学重点

  探究发现三角形任意两条边的和大于第三边。

  (三)教学难点

  理解性质中的“任意两边”。

  二、说教法

  新课程改革要求教师要由传统意义上的知识的传授者和学生的管理者转变为学生发展的促进者和帮助者;在教育方式上,也要体现出以人为本,以学生为中心,让学生真正成为学习的主人而不是知识的奴隶。因此,我主要采用了情境导入法、设疑诱导法、操作发现法等来组织学生开展探索性的活动,让他们在自主探索中,学习新知、经历探索、获得知识。

  三、说学法

  有效的数学学习活动不是单纯的依赖模仿与记忆,而是一个有目的、主动建构知识的过程,为此我十分注重学生学习方法的指导,在本节课中,我指导学生学习的方法为:动手操作法、观察发现法、自主探究法、合作交流法。让他们在剪一剪、围一围、比一比、想一想、议一议等活动中提高能力,获得知识。

  四、说教学程序

  为了突出重点,突破难点,达到已定的教学目标。我主要安排了以下的几个教学环节。

  (一)置境引入,使学生对三角形三边关系的探索成为一种需要。

  教育情境的设计,是引悟教育的基础性工作,这种带有准备性的基础工作,直接关系到学生的学,同时也直接影响到学生的悟,以及悟的成果。基于这样的认识,在本节课开始,我结合学生已有知识与生活实际,创设了这样的数学情境:(课件出示小明上学的路线)小明去学校一共有几条路可走,走哪条路最近,为什么?这样的问题情境贴近学生的生活,学生凭着自己的生活经验,知道走哪条路更近,但却苦于表达不出其中蕴含的道理,就使得对于三角形三边关系的探索内化成学生的一种需要。(适时板书课题:三角形三边的关系)

  (二)联结感悟,经历、体验三角形三边关系的形成、发展过程。

  借鉴杜威“做中学”的思想,我在设计本课时,充分发挥学生主体精神,留有足够的时间和空间,让他们在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中得以发展。

  这个环节我安排了二个层次的操作活动:

  活动一、动手操作,大胆猜想

  为每位学生提供小棒,让学生用剪刀随意剪成三段,试着围三角形。在围的过程中,学生会出现能围成和不能围成两种情况。我抓住这一契机巧妙设疑:为什么都是三段小棒有的能围成一个三角形,有的不能够围成一个三角形呢?这里面隐藏着什么秘密?带着疑问开始活动二。

  活动二、小组合作,再次操作,深入探究

  每个小组用老师前面发放的四组小棒摆三角形,并做好记录。(出示表格)

  小棒长度(厘米)能或不能摆成三角形任意两边的和是否大于第三边

  4、5、64+5○66+5○44+6○5

  2、5、62+5○65+6○22+6○5

  4、6、104+6○106+10○44+10○6

  2、3、62+3○66+3○22+6○3

  经过这两个操作活动后,我让学生观察表格结果,说一说不能摆成三角形的情况有几种?为什么?能摆成三角形的三根小棒又有什么规律?得出了“三角形两边之和大于第三边”的结论,从而初步认识了三角形三边的关系。接着提问“这样的归纳全面吗?”这使学生敏感的意识到这种表达可能有问题,问题出在哪呢?学生不得不深思。最后学生终于发现:三角形任意两边之和大于第三边。(板书:三角形任意两边之和大于第三边。)对“任意”二字的理解,使学生对三角形三边之间关系的认识得到了深化。

  (三)前后呼应,快乐生成

  有了前面的感悟,此时再回到第一环节中的情境,提出问题:通过实验,我们知道了三角形三条边的一个规律,你能用它来解释从小明家到学校哪条路最近的原因吗?让学生用自己的发现解释,使学生能把学到的知识运用于实际生活中,从而生成新知,生成能力,生成智慧。

  (四)构建模型、联系实际

  本着练习的设计要有针对性、典型性、层次性、趣味性的原则,我设计了以下几组练习题:

  1、教材P86第四题。

  在学生完成后,我继续提问:我们是否要把三条线段中的每两条线段都相加后才能作出判断?有没有快捷的方法?得出只要比较较短的两条线段之和是否大于第三边就可以判断能否围成三角形了。

  这一题的设计,不仅使学生巩固了基本的知识点,强化教学重点和难点,同时还提高学生对组成三角形的规律的认识,掌握了更好的判断方法——较小两条线段之和大于第三条线段便可构成三角形。

  2、教材P88第11题。

  题目:用长分别是4厘米、6厘米和10厘米的三根小棒,能摆出一个三角形吗?

  此题设计使学生对三角形三边关系进一步理解,加深“两边之和等于第三边时不能构成三角形”这个知识点的印象。

  3、思维拓展题

  题目:小猴盖新房,他准备了2根3米长的木料做房顶,还要一根木料做横梁,请你们帮他想一想,他该选几米长的木料最合适呢?

  这一题不仅充满趣味性,而且使学生思维得到进一步发展,同时也可以培养学生应用数学知识合理解决生活问题的能力。

  (五)延伸

  近下课时,我反问学生:这节课,你觉得自已学会了什么?还有什么地方不太理解?然后让学生发表意见,自己梳理一下今天所学习的知识。多找几个学生说一说,给他们充分展现自我的机会。

  五、说板书设计{板书设计}

  三角形三边的关系

  小棒长度(厘米)能或不能摆成三角形任意两边的和是否大于第三边

  4、5、64+5○66+5○44+6○5

  2、5、62+5○65+6○22+6○5

  4、6、104+6○106+10○44+10○6

  2、3、62+3○66+3○22+6○3

  三角形任意两边的和大于第三边

  这样的板书设计,力求突出教学重点,使学生一目了然。

  我的说课到此结束,谢谢大家!

