在教学工作者实际的教学活动中,就难以避免地要准备说课稿,借助说课稿我们可以快速提升自己的教学能力。优秀的说课稿都具备一些什么特点呢?下面是小编为大家收集的《平行线的性质》说课稿范文,希望能够帮助到大家。
《平行线的性质》说课稿 1
一、教材分析
1、教材的地位与作用
《平行线的性质》是华师大版七年级数学上册第四章的内容,本节课是在学生已经学习了同位角、内错角、同旁内角和平行线的判定的基础上进行教学的。这节课是空间与图形领域的基础知识,在以后的学习中经常要用到。它为今后三角形内角和、三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。在这节课的学习中,我先组织学生利用手中的量角器对“两直线平行,同位角相等”这一公理进行验证,再通过农远资源课件的演示对学生进行讲解,使学生加深对这一知识点的理解。在这一公理的基础上经过简单的推理,得到平行线的另两个性质。
2、教学重点、难点
重点:平行线的三个性质及运用。
难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。
3、学生情况分析
我所在的学校是少数民族农村中学,这里的学生基础知识较差,但学生有较强的求知欲望,对新的事物有很强的好奇心。学生对于平行线也有了很深的了解,已经学会了平行线的判定方法,所以本节课对学生来说不是非常难学。
二、目标分析
根据数学课程标准的要求和教学内容的特点,以及学生的'实际情况制定如下目标:
知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。
过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。
三、说教法、学法
新课程的理念要求培养学生自主学习,学生是主体,教师起的是主导作用。为了让学生真正成为课堂的主人,这节课我选用下面教学方法:
1、情境教学法:情境引入,激发学生的学习兴趣,让学生认识到数学来源于生活。
2、新技术教学法:在教学过程中充分利用农远资源和多媒体教学技术,给学生以直观的感受,加深学生的印象。
3、鼓励和表扬:在教学过程中,我鼓励学生进行大胆的猜测并指导学生进行验证,对学生的观点多加表扬,激发学生的学习热情。
在学法指导上,通过教师的引导,学生观察、动手测量、猜想、总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点。逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
四、说教学过程
1、创设情境引入
(1)我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。
【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。
(2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?
【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同.
2、探索新知
(1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。
【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。
(2)讲解平行线的性质一。
【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。
(3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。
【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。
(4)总结平行线的性质
性质1:两直线平行,同位角相等.
性质2:两直线平行,内错角相等.
性质3:两直线平行,同旁内角互补.
(5)平行线的性质和平行线的判定区别:
要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”
3、知识运用
(1)解决引入时提出的问题
(2)利用所学的知识讲解例4和例5
(3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。
(4)练习P174—175 第1、2、3、4题
【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。
4、回顾总结
(1)、通过这节课的学习,你有什么收获?你感受最深的是什么?
(2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?
