电站实习报告

2024-10-30 实习报告

  在当下社会,报告十分的重要,报告具有语言陈述性的特点。我敢肯定,大部分人都对写报告很是头疼的,下面是小编为大家整理的电站实习报告4篇,欢迎阅读,希望大家能够喜欢。

  电站实习报告 篇1

  电力工业是国民经济发展中最重要的基础能源产业,是国民经济的第一基础产业,是关系国计民生的基础产业,是世界各国经济发展战略中的优先发展重点。作为一种先进的生产力和基础产业,电力行业对促进国民经济的发展和社会进步起到重要作用。与社会经济和社会发展有着十分密切的关系,它不仅是关系国家经济安全的战略大问题,而且与人们的日常生活、社会稳定密切相关。随着我国经济的发展,对电的需求量不断扩大,电力销售市场的扩大又刺激了整个电力生产的发展。

  XX年全国的发电量达到21870亿千瓦时,比XX年增长14.8%,增速与XX年相比回落了0.4个百分点。其中,水电发电量为3280亿千瓦时,同比增长16.6%;火电发电量18073亿千瓦时,同比增长14.5%,;核电发电量稳步增长,全年发电量501亿千瓦时,同比增长14.1%。XX年我国电力消费始终保持强劲增长态势。全国全社会用电量达到21735亿千瓦时,比XX年同期增长14.9%。其中第一产业用电量612亿千瓦时,同比增长2.7%;第二产业用电量16258亿千瓦时,同比增长16.4%;第三产业用电量2435亿千瓦时,同比增长15.2%;城乡居民生活用电量2430亿千瓦时,同比增长8.2%。

  XX年12月,国家电网统调发电量1926.64亿千瓦时,同比增长16.03%,其中水电量141.17亿千瓦时,火电量1767.33亿千瓦时,核电量18.14亿千瓦时。 根据预测,2010年中国发电总装机容量将提高到6至7亿千瓦,2020年提高至10至11亿千瓦,当年全社会用电量将达到4.6万亿千瓦时。“

  我国电力工业的飞速发展,还体现在电力系统容量、电厂规模和单机容量的大副度提高上。现在我国最大的火电机组是90万kw,最大的水电机组容量70万kw最大核电机组容量100万kw。华北、华北、东北和华中四大电力系统的容量均已超过4000万kw。举世瞩目的三峡工程,装机容量1820万kw,单机容量70万kw,年均发电量847亿kwh,比全世界70万kw机组的总和还多,是世界最大的发电厂。我国核电力工业起步较晚,自行设计、制造、安装、调试的30*kw浙江秦山核电厂于1991年12月首次并网发电,实现了核电的零突破。1974年建成了第一条330kv输电线路,由甘肃刘家峡水电站厂到陕西关中地区。1981年建成了第一条500kv输电线路,由河南姚孟火电厂到武汉。电力系统输电电压等级,除西北电网为330/220/110kv外,其他电网都采用500/220/110kv。国内各省电网都已形成220kv网架,华北、东北、华东、华中、南方等电网都已建成500kv大容量输电线路和跨省联络线,并将逐步形成跨大区域互联的骨干网络。正在建设中的西北750kv输电工程,标志着我国电网输电电压等级由目前最高的500kv即将升级为750kv,实现历史性跨越。除超高压输电外,1988年建成了从葛州坝到上海南桥的500kv直流输电线路,全长1080km,输电容量120*kw,使华中和华东两大电力系统互联,形成了跨大区的联合电力系统。在这些电力建设工程中,超高电压等级(220kv/330kv/500kv/750kv)变电站自动化系统占有重要的地位。

  一、实习目的

  实习的目的是理论联系实际,增强学生对社会、国情和专业背景的了解;使学生拓宽视野,巩固和运用所学过的理论知识,培养分析问题、解决问题的实际工作能力和创新精神;培养劳动观念,激发学生的敬业、创业精神,增强事业心和责任感;本次实习在学生完成部分专业课程学习后进行,通过本次实习,使学生所学的理论知识得以巩固和扩大,增加学生的专业实际知识;为将来从事专业技术工作打下一定的基础;进一步培养学生运用所学理论知识分析生产实际问题的能力。