  《三角形边的关系》说课稿 5

  一、 说教材

  我今天说课内容是《三角形边的关系》。这一内容被安排在人教版义务教育课程教科书《数学》四年级下册,属于“空间与图形”领域的内容。

  首先说教材:三角形边的关系这一内容是第四单元三角形中其中的一个知识点,在这一节课之前学生已经在第一课时初步认识了三角形,明确了三角形的定义、三角形各部分的名称及三角形具有稳定性等知识,在这节课后学生还将继续学习三角形的内角和及三角形的分类。而三角形边的关系属于第二课时的内容。从教材中,我们可以清晰的看出:编者力图通过几组小棒让学生动手操作,进而发现规律,为以后学习三角形的相关知识打下坚实的基础。

  (一)教学目标:

  为了把培养和发展学生空间观念落到实处。我把本节课的知识与能力目标定为:

  1、通过直观演示、观察比较,初步感知三角形边的关系。

  2、通过实践操作、猜想验证、合作探究,经历发现“三角形任意两边的和大于第三边”这一性质的活动过程,培养逻辑思维能力。

  3、运用“三角形任意两边的和大于第三边”的性质,解释生活中的实际问题。

  4、让学生在经历探究的过程中感受到学习数学的快乐。

  (二)教学重点

  本节课的重点为:引导探究三角形边的关系,并能理解和掌握“三角形任意两边之和大于第三边”的性质。

  (三)教学难点

  四年级的学生对三角形任意两边之和大于第三边的理解有一定的难度,所以我认为这一节课的教学难点为:理解结论中“任意两边”所表达的意思。

  二、说教法与学法组合

  为了达成这一节课的教学目标和突破这一节课的教学重难点,在这一节课中我采用情景式教学、活动式教学、引探式教学等多种教学方法进行优化组合。并沿着实例、建模证实、运用这一教学主线,安排了多种教学活动,在这一系列活动中,学生则主要通过操作、猜测、证实、阅读、练习等学习方法,积极参与学习活动、经历和感受了知识产生与发展的过程。从而达到掌握知识、提高能力、训练思维、体验成功等多元目标。

  三、说教学程序设计

  这一节课的教学流程大致分为三个环节。

  第一个环节:联系生活、提炼设疑、引入新课

  第二个环节:合理猜想 实验验证 建构新知

  第三个环节:巩固练习 拓展应用 总结评价

  而在第一个环节中我首先利用多媒体课件为学生创设熟悉的情景并提出问题:由小明家到学校走那条路最近。引导学生从自己已有的生活经验作出判断。由小明家到学校沿直线的那条路最近。然后利用多媒体课件把情境图抽象为数学模型———三角形。根据前面学生的回答得出在三角形ABC中AC的长度小于AB与BC的和,究竟这一现象是必然还是偶然的,在所有的三角形中是否也存在着这一性质呢,这就是我们这节课研究的内容———{板书}三角形边的关系。

  由于涉及到三角形,我会引导学生回忆三角形的定义,然后根据定义试摆小棒围三角形。

  我为学生提供了如下几组不同长度的小棒{出示课件}学生通过试摆小棒发现有的能围成三角形,有的不能够围成三角形,这时老师假装疑惑的问:真的有不能围成的情况吗?为什么会存在不能围成的情况?就让我们一起研究,即而进入第二个环节。

  第二个环节:合理猜想 实验验证建构新知

  这一环节是解决本节课教学重难点的重要组成部分,也是体现学生自主探究的亮点部分,因而我分三步走{出示课件}第一步操作研究,引发猜想。

  在前面试摆小棒的基础上,我引导学生再次操作,发现确实存在能围成与不能围成两种情况,{在黑板上贴出以下三种情况}我继续提问那三根小棒要满足那些条件才能围成三角形呢?引导学生通过研究分析最后初步明白{出示课件}当两根小棒的长度和大于第三边时才能围成三角形。{板书:两边的和大于第三边}接着我引导学生进一步思考在所有的三角形中是否也存在着这样的规律呢?{板书:三角形?}

  也许有的学生认为是,有的会说不一定,这仅仅是我们的猜想{板书:猜想}它是不是正确,我们的探究进入到第二步:实例研究,证实猜想。

  在这一过程中我让学生分小组利用探究表进行探究活动{出示课件:小组活动探究表}首先在表格里随意画一个三角形,然后用尺子分别量出长度并标出注意边的长度要用正毫米数表示,再请组长负责记录其他同学任选两边并计算它们边长的和再与第三边的长度进行比较,学生在合作探究的过程中通过这一个三角形能够证实三角形两边的和大于第三边,虽然各个小组所画的三角形大小不一但都能证实到同一个结论。{板书:证实}原来在所有的三角形中确实都存在两边的和大于第三边。{擦去?}

  在这里要特别注意根据学生已有的认知水平不一定或很难概括出任意一词,为此我备有两个预案:

  一:如果有学生能提出任意一词我会请他来当小老师和同学们进行交流;