【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。
5、作业设计
P175 第5题
【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。
五、说板书设计
平行线的性质
1.平行线的性质:
性质1: 例题: 练习:
性质2:
性质3:
2.平行线的性质与
判定的区别
【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。
六、效果预测
本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强。
《平行线的性质》说课稿 2
今天我说课的内容是华东师范大学出版社义务教育课程标准实验教科书《数学》七年级上册第五章的5、2节《平行线的性质》(第三课时)、下面我就从教材分析;学生情况分析;教学目标的确定;教学重点、教学难点的分析;教法与学法;教学过程设计这几个方面把我的理解和认识作一个说明。
一、教材分析:
1、地位与作用:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到、这部分内容是后续学习的基础,它们不但为三角形内角和定理的证明提供了转化的方法,而且也为今后三角形全等、三角形相似等知识的学习奠定了理论基础,学好这部分内容至关重要。
2、在本节课学习之前,学生已经了解了平行线的概念,经历了两条直线被第三条直线所截同位角相等内错角相等同旁内角互补可以判定两条直线平行,那么两条平行线被第三条直线所截同位角内错角同旁内角之间会有什么关系呢学生有进一步探究的愿望和能力。
二、教学目标的确定:
根据数学课程标准的要求和教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
(1)探索平行线的性质,并掌握它们的图形语言、文字语言、符号语言;了解平行线的性质和判定的区别。
(2)通过学生动手操作、实验、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。
(3)通过问题情境的创设和解决使学生感悟到几何知识来源于实践并反作用于实践及认识事物的规律是从特殊到一般,再从一般到特殊等辩证唯物主义观点。
三、教学重点、难点分析:
平行线的性质是空间与图形领域的基础知识,在以后的学习中经常要用到、这部分内容是后续学习的基础,让学生通过探索活动来发现结论,经历知识的“再发现”过程,可增强学生对性质的.认识和理解,培养学生多方面的能力、因此我确定本节课的重点为:探究平行线的性质。
由于学生是第一次接触基本图形的性质和判定方法,且它们互为逆命题,所以学生很容易在记忆和使用时将其混淆、因此,我确定本节课的难点为:明确平行线的性质和判定的区别
四、教法与学法
1、教法:采用引导发现法,教师通过精心设置的一个个问题链,激发学生的求知欲,使学生在教师的引导和合作下,通过自主探索,合作交流,发现问题,解决问题。引导学生观察动手测量,猜想小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点、
2、学法:在教师的引导下,学生通过观察、动手测量、猜想、小组交流合作探究总结出平行线的性质,使教学成为在教师指导下的一种自主探索的活动过程,在探索中形成自己的观点、逐步培养学生善于观察、乐于思考、勤于动手、勇于表达的学习习惯,提高学生的学习能力。
五、教学过程设计
本节课的流程分五部分:创设情境激发兴趣;探究新知实验猜想;归纳性质说理证明;应用新知巩固练习;归纳小结布置作业、
〈一〉创设情境激发兴趣
出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶拐弯后上公路c又同向行驶。
(1)如果公路c与公路a的交角为700那么公路c与公路b的交角是多少度呢?
(2)如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?
设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。
〈二〉探究新知实验猜想
问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?
学生首先独立完成问题1,鼓励学生运用多种方法进行探索,在此过程中教师要关注:学生能否按要求正确画图并准确标记直线和角;能否准确找出同位角、内错角和同旁内角,分别进行讨论,并得出正确结论、对于学有困难的学生教师要给予具体的帮助、鼓励和指导,使全班同学都能积极参与探索活动、
设计意图:通过动手画图,度量角度等简单易行的操作调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。
问题2:大家解决问题的方法一样吗?得到的结论相同吗?