  二、实习内容

  1、内容与形式:

  ①搜集整理变电站主要一、二次设备以及变电站运行方面的相关知识和资料。

  ②搜集整理500kv变电站特点方面资料。

  ③熟悉变电站电气主接线、主要电气设备构成,了解电气设备的布置,了解电气运行的有关知识。

  ④实地考察梦山500kv变电站的`主接线、主要电气设备(包括主变压器、主要一次设备、二次设备、进出线情况等)电气设备布置方式、变电站主要运行控制方式、变电站的通讯方式等,参观考察过程中要求作好笔记。

  ⑤将搜集学习到的相关知识与梦山站的实践相结合,对理论知识进行深化理解,总结收获。

  ⑥运用所学知识,对生产实际中存在的问题作出一定的分析,进一步提高分析问题和解决问题的能力。

  2、实习前期准备

  变电所是联系发电厂和电力用户的中间环节,起着电压变换和分配电能的作用。根据变电所在电力系统中的地位和作用不同,变电所可分为枢纽变电所、中间变电所、区域变电所和终端变电所。

  ①枢纽变电所枢纽

  变电所位于电力系统的枢纽点,汇集有多个电源(发电厂或其他电力网),连接电力系统的高压和中压,电压等级在330kv以上,负责向区域变电所和中间变电所供电。当其停电时,将引起电力系统解列甚至瘫痪。

  ②中间变电所

  中间变电所位于枢纽变电所和区域变电所之间,使长距离输电线路分段,其高压侧以交换潮流为主,起功率交换作用。它一般汇集2~3路电源,电压等级在220~330kv之间。除了通过功率外,它还降压向当地用户供电,当其停电时将使区域电网解列。

  ③区域变电所

  区域变电所负责向某一地区城市供电,高压侧电压等级一般为110kv或220kv,低压侧电压等级一般为110kv或35kv。当该变电所停电时将使该地区的供电中断。

  ④终端变电所

  终端变电所在输电线路的终端,直接向电力用户供电,高压侧电压一般为110kv。当全所停电时,只影响该变电所的供电用户。

  ⑤牵引变电所

  牵引变电所是一种特殊的终端变电所,用于向电气化铁路的电力牵引网和电力机车供电。其高压侧电压一般为110kv或220kv,低压侧电压为27.5kv(bt供电)或55kv(at供电)。牵引变电所是一级电力负荷,少数牵引变电所还担负着其所在地区的10kv动力负荷。

  电网从历史发展来看,可以分为四个阶段:电厂直配城市网、省区电网、跨省大区电网和跨大区联合电网.随着用电量不断增长,大型水电、火电和核电的建设,地区间电源与负荷的不平衡以及经济调度的需要,必然要求发展输电和联网,电压等级也随之逐步提高.从最初较低电压水平的6-10kv经历35kv、110kv和220kv,发展到超高压的330kv、500kv和750kv电网,并且还有继续上升的趋势。归纳起来,影响输电电压等级发展的因素主要有四个方面:

  ⑴长距离输电的需要;

  ⑵大容量输电的需要;

  ⑶电网互联的需要;

  ⑷节省基建投资和运行费用的需要。基于以上要求采用超高压输电也就在所难免,目前我国已经建成的华中、华东、华北、东北四大电网,都是以500kv网络作为其主干网络,跨大区电网还采用了500kv直流输电技术,部分省区的500kv电网技术已经较成熟,个别省份还在试行750kv输电技术。