  二:如果没有学生提出任意一词,我会引导学生适时阅读课本,把自己探究的结论与课本中的结论相比较,这样做既能肯定学生的探究精神与初步的成果,也能引起学生对任意一词的关注{板书:任意} 当然根据学生的认知水平,学生对任意一词的认识与关注还不够,理解还不是很深刻,因此我引导学生进入第三步:反例剖析,深化认识。借助于前面不能围成三角形的这一套小棒为例:师:请同学看这一套小棒10+3大于6,10+6大于3为什么它还是不能围成三角形呢?这时学生肯定会说因为3+6小于10不满足两边的和大于第三边这一条件,所以不能围成三角形,通过这一反例强化学生认识到只有当每两边的和大于都第三边,也就是任意两边的和大于第三边才能围成三角形。在这一合理猜想实验验证建构新知的环节中,老师为学生设置了有层次的问题情境,让学生进行充分的思维活动,通过猜想、证实、深化的过程让学生深刻的理解三角形任意两边的和大于第三边这一性质。这样做学生不仅学到了知识还能受到逻辑思维的训练。

  第三环节:巩固练习 拓展应用 总结评价

  在这一环节中,我为学生设计了几个不同层次的练习,第一个基本练习:这一组题是书本对应的基本练习,我会分两步让学生完成。

  第一步让学生严格遵照今天的结论,考虑是否任意两边是否都已经满足。

  第二步引导学生自己去发现只要找到较短两边的和大于第三边就一定能围成三角形这一优化策略,从而提高学生的解题能力。第二层次是应用练习,这一道题我会以多项选择的形式来出现,那个答案中的竹竿能与原来的2厘米和3厘米刚好围成一个三角形的船帆呢?第三层次是拓展练习:4根同样长的火柴棒,能围成一个三角形吗?为什么?5跟呢?学生通过动手操作可以得出4根同样长的火柴棒不能围成三角形,5根这样摆可以。这样不可以{出示课件}并让学生用今天学习的知识说一说为什么?通过这一道练习可以进一步巩固学生对三角形边的关系的认识。

  在课堂结束之前,我会引导学生回顾这节课在学习态度、学习表现等方面进行师与生或生与生的`自评与互评。以评促学,能够体现学生的自主性评价与课堂的发展性评价。作业布置方面我不仅让学生复习今天学习的内容还让学生思考6根同样长的小棒能否围成一个三角形。这一作业是对拓展练习的进一步延伸。

  (三)深化认知,联系实际,拓展应用。

  1、基础练习:

  2、应用练习

  小明想制作一个帆船模型,船帆要求做成三角形。现在老师提供了分别是2厘米、4厘米、6厘米的小竹竿。你们能不能帮帮小明,选取其中的1根小竹竿,制成三角形的船帆呢?

  3、拓展练习:4根同样长的火柴棒,能围成一个三角形吗?为什么?5跟呢?

  四、板书设计:

  最后说板书设计:这一节课的板书是一个动态的过程,首先通过学生动手操作初步感知两边的和大于第三边,然后老师引导学生进行猜想及证实得出在所有的三角形中都存在任意两边的和大于第三边。整个板书的形成既是老师教学思路的展现,也是学生学习思路的体现,既是学生学习的主要内容,也学生进行自主评价的一种缩影,相信通过这一节课的学习,学生能学的自信学的主动,并结合师生之间有效的互动评价,一定能体会到学数学的乐趣与做数学的成功,谢谢!

  《三角形边的关系》说课稿 6

  《课程标准》中提到中学数学教育在基础教育中占有重要地位,学生通过数学学习,掌握数学的基础知识、基本技能和思想方法,学会有条理地思考和简明清晰地表达思考过程,并运用数学的思想方法分析问题和解决问题。可见数学对学生理性思维的形成和智力的发展起着独特的、不可替代的作用。作为数学教师应本着“以学生的发展为本”、让学生从“学会数学”逐步走向“会学数学”为目的,设计课堂教学,使学生掌握“终身学习”的本领。我将从以下四个方面进行说课:

  一、课题背景

  一个三角形中的边角不等关系是八年级几何的拓展内容之一,但这一内容对学生全面认识几何起着积极的作用,它即是以前几何知识和几何思想方法的综合应用,又是为将来学好几何不等问题奠定基础。课堂教学中要体现素质教育,关键是设计好教案,本节以三角形中的边角不等关系证明的思想方法作为主线以三角形中的边角不等关系的应用为副线来设计教学的,紧紧抓住图形的运动分析及如何利用相等关系进行的证明。三角形中的边角不等关系的应用,从学生的`实际出发,突出教学重点,并结合具体问题,渗透数学思想方法,并正确地应用;针对学生应用能力的薄弱,不能将所学知识灵活运用;而根据课程标准,学生应“学会学习,学会思考”,不断提高自主学习的能力;所以在本节课的教学过程中,以充分展示学生的主体地位为目的,通过他们的主动探究、主动学习,消除学生对于几何证明的恐惧心理,能够利用所学知识进行灵活应用,突破教学难点,使学生在平等、活跃的学习氛围中增强学习的兴趣和自信心。

  二、教学目标的设计

  本节课的主要内容是学生对三角形中的边角不等关系的理解与掌握,并能应用其知识解决简单问题。同时还从定理的证明实践中,掌握审题的方法证明多变等思想体系,通过学生对猜想的分析、处理,渗透图形的运动、图形构造的思想方法,自行获取数学语言交流的能力、获取学生之间互相协作的能力。审题是定理证明的前提条件之一,审题是学生是否充分理解题意的关键,它会直接影响到学生解题的正确性。这节课实质上就是让学生养成“审题”的好习惯,也是培养学生创造能力的实践课。

  三、教学方法:重视基础知识点、发生、发展、应用的全过程。

  让学生参与教学的全过程。以“提出问题——引导探究——开展讨论——解决问题——形成新知——推广应用”的情境教学模式,把抽象的数学思想通过具体的问题解决转化成为具体的数学方法。具体的问题解决应由学生独立完成,自行交流,自行小结,教师只起到鼓励、启发、点拔等辅助作用。让学生尝到成功的滋味,促进思维方法、思维能力,增强他们学习数学的自信心。