学生以四人合作小组为单位进行交流讨论、学生可能想到的方法:
(1)用量角器进行度量;
(2)通过剪纸拼图进行比较。
《平行线的性质》说课稿 3
一、说教学目标
1.教材所处的地位与作用
人教版八年级下册第五章《相交线和平行线》是《课程标准》中“图形与几何”领域的重要内容,主要研究平行线的性质和判定。本节内容与已学的“相交线”、“平行线的定义”、“平行线的判定”联系紧密,同时也是以后将要学习的“多边形”、“平行四边形”、“立体几何”等内容的重要基础,第三节研究平行线性质,既是相关内容的发展,同时又是后面内容的基础,因此本节起承上启下的作用。
2.课标要求:
掌握平行线的性质定理两平行线被第三条直线所截,同位角相等。了解平行线性质的证明。
3.教材安排及处理
课本内容分三段,一是平行线的性质一,二是有性质一推导出性质二和性质三,三是性质一的应用举例。在二十分钟微型课中,内容有点多,因此,略作调整,一是把性质二、三的证明作为作业,二是把应用举例作为备用练习,三是整节课让学生主要探究性质一及性质一的简单应用。
4.教学目标
根据课程标准要求和对教材结构内容分析,结合七年级学生的认知特征,确定如下目标:
知识技能:探索平行线的性质,并会用性质解决简单的实际问题
数学思考:在学习中形成符号意识,发展逻辑思维能力
问题解决:在探索中发现两直线平行时同位角之间的数量关系,从而总结概括出平行线的性质
情感态度:在探索中体会成功的快乐,在运用中感受数学价值
5.教学重难点
教学重点:依据教学目标和本节课内容在全章中地位确定本节课的重点是平行线的性质
教学难点:依据教学经验和本节内容的特点平行线的性质的灵活运用及其用符号语言表达性质
二、说教法
为了体现以“学生为主体、教师为主导、训练为主线”的`新课程理念,我选择了“导学练动态结合”的教学方法。教学中设置了“情景诱导、探究指导、展示归纳、变式练习、小结作业”等五个环节。课堂开始设置了问题情景,从平行线的定义及其判定导入,由角之间的数量关系推出线之间的平行关系,设问若已知两平行直线被第三条直线所截,同位角之间有怎样的数量关系呢?之后设置了几个探究问题,学生探究后展示,教师归纳,学生练习,展示教师纠错等让学生感知、理解、深化应用平行线性质一。从而突出本节课的重点,突破本节课的难点。
三、说学法
学生是学习的主体,整个教学活动各个环节均以促进学生的发展为根本目标设计。在第一个环节中,设置问题情境激发学生的学习兴趣,引发他们的数学思考,让他们融入课堂学习。探究指导环节,通过问题串让学生经历问题的产生,问题的提出,问题的解决的过程,培养学生的自学能力和解决问题的能力。展示归纳中培养学生规范的使用数学语言能力,使他们学会自然语言、图形语言、几何语言的之间转化,初步学会与人交流,对于同学解答的质疑、评价和反思的意识。变式练习中体会数学知识应用的情境性和多变性,培养他们的创新意识。通过小结培养学生总结概括能力、复习整理能力和口头表达能力。
四、说教学过程
(一)、情景诱导
前面我们学习了平行线的定义及其两直线平行的判定方法,知道了可以通过角之间的数量关系判定线之间的位置关系。那么,已知两直线平行线,同位角、内错角、同旁内角之间又有怎样的数量关系呢?让我们带着这个问题开始今天的学习吧!
(二)、探究指导
学生按照探究题纲中的问题进行探究,教师做必要的板书准备后,到学生中辅导,发现学生自学中出现的问题或者困难,为展示归纳做准备。
探究题纲:
1、利用直尺和三角板画两条平行线,并任画一条截线。
2、量一量,你画的图形中的四组同位角有怎样的数量关系?
3、猜一猜,两平行线被第三条直线所截的得同位角之间有怎样的数量关系,用一句话概括你的发现?并且用符号语言表示他们?
4、和同桌交流一下,看他是否有同样的发现?并说一说如何验证你们的猜想。
(三)、展示归纳
1、找有问题或有困难的学生按照提纲逐题展示,教师配合,学生说教师板书;
2、发动全班同学评价、补充(要注意用语的规范);
3、全部展示完毕,教师对本段内容作必要的补充、梳理。
(四)、变式练习
逐题出示,给学生足够的时间完成,教师做必要的板书准备后到学生中指导,及时纠错。完成练习后,教师找有问题的学生展示,发动全班学生评价补充。练习完毕后,教师做必要的强调补充。
《平行线的性质》说课稿 4
学习目标:
1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算。
2、通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力。
3、培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性。
学习重点:
平行线性质的研究和发现过程是本节课的重点。
学习难点:
正确区分平行线的性质和判定是本节课的难点。
教学过程:
一、情景诱导。
平行线的判定方法有哪三种?它们分别是先知道什么,后知道什么?