  ㈠500kv变电站的突出特点

  500kv线路和设备的电压等级高,工作电流大,设备本身外形尺寸和体积均很大。500kv变压器和并联电抗器套管的对地距离近9米,断路器和隔离开关的本体高度近7米,避雷器高度近6.5米。因此,在500kv变电站中,过电压与绝缘配合、静电感应水平,以及电晕和无线电干扰等问题都比较突出。

  ㈡500kv变电站电气主接线

  变电站电气主接线指的是变电站中汇集、分配电能的电路,通常称为变电所一次接线,是由变压器、断路器、隔离开关、互感器、母线、避雷器等电气设备按一定顺序连接而成的,电气主接线图中,所有电气设备均用规定的文字和符号表示,按它们的正常状态画出。变电站的主接线有线路-变压器组接线,单母线接线,桥式接线三种。

  为了便于运行分析与操作,变电站的主控制室中,通常使用了能表明主要电气设备运行状态的主接线操作图,每次操作预演和操作完成后,都要确认图上有关设备的运行状态已经正确无误。

  电气主接线是整个变电站电气部分的主干,电气主接线方案的选定,对变电所电气设备的选择,现场布置,保护与控制所采取的方式,运行可靠性、灵活性、经济性、检修运行维护的安全性等,都有直接的影响。因此选择优化的电气主接线方式具有特别重要的意义。

  500kv变电站是电力系统的枢纽站,在电网中的地位极其重要,其安全可靠性将直接影响大网、主网的安全稳定运行。因此对500kv变电站电气接线一般采用双母线四分段带专用旁母和3/2断路器两种接线方式。

  500kv升压变电站配电装置采用中型布置,断路器采取三列式布置。在母线和线路上装设三相电容式电压互感器,在主变压器上装设单相电容式电压互感器,接线简单清晰。母线为铝合金型硬母线,间隔宽度为32m,基本冲击绝缘水平1800kv。

  ㈢500kv变电站的主要电气设备

  500kv超高压变电站的主要电气设备有主变压器、断路器、隔离开关、电压互感器、电流互感器、避雷器、并联电抗器和串联电容器等。

  ⑴主变压器

  ①500kv升压变压器。500kv主变压器的特点是电压等级高、传输容量大,对变压器的设计和制造工艺的要求都比较高。500kv变电站的升压变压器,对于单机容量为600mv的发电机组,采用发电机-变压器组单元接线,变压器的容量为700mva左右,多采用三相变压器,也有采用三台单相变压器接成三相组成的。

  电站实习报告 篇2

  前言

  电力工业是国民经济发展中最重要的基础能源产业,是国民经济的第一基础产业,是关系国计民生的基础产业,是世界各国经济发展战略中的优先发展重点。作为一种先进的生产力和基础产业,电力行业对促进国民经济的发展和社会进步起到重要作用。与社会经济和社会发展有着十分密切的关系,它不仅是关系国家经济安全的战略大问题,而且与人们的日常生活、社会稳定密切相关。随着我国经济的发展,对电的需求量不断扩大,电力销售市场的扩大又刺激了整个电力生产的发展。

  据悉1974年建成了第一条330kV输电线路,由甘肃刘家峡水电站厂到陕西关中地区。1981年建成了第一条500kV输电线路,由河南姚孟火电厂到武汉。电力系统输电电压等级,除西北电网为330/220/110kV外,其他电网都采用500/220/110kV。国内各省电网都已形成220kV网架,华北、东北、华东、华中、南方等电网都已建成500kV大容量输电线路和跨省联络线,并将逐步形成跨大区域互联的骨干网络。正在建设中的西北750kV输电工程,标志着我国电网输电电压等级由目前最高的500kV即将升级为750kV,实现历史性跨越。除超高压输电外,1988年建成了从葛州坝到上海南桥的500kV直流输电线路,全长1080km,输电容量120*kW,使华中和华东两大电力系统互联,形成了跨大区的联合电力系统。在这些电力建设工程中,超高电压等级(220KV/330KV/500KV/750KV)变电站自动化系统占有重要的地位。