  四、教学过程设计

  课一开始是复习及引入:一个三角形中的边角相等关系;通过运动点A,使AB和AC的长度不等,那么其他的相等关系还成立吗?启发学生思考并发现问题。

  猜想1的证明是把几何构图的思想方法、辅助线的技巧、几何证明、利用相等关系进行证明的思想方法作了一次综合的应用。逐步引导学生深入研究,体验问题可以从“特殊到一般的”研究策略。在形式上则采取了小组合作讨论的模式,通过学生之间相互交流、共同努力,探究发现解决猜想的途径,教师予以适时的提示,在课堂中形成热烈的讨论气氛,引导学生开展积极主动的数学思维。利用图形直观的演示,引出六种证明方法,既拓展学生思维又激发学生的学习兴趣。

  学生自主学习阶段,则放手给学生,让他们体现自己是学习的主人,培养他们能用数学语言和普通语言,条理分明地阐述自己的见解,乐意与他人进行交流、沟通和合作的能力。而作业的布置,则让学生把课堂上的探究活动延续到了课外,有利于激发他们主动学习数学的兴趣。

  总之,本节课的主要内容是一个三角形中的边角不等关系的证明,以“提出问题——引导探究——开展讨论——解决问题”的情境教学模式,把抽象的数学思想通过具体的问题解决转化成为具体的数学方法。在教师的指导下,培养学生善于探索,勇于创新的精神。同时对猜想的证明过程中,体验掌握审题的方法,通过学生之间的互相交流与反馈,对证明方法进行总结归纳,从中得到一些研究问题的方法和学习策略,真正体现在课堂教学中以学生发展为本的思想。

  《三角形边的关系》说课稿 7

  说教材

  本节是九年制义务教育实验教材小学数学第八册的教学内容,它包括三角形三条边之间的关系以及部分练习。

  在此之前,学生已经学习了角,初步认识了三角形,知道三角形有3条边、3个顶点、3个角,三角形还具有稳定性等知识,为学生研究三角形的新的特性——任意两边之和大于第三边做好了知识迁移基础。在平面图形里,三角形是最简单,也是最基本的多边形,它由3条线段围成,但并不是任意的3条线段都能围成三角形,所以学好这部分内容,不仅可以从形的方面加深对周围事物的理解,发展学生的空间观念,可以在动手操作、探索实验和联系生活应用数学方面拓展学生的知识面,发展学生的思维和解决实际问题的能力,同时也为学习其他平面图形和立体图形积累知识经验,为进一步学习三角形的内角和、面积、甚至中学的勾股定理等内容打下坚实基础。

  教材从学生熟悉的生活场景引发学生对三角形边的关系进行思考,大胆猜想三角形三条边之间可能的关系,呈现的情景图,创设学生熟悉的问题情境,引发学生思考,然后让学生动手实践,探究规律,得出:三角形任意两边的和大于第三边,最后对所学习的知识进行运用。

  新课标的基本理念要求“人人学习有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展”。结合教材,根据学生的知识现状和年龄特点,我制定了以下教学目标:

  1、 使学生知道“三角形中任意两边的和大于第三边”,运用关系解决简单的实际问题;

  2、培养学生的观察、分析、比较、操作能力,进一步发展空间观念,提高学生的探索能力。

  3、让学生经历数学学习的过程,感受数学与实际的紧密联系,在学习中培养学生数学运用的意识以及团结协助的精神

  本课的重点是:三角形三边关系的实验与探究,这个关系不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;熟练灵活地运用三角形的两边之和大于第三边,是数学严谨性的一个体现,同时也有助于提高学生全面思考数学问题的能力;它还将在以后的学习中起着重要作用。

  本节内容的难点是利用三角形三边之间的关系解决实际问题,在学习和应用这个关系时,“两边之和大于第三边”指的是“任何两边的和”都“大于第三边”,而学生的错误就在于以偏概全。

  说教法

  杜威先生说过这样一句话:“你可以将一匹马牵到河边,但是你绝不可能按着马头让它饮水。”针对平面几何知识教学的特点、以及小学生以形象思维为主、空间观念薄弱的特点,我打算采用创设情境法、实验法、比较法,以及分组讨论、合作学习的形式,并运用多媒体教学课件辅助教学,让学生在观察、感知的基础上,动手操作,比一比,看一看,想一想,分组讨论、合作学习,老师恰当点拨,适时引导,多媒体课件及时验证结论,激发学生的学习兴趣,调动学生的`学习积极性,突出学生的主体性,以学生发展为本,转变学生的学习方式,从而达到培养学生的创新精神和实践能力的目的。

  说学法

  苏霍姆林斯基说:“唤醒人实行自我教育,按照我的深刻信念,乃是一种真正的教育。”在学法指导上,我将充分发挥学生的主体精神,留有足够的时间和空间激发他们主动探索。借鉴杜威“做中学”的思想,在设计课程方案时,将学生分成5人学习小组,同组异质:组内成员分工明确(有组长、记录员、操作员、发言员等),让学生动起来,活起来,让学生在猜想、质疑、验证、探究、测量、实践操作、问题解决等过程中,经历想一想,猜一猜,画一画,比一比等活动,努力营造协作互动、自主探究、议论纷纷的课堂教学氛围,将课堂真正还给学生,让学生在自主活动中得以发展。