反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们下面要学习的平行线的性质。
二、探究指导
(学生解决探究问题,老师准备板书,巡视检查,帮助有困难的同学,掌握学生情况)
探究提纲
1、利用直尺和三角尺画两条平行线a平行于b,然后画一条截线c与这两条平行线相交,度量所形成的8个角的度数,并记录下来。
2、这8个角中,哪些是同位角?它们之间的度数有什么关系?由此猜想两条平行线被第三条直线截得的同位角有什么关系?用一句话叙述你的结论,并用符号语言表示。(这个结论就是平行线的性质1)
3、根据你所画的图形写出已知,求证,并证明你的结论。用一句话叙述你的结论,并用符号语言表述你的结论。
4、类似地,请你用平行线的性质1,推出两条平行线被第三条直线截得的同旁内角之间的关系。根据你所画的`图形写出已知,求证,并证明你的结论。用一句话叙述你的结论,并用符号语言表述你的结论。
三、展示归纳。
1、学生汇报探究结果,学生说老师写。
2、教师发动学生评价,补充,完善。
3、揭示平行线的性质,然后老师画龙点睛。(把你们总结的性质与课本对照一下,一样吗?表述不太一样但意思一样,把课本上的读一遍)。
《平行线的性质》说课稿 5
教学目标:
1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
重难点:
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。
教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的.指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角。
2、学生测量这些角的度数,把结果填入表内。
角∠1∠2∠3∠4∠5∠6∠7∠8
度数
3、学生根据测量所得数据作出猜想。
(1)图中哪些角是同位角?它们具有怎样的数量关系?
(2)图中哪些角是内错角?它们具有怎样的数量关系?
(3)图中哪些角是同旁内角?它们具有怎样的数量关系?
4、学生验证猜测。
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5、师生归纳平行线的性质,教师板书。
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。
性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。
性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。
教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。
平行线的性质平行线的判定
因为a∥b,因为∠1=∠2,所以∠1=∠2所以a∥b。
因为a∥b,因为∠2=∠3,所以∠2=∠3,所以a∥b。
因为a∥b,因为∠2+∠4=180°,所以∠2+∠4=180°,所以a∥b。
6、教师引导学生理清平行线的性质与平行线判定的区别。
学生交流后,师生归纳:两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论。
7、进一步研究平行线三条性质之间的关系。
教师:大家能根据性质1,推出性质2成立的道理吗?
结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。
因为a∥b,所以∠1=∠2(两直线平行,同位角相等);
又∠3=∠1(对顶角相等),所以∠2=∠3。
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。
学生仿照以下说理,说出如何根据性质1得到性质3的道理。
8、平行线性质应用。
讲解课本P23例题
三、巩固练习:
课本练习(P22)。
四、作业:
课本P22。1,2,3,4,6。
《平行线的性质》说课稿 6
一、主题分析与设计
本节课是苏科版义务教育课程标准实验教科书七年级数学(下册)第七章第2节内容——探索平行线的性质,它是直线平行的继续,是后面研究平移等内容的基础,是"空间与图形"的重要组成部分。
《数学课程标准》强调:数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程;动手实践,自主探索,合作交流是孩子学习数学的重要方式;合作交流的学习形式是培养孩子积极参与、自主学习的有效途径。本节课将以"生活·数学"、"活动·思考"、"表达·应用"为主线开展课堂教学,以学生看得到、感受得到的基本素材创设问题情境,引导学生活动,并在活动中激发学生认真思考、积极探索,主动获取数学知识,从而促进学生研究性学习方式的形成,同时通过小组内学生相互协作研究,培养学生合作性学习精神。
二、教学目标
1、知识与技能:掌握平行线的性质,能应用性质解决相关问题。
2、数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。初中数学教育叙事
3、解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和团结合作、勇于探索、锲而不舍的精神。
三、教学重、难点
1、重点:对平行线性质的掌握与应用
2、难点:对平行线性质1的探究
四、教学用具
1、教具:多媒体平台及多媒体课件
2、学具:三角尺、量角器、剪刀
五、教学过程
(一)创设情境,设疑激思
1、播放一组幻灯片。
内容:
①供火车行驶的铁轨上;
②游泳池中的泳道隔栏;
③横格纸中的线。
2、提问温故:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
3、学生活动:针对问题,学生思考后回答:
①同位角相等两直线平行;
②内错角相等两直线平行;
③同旁内角互补两直线平行;
4、教师肯定学生的回答并提出新问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?从而引出课题:7。2探索平行线的性质(板书)
(二)数形结合,探究性质
1、画图探究,归纳猜想
教师提要求,学生实践操作:任意画出两条平行线(a ∥ b),画一条截线c与这两条平行线相交,标出8个角。(统一采用阿拉伯数字标角)
教师提出研究性问题一:
指出图中的同位角,并度量这些角,把结果填入下表:
教师提出研究性问题二:
将画出图中的同位角任先一组剪下后叠合。
学生活动一:画图————度量————填表————猜想
学生活动二:画图————剪图————叠合
让学生根据活动得出的`数据与操作得出的结果归纳猜想:两直线平行,同位角相等。
教师提出研究性问题三:
再画出一条截线d,看你的猜想结论是否仍然成立?
