五年级下册《找次品》说课稿

2021-02-05 说课稿

  一、教材分析

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。在这节课的学习中要求学生在所有待测物品中找出唯一一个外观与合格品完全相同,只是质量有所差异的次品,且事先已经知道次品比合格品轻(或重)。

  “找次品”的教学,旨在通过“找次品”渗透优化思想,让学生充分感受到数学与日常生活的密切联系。优化是一种重要的数学思想方法,在教学中尝试把这种思想方法通过学生可以理解的简单形式,采用生动有趣的事例呈现出来,并运用它可有效地分析和解决问题。本节课通过从3个、5个、9个待测物品中找出一个次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力,培养观察、分析、推理以及解决问题的能力。

  二、学情分析

  解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这些内容的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。另外,本节课中涉及到的 “可能”、“一定”、等知识点学生在此之前都已学过。

  三、教学目标

  知识技能目标:让学生初步认识“找次品”这类问题的基本解决手段和方法。

  过程方法目标:学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  情感态度价值观目标:感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。

  四、教学重难点

  体会解决问题策略的多样性,初步学会运用优化的方法解决实际问题。

  五、教学方法

  1、加强学生的试验、操作活动。本节课内容的`活动性和操作性比较强,可以采取学生动手实践、小组讨论、探究的方式教学。先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。

  2、重视培养学生的猜测、推理能力和探索精神。引导学生从纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。引导学生逐步脱离具体的实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。

  六、教学过程

  课前谈话:大家喜欢吃口香糖吗?(喜欢)吃口香糖有很多好处呢!今天老师就打算把这些口香糖送给积极动脑思考问题的孩子。

  [设计意图:活跃课堂气氛,融洽师生关系,为新课的导入作好铺垫。]

  (一)、情境导入

  1、出示3瓶口香糖,说明:在这3瓶口香糖中有一瓶少了2颗,你能帮我找出那一瓶吗?

  学生自由发言。

  在同学们说的这些方法中,你认为哪一种方法最好?为什么?

  [设计意图:在这一环节中,要引导学生根据次品的特点发现用天平“称”的方法最好,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡原理对托盘两边的物品进行比较就可以了。]

  2、反馈交流。说说你是怎样利用天平来找出这瓶口香糖的呢?和你的同桌说说你的想法,可以模拟天平称的过程。

  [设计意图:让学生用双手模拟天平称的过程更能充分地帮助学生内化。]

  学生回答后小结:可以把其中的2瓶分别放在天平的两个托盘中,如果天平平衡则没放上去的那一瓶少装了;如果天平不平衡则翘起一端的托盘中所放的那一瓶少装了。

  揭示课题:在生活中常常有这样的情况,在一些看似完全相同的物品中混着一个质量不同(轻一点或是重一点)的物品,需要想办法把它找出来,像这一类问题我们把它叫做“找次品”,这节课我们就来当小小质检员一起来研究如何利用天平“找次品”。板书课题:找次品。

  [设计意图:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在教学例1前,先以3个待测物品为起点,降低了学生思考的难度,能较顺利地完成初步的逻辑推理:那就是并不需要把每个物品都放上去称,3个物品中把2个放到天平上,无论平衡还是不平衡,都能准确地判断出哪个是次品。只有理解了这些,后面的探究、推理活动才能顺利进行。]

  (二)、探究新知,寻找方法

  小组合作:从5瓶木糖醇中找出少装了的那瓶次品。

  (合作要求:用手模拟天平,用5个学具当木糖醇。你们是怎样称的?称了几次?)

  指名汇报,根据学生的回答同步用图示法板书学生的操作步骤:

  从这儿我们可以看出,用天平找次品的方法是多种多样的。

  [设计意图:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。在这一环节中,让学生动手动脑,亲身经历分、称、想的全过程,从不同的方法中体验解决问题策略的多样性。图示法较为抽象,对学生来说不容易理解,在这里只是让学生初步感知,教学时教师根据学生的回答同步板书,便于学生理解每项数据、每种符号的含义,为后面的学习打下一定的基础。]

  观察板书的图示法,思考:至少称几次就一定能找到这个次品呢?

  [设计意图:学生在实际的操作中,可能会出现提前找到次品的情况,如果运气好的话称1次就可能找到次品。在这里必须引导学生在理解“至少称几次就一定能找到这个次品” 的含义,在此基础上让学生明白:当我们选用一种方法来分析和研究问题时,应注意把可能出现的结果考虑全面,才能得出正确的结论。同时也为下面的填表、探究优化策略作好准备。]

  (三)、合作探索,寻找最优策略

  在9个零件中有一个次品(次品重一些),用天平称,至少称几次就一定能找到这个次品呢?

  小组分工合作:用学具摆一摆并尝试用图示表示摆的过程。

  [设计意图:这一环节是本节课的重点也是难点,必须进行小组活动,发挥集体的智慧才能突破这个难点。为了保证小组活动的有效性,活动前先在小组内进行分工,使每个成员都明确自己的任务。让学生利用学具摆一摆,并尝试用图示法记录操作过程,是完成由具体到抽象过渡中的重要一步。]

  指名汇报,用投影仪展示学生的分析过程:

  引导观察:用哪一种方法保证能找出次品需要称的次数最少?

  感知规律:平均分成3份去称,保证能找出次品所需的次数最少。

  [设计意图:小组汇报时将学生的操作过程用图示法展示,使学生进一步理解并初步掌握这种分析方法。待测物品数量为9个时,只有平均分成3份称才能保证2次就找到次品,其它任何一种分法都比2次要多,这样便于学生发现规律。]

  (四)、优化方法,萌生猜想

  萌生猜想:是不是把待测物品平均分成3份,就能使保证找到次品所需要称的次数最少呢?

  提出质疑:不能平均分成3份的物品应该怎样分呢?

  合作验证:用图示法从若干个零件中找出一个次品。

  (合作要求:每小组选取自己喜欢的物品个数用图示法进行分析,共同讨论出多种不同的方法,并找到最优的方案。)

  [设计意图:本节课中提供的归纳方法在本质上是一种不完全归纳法。先让学生进行猜测,引发学生进一步进行归纳、推理等数学思考活动,满足不同层次学生的需求。当学生对大量的数据进行分析、观察后自主感知规律。如果课堂时间不允许,这一环节也可以作为课堂的延伸。]

  指名汇报,投影展示学生的分析过程。

  引导观察,感知规律:一是把待测物品分成三份;二是要分得尽量平均,能够均分的就平均分成3份,不能平均分的,也应该使多的一份与少的一份只相差1。

  [设计意图:带领学生经历由特殊到一般的数学分析模式,在此基础上使学生比较全面地感知找次品这类问题的基本解决手段和方法。在这一环节中,让学生完全脱离具体的实物操作,实现从具体形象思维到抽象逻辑思维的过渡。