  说教学流程

  问题——在生活中生成

  杜威“做中学”理论中有这么一句话:“经验和自然相互联系”,从而可知“做中学”强调从学生已有的生活经验出发,要求创设生活情景,使生活问题数学化,数学问题生活化,以唤起学生已有的经验积淀,产生对数学的亲切感,从而激发学习数学的兴趣。这也就是我这堂课的引入——情境激趣悬念探路。

  课一开始我利用多媒体创设了情境:家住白云区广园新村的小明,到外校共有3条路可以走,“哪条路最近呢?”、“这是什么原因?”等引导学生思考交流,这时学生的回答可能是感性的,浅显的,认识上甚至是不科学的,此时教师欣赏的眼神和鼓励性的语言尤为重要。

  在交流原因时,教师可以鼓励同学们联系自己生活的实际谈看法,用自己的话来描述,教师不作过多评价,接着教师的话锋一转:我们的想法对吗?用什么方法来验证呢?谁能设计验证的思路。

  学生自主设计验证思路。

  这样可使学生在数学活动的情境中借助已有的生活经验,去感受,去经历,从而促使学生发现问题,提出问题,和解决问题,极大调动学生探究新知的积极性。

  《三角形边的关系》说课稿 8

  一、教材分析

  等边三角形是八年级数学上册的内容,主要内容是等边三角形的性质定理和判定定理以及判定定理的推理证明和初步应用。是学生学习了轴对称图形和等腰三角形有关知识后学习的,本课学习不仅是学生进一步认识特殊的轴对称图形——等边三角形,更是今后证明角相等、线段相等的重要工具.要求学生探索并掌握等边三角形的性质、判定方法。

  能力目标:建立初步的符号感,发展抽象思维。经过观察实验、猜想证明等数学活动,发展合情推理能力。

  知识目标:

  (1)了解等边三角形的概念。

  (2情感目标:激发学生积极参与数学学习活动的兴趣,培养学生良好的创新意识。

  重点:等边三角形判定定理证明。

  难点:(1)等边三角形判定定理的发现和证明。

  二、教法指导

  根据“获得数学知识的过程比获得知识更为重要”的理念。我确定本课的`教法为:探究发现法,即学生在老师的正确引导下,积极主动参与探索发现、归纳类比等数学活动获得知识。

  三、学法指导:

  “教学中让学生发现一个问题比解决一个问题更重要。”因而本课的学法指导是让学生在“观察——发现——论证——归纳”的学习过程中自主参与知识的形成的过程。从而培养学生探究问题,交流合作的良好品质。

  四、教学过程设计

  1、《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。”为能更多地向学生提供从事数学活动的机会,我将本节课的教学过程设为以下四个环节:

  创设情景导入新课 先借助多媒体展示一组图片。让学生观察实物图片,在众多图形中认识等腰三角形,辨认特殊的等腰三角形。 揭示课题

  2、合作交流探究新知:从实物抽象出等腰三角形、等边三角形的几何图形,并用课件展示图形。请同学思考下列问题:

  问题1 图中的等腰三角形有什么特殊之处?—— 学生回答后自然引出等边三角形的定义。

  问题2 等边三角形的三个内角有什么关系?让学生根据定义画一个等边三角形,用量角器度量三角形内角的角度进一步验证这个结论。

  问题3 我们从边、角两方面描述等边三角形的性质,那么我们要判定一个三角形是等边三角形,从边、角如何判定?(提出问题后,应给学生自主探索、思考的时间)然后归纳等边三角形的判定方法1:三个角都相等的三角形是等边三角形。

  问题4 你认为有一个角等60度的等腰三角形是等边三角形吗?你能证明你的结论吗?请把你的证明思路和同伴交流。(提出问题后,再次让学生合作交流, 归纳:等腰三角形判定方法2,有一个角是60度,等腰三角形是等边三角形。

  3、应用新知巩固提高1.例题解析;课外兴趣小组

  (1) 由学生们分组相互探讨,共同研究此题 的已知、猜想结论部分,然后由小组派代表阐述推理过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,从而培养他们语言表达能力。

  (2)、课堂练习(然后我又设计了两种不同类型的练习题

  第一部分设计了两道有关等边三角形推理的练习。目的是对等边三角形性质和判定进一步理解,并考察学生掌握的情况。

  第二部分是生活中实际问题,来提升学生所学的知识,并加以综合练,使他们充分认识到数学实质是来源于生活并要服务于生活。

  五 、总结反思拓展升华

  此环节我是先让学生归纳本节所学,再通过图框的形式小结等边三角形和前阶段所学三角形之间的内在联系

  《三角形边的关系》说课稿 9

尊敬的各位评委,各位老师:

  大家好!今天我说课的内容是人教版义务教育课程标准实验教材数学四年级下册85页内容《三角形的内角和》。

  一、教材分析

  新课标把三角形的内角和作为第二学段中三角形的一个重要组成部分。本课是安排在三角形的特性及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。教材所呈现的内容,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,安排了量一量、算一算和剪一剪、拼一拼两个实验操作活动,意图使学生在动手操作、合作交流中发现并形成结论。

  二、学情分析

  1、通过前面的学习,学生已经掌握了三角形的一些基础知识,会用工具量角、画角,具备了探索三角形内角和的知识与技能基础。

  2、学生的生活经验是可利用的教学资源。我在课前了解到,已经有不少学生知道了三角形内角和是180度,,但却不知道怎样才能得出这个结论,因此学生在这节课上的主要目标是验证三角形的内角和是180度。

  三、教学目标

  基于以上对教材的分析以及对学生情况的思考,我从知识与技能,过程与方法,情感态度价值观三方面拟定了本节课的教学目标:

  1、通过"量一量","算一算","拼一拼","折一折"的方法,让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。

  2、通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想

  3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。

  教学重难点:理解并掌握三角形的内角和是180度这一结论。

  四、教学准备:

  教具:多媒体课件,

  学具:各类三角形、长方形、量角器、活动记录表等。

  五、教法和学法

  “三角形的内角和”一课,知识与技能目标并不难,但我认为本节课更重要的是通过自主探索与合作交流使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生采用自主探究、动手操作、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时地启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。

  六、教学过程

  本节课,我遵循“学生主动和教师指导相统一,问题主线和活动主轴相统一”的原则,制定了以下教学程序:

  (一)创设情境,激发兴趣

  “兴趣是最好的老师”。开课伊始我利用课件动态演示一只蝴蝶在把一条绳子围成不同的三角形。让学生观察在围的过程中,什么变了?什么没变?让学生在变与不变的观察与对比中,激发学生的学习兴趣,引出本节课的学习内容(板书:三角形的内角和),为后面的探索奠定基础。

  设计意图:以问题情境为出发点,既丰富了学生的感官认识,又激发了学生的学习热情。

  (二)动手操作,探索新知

  本环节是学生获取知识、提高能力的一个重要过程。我有目的、有意识的引导学生主动参与实践活动、经历知识的形成过程。

  1、揭示“内角”和“内角和”的概念

  明确“内角”和“内角和”的概念是学生进一步探究内角和度数的前提,本环节首先请学生都拿出一个三角形,指一指三个内角,然后让学生谈谈自己对内角和的理解,在大家交流的基础上得出:三角形的内角和就是三个内角的度数之和。

  2、猜测内角和

  牛顿曾说:“没有大胆的猜想,就没有伟大的发现!”所以我放手让学生猜测三角形内角和的度数,由于绝大多数学生有课外知识的积累,不难说出三角形的内角和是180度,但猜想并不等于结论,三角形的内角和到底是不是180度?(板书:?)还要进一步的验证。猜想——验证是学生探究数学的有效途径。

  3、动手验证,汇报交流

  (1)介绍学具筐

  由教师介绍学具筐中都有什么学习材料。

  (2)生独立思考、动手操作

  因为合作交流应建立在独立思考的基础上,所以先让学生独立思考:打算选用什么材料,怎样来验证三角形的内角和是不是180°。然后再让学生把想法付诸实践。此环节会留给学生充分的思考、操作、发现的时间,让学生在探索中找到证明的切入点,体验成功。在这期间,教师走下讲台,参与学生的活动,与学生一起寻找验证的方法,对有困难的学生提供帮助,不放弃任何一个学生。

  (3)组内交流

  经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。

  (4)全班汇报交流。

  在足够的交流之后,开始进入全班汇报展示过程,达到智慧共享的目的。学生可能会出现以下几种方法:

  A、测量方法

  活动记录表

  三角形的形状每个内角的度数三个内角和

  ∠1∠2∠3

  这个验证方法应是大多数学生都能想到的,在交流汇报结果时会发现答案不统一,可能会出现大于180度、等于180度或小于180度不同的结果。此时学生会在心中产生更大的疑惑,“三角形的内角和到底是多少度?谁的答案正确呢?”在这里教师要抓住契机,肯定学生实事求是的态度和质疑的精神,把这一问题抛给学生,再次激起学生的探究热情,强烈的求知欲和好胜心让学生跃跃欲试,让学生充分发表观点,最终使学生认识到测量法会有误差,看来仅用一种测量的方法来验证只能得到三角形的内角和在180°左右,到底是不是180°,疑问依然存在,说服力还不够,此时我顺水推舟,让用不同验证方法的学生上台汇报展示。

  B、撕拼法

  我认为数学课不仅是解决数学问题,更重要的是思维方式的点拨,使数学思想的种子播种在学生的头脑中。本环节主要想实现向学生渗透“转化”的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态,只有合理呈现学习素材,才能使学生对转化策略形成清晰的认识。所以我请用撕拼法的同学上台展示撕拼的过程,学生可能会撕拼不同类型的三角形,如:

  此时教师适时追 问:你是怎么想到把三个内角撕下来拼成一个平角来验证的呢?因为平角是180度,三角形的三个内角拼在一起正好形成了一个平角,所以三角形的内角和就是180度。教师可及时评价点拨:“你们把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,运用了转化策略,真了不起。”从而使学生清晰的感受到数学学习就是把新知转化成旧知的过程。

  C、其它方法

  除了以上两种验证方法外,学生可能还会出现不同的验证方法,比如折一折的方法,把三个完全相同的三角形用不同的三个内角拼成一个平角来验证的方法,例图:

  如果学生出现用长方形剪成两个完全相同的直角三角形或把两个完全相同的直角三角形拼成长方形来验证的方法,例图:

  教师可追 问:“这种方法只能证明哪一类的三角形呢?”使学生明白,这种验证方法有局限性,只能证明直角三角形的内角和是180°。然后教师引导学生归纳出这些不同方法都有异曲同工之妙,就是都运用了转化的策略,让学生在不知不觉中进一步感悟转化在数学学习中的重要作用。通过各种方法的展示交流,学生对三角形内角和是不是180度的疑问已经消除,所以可以把“?”改成“。”

  设计意图:《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”在教学设计中我注意体现这一理念,允许学生根据已有的知识经验进行猜测,在猜测后先独立思考验证的`方法,再进行小组交流。给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列实验活动中理解和掌握三角形内角和是180°这个图形性质。在探索活动中,使学生学会与他人合作,同时也使学生学到了怎样由已知探索未知的思维方式与方法,培养他们主动探索的精神,让学生在活动中学习,在活动中发展。