  一、实习目的

  实习的目的是理论联系实际,增强学生对社会、国情和专业背景的了解;使学生拓宽视野,巩固和运用所学过的理论知识,培养分析问题、解决问题的`实际工作能力和创新精神;培养劳动观念,激发学生的敬业、创业精神,增强事业心和责任感;本次实习在学生完成部分专业课程学习后进行,通过本次实习,使学生所学的理论知识得以巩固和扩大,增加学生的专业实际知识;为将来从事专业技术工作打下一定的基础;进一步培养学生运用所学理论知识分析生产实际问题的能力。

  二、实习内容

  ①搜集整理变电站主要一、二次设备以及变电站运行方面的相关知识和资料。

  ②搜集整理500kV变电站特点方面资料。

  ③将搜集学习到的相关知识与云田站的实践相结合,对理论知识进行深化理解,总结收获。

  ④实地考察云田500kV变电站的主接线、主要电气设备(包括主变压器、主要一次设备、二次设备、进出线情况等)电气设备布置方式、变电站主要运行控制方式、变电站的通讯方式等,参观考察过程中要求作好笔记。

  ⑤。运用所学知识,对生产实际中存在的问题作出一定的分析,进一步提高分析问题和解决问题的能力。

  三、实习过程

  云田变电站介绍

  云田变电站属于国家电网株洲电业局下设的站点。而株洲电业局是湖南省电力公司直属大二型供电企业,担负着株洲市及所辖四县(市)的供电任务,供电区域面积11420平方公里,供电区域人口357。05万人。株洲电业局下设株洲县、醴陵、攸县、茶陵四个县级电力局,变电管理所、线路管理所、用电管理所、调度管理所、计量管理所五个专业管理所,云田500千伏变电站以及高新电业股份有限公司及其分(子)公司。全局拥有35千伏及以上变电站45座,合计容量353.875千伏安,所辖云田500千伏变电站容量达150万千伏安,已进入全国特大型变电站行列,是湖南省菱形超高压环网的核心构成之一。目前,全局35千伏及以上输电线路1297.57公里,配电线路5127.58公里,共有高低压用户4万余户。全局固定资产原值10.47亿元,净值6。.84亿元。年供电量36.82亿千瓦时,最高负荷54万千瓦,年售电量34.37万千瓦时。全局现有职工1540人,其中各类专业技术人员387人。全局职工勤奋创业,锐意改革,取得了较好的生产经营业绩和良好的发展势头,1998年销售收入达10.92亿元,全员劳动生产率87792元/人·年。在深化改革和市场竞争的新形势下,株洲电业局以“创造两个效益、培养一流人才”为战略目标,遵循“发展、改革、管理、效益、服务”十字方针,为株洲地区电网建设谱写新篇。

  电网从历史发展来看,可以分为四个阶段:电厂直配城市网、省区电网、跨省大区电网和跨大区联合电网。随着用电量不断增长,大型水电、火电和核电的建设,地区间电源与负荷的不平衡以及经济调度的需要,必然要求发展输电和联网,电压等级也随之逐步提高。从最初较低电压水平的6—10kV经历35kV、110kV和220kV,发展到超高压的330kV、500kV和750kV电网,并且还有继续上升的趋势。

  现场实习

  20xx年1月3日我们公共事业专业的全体同学来到了位于株洲的云田500kV变电站。来到云田变电站,远远地看到有两路高压铁塔线路从远处通向变电站。一进大门,院里的两台巨型变压器映入眼帘。所长对我们进行了安全教育后开始带领我们参观几个重要的场所————如外部变压设备、高压间和主控制室等。外部变压设备分为主变压设备和备用变压设备。备用变压设备在主线路发生故障或设备检修时启用,增加工作效率。为了防止发电站出现问题产生停电的事情发生。该变电站采取了双发电站送电措施。由于来自两个不同的发电厂通过两路线路独立地向变电站供电。正常工作时,变电站使用其中的一路电源,另一路电是在正在使用的线路出现断电的情况下启用。外部高压电进入变电站后,通过隔离开关、电压互感器,以及电流互感器最后接入变压器输入端。AB两个送电线正常工作时,A线路通过隔离开关接向A变压器,当A变压器出现故障时,可将A线路接向B变压器,也可以由B线路给A变压器或B变压器供电,以保证铁路能够正常运行。电压互感器用于对供电电压进行测量,电流互感器用于对供电电流的测量,两者配合使用可以计量电度。

