《平行四边形面积的计算》说课稿

2021-02-19 说课稿

  一、教材结构与内容简析:

  《平行四边形面积的计算》是九年义务教育课程标准实验教材小学数学北师大版第九册第二单元第3节课的内容。三年级时,学生已经理解了面积的意义,掌握了长方形面积计算的方法。四年级时,又认识了平行四边形、三角形和梯形等图形的基本特征。 本册教材在此基础之上安排了平行四边形等平面图形的底和高以及面积计算教学,分为两个单元:“图形的面积(一)”主要学习平行四边形、三角形和梯形的面积计算方法;“图形的面积(二)”则学习组合图形面积的计算及简单的不规则图形面积的估计等知识,因此本单元在几何学习中有着承上启下的作用。

  计算平行四边行的面积是在学生已经掌握并能灵活运用长方行面积计算公式,理解平行四边形特征的基础上进行教学的。而且,这部分知识的学习运用会为学生学习后面的几何知识奠定良好的基础。由此可见,本节课是促进学生空间观念发展,扎实其几何知识学习的重要环节。

  二、教学目标及重难点的确立:

  根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水平,并在对教学效果进行全面预测的基础上,我确立如下教学目标。

  1、知识与能力目标:理解并掌握平行四边形面积计算公式,能够应用公式解决实际问题。

  2、过程与方法目标:让学生在动手操作中,实践探究;在公式推导过程中,发展空间观念及多种感官并用的综合能力。

  3、情感态度目标:通过公式推导,向学生渗透事物之间的普遍联系,培养其辩证唯物主义思想;通过解决实际问题,提高学生对生活中处处有数学的认识。

  本单元的教学内容是从研究平行四边形的面积开始,再以平行四边形面积的计算为基础,推出三角形、梯形的面积计算方法,这对后续的教学很重要,所以我认为平行四边形面积计算公式的推导及应用是教学的重点。而引导学生运用转化的方法,启发学生探索规律,找出不同图形参数之间的对应关系,对学生的能力要求较高,所以本节课的难点定为使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。本节课的关键就在于通过学生的动手操作,获得直观感受,在观察和比较中找到转化前后的图形关系。

  三、设计理念和思路:

  《数学课程标准》中明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式。”因此我先创设探索性和开放性的问题情境,激发求知欲望;然后让学生独立思考、自主探索;再以小组合作学习的形式,引导学生建立转化思想,把问题化归到原有的知识体系中,在充分的实践活动中,找到推导平行四边形面积计算公式的方法,解决平行四边形面积如何计算的问题;又应用探索出来的计算公式解决实际生活中的问题;最后回顾学习过程,总结学习方法,再现平行四边形面积计算公式的发现过程,突出教学重、难点。

  四、教法:

  数学是一门培养和发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”,而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性,使他们在求知的学习状态中展示个性。同时,组织学生认真观察、分析和讨论,在解决生活实际问题的过程中,通过动手实践、合作梳理来完成探究任务,让学生真正成为学习的主人。

  本次课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。”本节课我着重引导学生通过动手操作,观察和比较,建立起“新”“旧”图形之间的联系,培养学生应用旧知识解决新问题的能力。这一学习方式的培养,会对后续的学习有很大帮助。

  五、教具、学具准备:

  多媒体课件、平行四边形纸片、剪刀、直尺。为实现以上教学目标,突出重点,解决难点,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。

  六、教学程序及设想:

  为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,特结合本班学习特点,设计如下环节。

  (一)、复习铺垫 引入探究。

  有意义的学习是在建立在学生原有认知基础上的,必要的知识铺垫是搭起新知与旧知的桥梁。课一开始,我利用课件出示两个长方形让学生说出长方形的面积计算公式并计算出面积。紧接着,再出示一个不规则的几何图形让学生快速找到它的面积,并说说是怎样想的。此时,学生会利用所学过的数方格的方法计算出它的面积,因为前几节课的铺垫,学生也会通过观察发现,如果这个不规则图形凸起部分剪下,把它割补到缺口处,就把这个图形转化成了长方形,通过计算长方形的面积即可得到不规则图形的面积。这样的设计,让学生既复习了数方格的方法,又初步渗透了等积,转化的思想,为后面的学习打下了伏笔。

  随之,我又运用课件创设情境,出示一块长方形草地与一块平行四边形草地,请学生比较这两块草地面积的大小。此时学生的思维被激活了,教学也就自然进入了第二个环节。

  (二)自主探究 合作交流。

  从学科本身来讲,学科的概念原理体系只有和相应的探究过程及方法结合起来,才能有助于学生形成一个既有肌体又有灵魂的活的知识结构,如果没有多样化的思维过程和认知方式,没有多种观点和碰撞、论争和比较,结论就难以获得。