  4、科学验证方法

  数学是一门严谨的学科,数学结论的得出必须经过严格的证明。那如何科学地验证三角形内角和是不是180°呢?用课件动态演示科学家的验证方法。

  设计意图:一方面使学生为自己猜想的结论能被证明而产生满足感;另一方面使学生体会到数学是严谨的,从小就应该让学生养成严谨、认真、实事求是的学习态度。

  (三)课外拓展,积淀文化

  为了使学生在获得数学知识的同时积淀数学文化,用课件介绍最早发现三角形内角和秘密的法国科学家帕斯卡(课件)让学生交流:听了这个故事,你想说什么?在学生交流的基础上,教师抓住契机,及时鼓励学生:这节课才10岁的我们利用自己的智慧发现了帕斯卡12岁时数学发现,我们同样了不起,刘老师为大家感到骄傲!(板书:!)这个感叹号不仅表示教师对学生的赞叹,更是学生对自我的一种肯定,获得成功的自豪感。

  设计意图:适当的引入课外知识,它既可以激发学生的学习兴趣,又有机的渗透了向帕斯卡学习,做一个善于思考、善于发现的孩子,对学生的情感、态度、价值观的形成与发展能起到了潜移默化的作用。

  (四)应用新知,解决问题

  数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,以达到练习的有效性。对此,我设计了三个层次的练习:

  1、把两个小三角形拼成一起,大三形的内角和是多少度?为什么?

  设计意图:通过两个三角形分与合的过程,让学生进一步理解三角形内角和等于180度这个结论,认识到三角形的内角和不因三角形的大小而改变。

  2、想一想,做一做

  在一个三角形ABC中,已知∠A═45°,∠B═85,求∠с的度数。

  在一个直角三角形中,已知∠с═52,求∠A的度数。

  爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?

  设计意图:将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形、等腰三角形等图形特征求三角形内角的度数。

  3、思考:

  你能画出一个有两个直角或两个钝角的三角形吗?为什么?

  设计意图:将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形、钝角三角形中角的特征,较好地沟通了知识之间的联系。

  (五)全课小结,完善新知

  你在这堂课中有什么收获?

  设计意图:这样用谈话的方式进行总结,不仅总结了所学知识技能,还体现了学法的指导,增强了情感体验。

  板书设计:

  三角形的内角和180°

  三角形的形状每个内角的度数三个内角和

  ∠1∠2∠3

  总之,本节课我力图引导学生通过自主探究、合作交流,让学生充分经历一个知识的学习过程,让学生学会数学、会学数学、爱学数学。在教学中,随时会生成一些新教学资源,课堂的生成一定大于课前预设,我将及时调整我的预案,以达到最佳的教学效果。

  教学特色:

  本节课我努力体现以下2个教学特色:

  1、引导学生自主探索,激发学生的学习兴趣,体现以学生的发展为本的教学理念。

  强化学生探究学习的心理体验,把数学学习和情感态度的发展有机的结合起来。

  《三角形边的关系》说课稿 10

  一、说教材

  (一)教材分析

  《三角形的特性》是人教课标版小学数学第八册第五单元的内容,三角形是平面图形中最简单也是最基本的多边形,一切多边形都可以分割成若干个三角形,并借助三角形来推导有关的性质。因此,三角形的认识是学习平面图形知识的起点,也为学习平面几何、立体几何打下基础。本节课是在学生已经学习了线段、角和直观认识了三角形的基础上进行教学的,所以本节课是三角形认识的第二阶段。

  (二)教学目标

  根据本节课在教材中的地位和作用,依据新课程标准的基本理念和学生的认知水平,我拟定了以下教学目标:

  1、知识目标:理解三角形的定义,掌握三角形特征和特性,并会给三角形画高。

  2、能力目标:学会通过观察、操作、分析和概括去获得的学习方法,体验数学与生活的联系,培养学生的观察、分析、操作的能力,进一步发展空间观念。

  3、情感目标:在小组合作、探究与交流的过程中,增强学生创新意识和团结协助的精神

  (三)教学重点、难点

  教学重点:理解三角形的定义,掌握三角形的特征和特性。

  教学难点:给三角形确定高和画高。

  (四)教具准备

  三角板、课件、数学用具盒、幻灯片

  (五)学具准备

  三角尺、数学用具盒、图纸。

  二、说教法学法

  1、说教法本节课我根据“教师是组织者、引导者和合作者”这一理念,以学生参与活动为主线,创建新型的教学结构。先创设情境激发学生的学习兴趣,然后让学生自学课本,独立探索,再让学生操作实践,合作交流,从而达到概念的自主建构;在整个教学过程中充分体现了以学生为主体,教师为主导的教学思想,让学生在活动中感受数学之美。

  2、说学法根据本节课的教学目标和教法,我主要采用独立探索、合作交流、实践操作相结合的学习方法,让学生通过动脑、动口、动手来亲身经历“做数学”的过程,真正理解和掌握基本的数学知识和技能,获得广泛的数学活动经验,建立学习成就感和信心,使学生成为数学学习的主人。四、说教学过程这节课的教学过程,我是秉着新课标的精神,在整个教学流程设计上力求充分体现“以学生为主体”、“以学生发展为本”的教育理念,我将教学思路拟定为“创设情境、诱发兴趣——合作交流、探索新知——深化训练,拓展延伸——质疑反思,总结评价”,努力构建探索型的和谐课堂教学模式。