学生活动:探究、按小组讨论,最后得出结论:仍然成立。
2、教师用《几何画板》课件验证猜想,让学生直观感受猜想
3、教师展示平行线性质1:两条平行线被第三条直线所截,同位角相等。(两直线平行,同位角相等)
(三)引申思考,培养创新
教师提出研究性问题四:
请判断两条平行线被第三条直线所截,内错角、同旁内角各有什么关系?
学生活动:独立探究————小组讨论————成果展示。
教师活动:评价学生的研究成果,并引导学生说理
因为a ∥ b(已知)
所以∠ 1= ∠ 2(两直线平行,同位角相等)
又∠ 1= ∠ 3(对顶角相等)
∠ 1+ ∠ 4=180°(邻补角的定义)
所以∠ 2= ∠ 3(等量代换)
∠ 2+ ∠ 4=180°(等量代换)
教师展示:
平行线性质2:两条平行线被第三条直线所截,内错角相等。(两直线平行,内错角相等)
平行线性质2:两条平行线被第三条直线所截,同旁内角互补。(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1、(抢答)课本P13练一练1、2及习题7。2 1、5
2、(讨论解答)课本P13习题7。2 2、3、4
(五)课堂总结:这节课你有哪些收获?
1、学生总结:平行线的性质1、2、3
2、教师补充总结:
⑴用"运动"的观点观察数学问题;(如我们前面将同位角剪下叠合后分析问题)
⑵用数形结合的方法来解决问题;(如我们前面将同位角测量后分析问题)
⑶用准确的语言来表达问题;(如平行线的性质1、2、3的表述)
⑷用逻辑推理的形式来论证问题。(如我们前面对性质2和3的说理过程)
(六)作业
学习与评价P5 1、2、3(填空);4、5、6(选择);7、8(拓展与延伸)
六、教学反思:
数学课要注重引导学生探索与获取知识的过程而不单注重学生对知识内容的认识,因为"过程"不仅能引导学生更好地理解知识,还能够引导学生在活动中思考,更好地感受知识的价值,增强应用数学知识解决问题的意识;感受生活与数学的联系,获得"情感、态度、价值观"方面的体验。这节课的教学实现了三个方面的转变:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者。教师成为了学生的导师、伙伴、甚至成为了学生的学生,在课堂上除了导引学生活动外,还要认真聆听学生"教"你他们活动的过程和通过活动所得的知识或方法。
②学的转变:学生的角色从学会转变为会学,跟老师学转变为自主去学。本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境,不是简单地"学"数学,而是深入地"做"数学。
③课堂氛围的转变:整节课以"流畅、开放、合作、‘隐导"为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以"对话"、"讨论"为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值。
总之,在数学教学的花园里,教师只要为学生布置好和谐的场景和明晰的路标,然后就让他们自由地快活地去跳舞吧!
- 相关推荐
【《平行线的性质》说课稿】相关文章:
《平行线的性质》教学03-07
平行线的性质教案05-18
平行线的性质教学反思04-04
平行线的性质教学反思04-04
平行线的性质教学设计06-19
平行线性质的探索教案05-18
平行线性质教学反思08-15
《平行线的性质》教学反思总结06-20
垂线的性质及平行线的判定总结06-26
平行线的性质教案设计05-18