  在学生积极的讨论与探究中,两种方案可能产生:(一)用数方格的方法数一数。(二)用转化割补的方法变一变,把平行四边形转化为长方形。

  结合这多种方案,我顺势引导;怎样才能把平行四边形转化为长方形呢?这时学生迫切需要想办法来验证。为给学生创造一个广阔的空间,充分发挥其潜能,鼓励学生大胆尝试,主动探究,我安排了以下教学活动:

  (1)想一想:怎样把平行四边形转化为长方形。

  (2)议一议:交流思考方法,小组内达成共识。

  (3)做一做:通过剪一剪、移一移、拼一拼的方法,将平行四边形“转化”成长方形。

  在操作、展示的基础上,学生又开始了更深入的讨论:1、你能发现原来的平行四边形与现在的长方形有什么关系?2、你能根据这些关系得出平行四边形得出平行四边形面积的计算方法吗?

  通过探究、思考、讨论,学生会发现:将一个平行四边形通过剪、拼后转化为一个长方形(或是一个正方形),平行四边形的`面积等于长方形的面积,长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,因为长方形的面积=长×宽,所以平行四边形的面积=底×高。接着,让学生自学平行四边形面积的字母表示形成,再次加深公式的记忆。

  这样,学生在动手中思维,要思维中动手,不仅品尝了探索成功的喜悦,更使学生在理解中掌握了知识,发展了思维。继而解决课一开始的情境问题。

  任何技能技巧只有在练习中才能和提高,练习是数学教学中不可缺少的重要组成部分,此时学习进入了第三教学环节:

  (三)实践运用 拓展思维。

  对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着“重基础、验能力、拓思维”的原则,设计如下几道练习题:

  1、基础练习:算出下面每个平行四边形的面积。(图在课件中)

  出示的几个图形底和高的数值都很简单,但图形位置各不相同,这样可使学生加深对图形的认识,正确分清平行四边形底和高。

  2 、提升练习:量出平行四边形的一边底边和它的对应高,并分别算出它们的面积。(图在课件中)

  在第一题的基础上,增加了让学生自己动手测量的要求。使这两道题也体现了“重实践”这一理念。

  3 、拓展练习:下图三个平行四边形的面积相等吗?为什么?在这条平行线之间,还可以画出几种形状不一样而面积相等的平行四边形。(图在课件中) 此题需要学生综合运用知识,进行逻辑推理,使学生明白平行四边形的面积只与底和高有关。明确“同底等高的平行四边形面积相等”这一知识点。

  接上题再问:当两个平行四边形的面积相等时,他们的底与高是否也相等?此问题提出必定会引起学生的讨论,因为已有了前一单元《找因数》一课的基础,所以这个问题对于学生来说在讨论中就能解决。

  整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,而且练习题排列遵循由易到难的原则,层层深入,有效的培养了学生创新意识和解决问题的能力。

  (四)总结评价,体验成功。

  总结活动,回顾探索新知的过程,同时引导学生反思、交流:“你有什么心得体会或建议与同学们分享?”

  通过总结,疏理知识,帮助学生深化知识的理解掌握,进一步建构完整的知识体系;另外,学生学会自我评价,互相评价,体验成功,增强学好数学的信心。

  (五)作业。

  要求学生下课后任意选择一个平行四边形的实物测量,并计算出面积。从而总结全课,并将所学知识带入了生活,也为进一步的探索激发了兴趣。

  七、板书设计:

  我的板书设计简洁明了,突出重点。

  平行四边形面积的计算

  长方形的面积=长×宽

  平行四边形的面积=底×高

  S = a h

  在整个教学过程中,我把充分调动学生的积极性贯彻始终,着重引导学生自己动手、动脑,自己观察、发现,自己概括、升华,主动参与到知识的探究过程中,掌握学习方法,从而真正体现了学生是学习的主人。

【《平行四边形面积的计算》说课稿】相关文章:

平行四边形面积计算说课稿06-28

平行四边形面积的计算说课稿06-29

平行四边形面积的计算的说课稿08-26

《平行四边形面积的计算》说课稿02-18

平行四边形面积计算的说课稿05-11

《平行四边形的面积计算》说课稿09-01

平行四边形的面积计算说课稿07-09

平行四边形面积计算的说课稿10-28

《平行四边形的面积计算》说课稿01-24

平行四边形面积的计算说课稿11-29