  三、教学过程

  (一)创设情境,诱发兴趣

  师:同学们,在上课前我先给大家讲一个有趣的故事,好吗?(同学们都拍手称好)故事讲完后,由坏狐狸提出一个问题:为什么昨天房子被我推两下就塌了,而今天怎么推也推不塌呢?来引发学生的'思考,在学生深思不解的情况下,教师顺水推舟地引出课题,并板书:三角形的特性。

  (二)合作交流,探索新知

  A:三角形的定义

  师:先请同学们拿出数学用具盒打开钉子板,在上面用最快的速度围成一个三角形;再请同学们在图本上画一个三角形;最后请同学们拿出三角板,数一数、摸一摸三角板的角和边,并说一说你对三角形的认识。师生总结三角形的定义。

  根据学生的年龄特点和心理特征。用生动有趣的童话故事激发他们的学习兴趣。 这样一来,既打通了数学与生活间的无形屏障,又引发学生强烈的兴奋感和亲切感,营造积极向上的学习氛围,让学生在欢松的心情投入到学习当中。问题的悬念,有利于提高学生的学习热情,使学生产生强烈的求知欲望。 这里主要是回顾学生对三角形原有的认识,起到一个温故而知新的效果。同时,教师及时给予学生鼓励和表扬,这样也可以激发学生、提高学生的学习的积极性。

  B:认识三角形的特征

  先让学生自学书本第81页的内容,并画出三角形的各个部分的名称,再请学生小组合作交流,拿出并指着自己的三角板向同伴说出三角形各部分的名称。

  C:三角形的高的画法

  请学生自学书本第81页的内容,理解三角形的高和底的定义。并在此基础上调动学生已有的知识经验,先让学生在小组内合作探索尝试画高;然后,教师示范讲解三角形的高的画法;最后出示练习,让学生作出正确的判断。

  D:三角形的稳定性

  先让学生说说生活中哪些地方用了三角形,然后质疑:“这些三角形有什么作用呢?”接着让学生拿出已准备好的学具,通过对比、推拉三角形与四边形,交流对比结果并归纳出结论:三角形具有稳定性。

  鼓励学生学会自学,独立思考,在同伴面前敢于发表意见,与同伴们分享学习成果,提高学生的学习自主性与积极性,让学生真正成为学习的主人。 这是在学生已学会了画平行四边形的高的基础上进行教学的。通过自学并调动学生原有的经验去独立思考、去逐步探索,让学生在获取数学知识的过程中体验到成功的喜悦,感受数学的乐趣,增强学生学习数学的信心,并通过练习,使学生对高有一个整体的认识,从而突破这节课的重难点。这个环节是根据新课标“有效的数学学习不能单纯的依赖模仿和记忆,动手实践,自主探索和合作交流才是学习数学的重要方式”这一理念设计的,主要是让学生亲身经历知识的形成,体验三角形的稳定性。 教学过程设计意图 师:现在哪位同学可以回答坏狐狸提出的问题呢?“为什么昨天,我推两下房子就塌了,而今天怎么推也推不动呢?”

  (三)深化训练,拓展延伸

  1:生活中的三角形。

  A:出示挂图,让学生去观察并联系实际举例说说生活中的三角形,再说说它们的用处。

  B:做生活的小能手,老师的椅子总是摇晃不稳,谁能帮老师修理一下,怎样才能更坚固呢?

  2:辅导学生完成练习十四的1、2

  第1题,说出下面每个三角形的名称,并各画出一条高。

  第2题,围篱笆。“哪种方法更牢固,为什么?”

  一个问题,既打开了学生心中的疑惑,又达到了一个前呼后应的效果。将生活实际与一种情景联系起来,大大激发了学生的学习兴趣,培养了学生用数学的眼光来观察周围的事物。使学生能够正确地认识三角形的特性,并运用所学的知识解决现实生活中的问题,体现“生活处处有数学,数学生活化”的理念,达到“学以致用”的目的。通过这些有序而多样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的能力,有趣的数学在学生们的积极主动的探索中显得更有味道。

  3:发挥想象,巧摆七巧板

  A:出示课件,(并播放轻松的音乐)让学生在愉快的心情下欣赏平面图形组合图,并观察它们组成了什么图形?

  B:小组合作,摆出七巧板,让学生发挥他们的想象,用不同的图形拼出一幅图,再进行小组评比。

  (四)质疑反思,总结评价

  师:今节课你掌握了什么?学生在小组内谈收获,评价得失。课堂总结

  创设情景可以渲染学习的气氛,也可以寓教于乐,让学生在玩中学,在学中玩。小组合作学习既体现了团队的精神也使学生在想象的过程中碰撞出创新的火花,培养学生的创新能力。 通过让学生在组内谈收获、评得失,促进学生的思维发展,全面提高学生的综合素质,体现“人人学有价值的数学”这一理念。

  四、说板书设计

  本节课的板书精简明了,突出重点,体现本课时的内在联系,更进一步加深了学生对三角形的特征和特性的认识。

  • 相关推荐

【《三角形边的关系》说课稿】相关文章:

三角形边的关系教学设计01-14

三角形边的关系教学反思06-10

《三角形边的关系》教学反思(精选17篇)08-19

《三角形三边的关系》教学反思02-15

探索与发现三角形边的关系的教学反思07-08

《三角形三边的关系》教学反思(精选12篇)03-20

《三角形三边的关系》教学反思(精选15篇)04-04

《三角形三边的关系》教学设计范文(精选10篇)04-25

分数与除法的关系说课稿07-08

流体压强与流速的关系说课稿04-26