  变压器能够将外面的500KV高压电转换为机车所需的110KV的低压电。由于变压器的电压很高,功率又很大,所以变压器产生的热量很大,如何降低变压器的温度保证其正常工作至关重要。为了降低温度,每台变压器上都装有很多散热片,当主体温度超过55摄氏度时,散热器低部风扇自动启动,85摄氏度自动跳闸,说明线路发生故障,起温度保护作用。为了防止线路短路,变压器的主体中充满了25#油,在主体上面装有一个油枕,可随时向主体中供油,补充消耗。瓦斯计电器用来防止主体内产生的瓦斯气体过多及时向管理员报警,防止变压器损坏。

  接着,我们又来到了高压间。高压间又明确分为输入端和馈出端。内部设备由许多铁栏分隔,里面的好多设备都是进口的,自动送电,跳闸保护,十年都未出故障。在主控制室内,有两名技术人员随时监视着主控制设备各仪器仪表的工作状态,主控制设备体积庞大,功能完善,具有故障显示,故障分析,自动保护等众多功能,给管理操作带来很大便利。当跳闸时,绿灯会闪,同时铃响,进行报警。当铁路上线路发生断路时,可以在主控面板的显示器上显出断电点距变电站的距离,从而为及时维修提供方便。最后我们总览了整个变电站的结构及工作状态,对其有了更直观清晰的了解。

  接着我们跟随所长来到会议室,他给我们讲解了云田变电站的运行过程和一些基本的模式。

  一般情况下,电经过输电线路到达500千伏变电站后,通过变压器转化为220千伏等级,输送到220千伏变电站后,再通过变压器转化为110千伏等级,通过110千伏变电站再次降压,最后通过街头常见的变压器转化为居民用电,此时电压已经降到了220伏。

  再接着来到主控室,其中包括微机监控系统、电力系统通信系统、变电站管理系统。梦山变的主控室有六台计算机组成:视频视频监控系统机、故障录波系统、监控后台2、监控后台1、五防系统,以上的都是由我国电气业较先进的南瑞集团的产品,可以说都是国内最先进的技术。在主控室里对整个变电站的运行进行监视,通过计算机技术对故障进行预警、分析、排除,控制及安全操作闭锁,显示和制表打印,时间顺序记录,事故追忆,信息的远传,运行、操作、事故处理指导,人机联系,运行的技术管理,自诊断、自恢复和自动切换。

  而站长向我们介绍到整个主控室每天只有五个人在值班,可以说,区域控制中心的建设实施实现了减人增效、提高操作效率、降低运行维护成本等等方面的经济效益。从远期效益和电网发展来看,随着接入的变电站不断增多,按照无人值班模式设计的变电站在降低工程投资和运行维护成本以及缩短建设工期方面所带来的经济效益将更加显著。

  另外处理事故时必须做到稳(沉着)、准(准确)、敏(迅速),且要根据以下原则采取措施:尽速限制事故发展,消除事故根源,解除对人身、设备安全的威胁;用一切可能的方法保持设备继续运行,以保证对用户的供电;尽快对已停电的用户恢复送电;调整电力系统的运行方式,使其恢复正常运行。事故时和事故后的联系汇报制度和汇报内容。电力系统的值班调度员领导各变电站值班人员处理系统发生的事故,事故时,发生事故的变电站值班人员应将有关情况及时报告管辖值班调度员、分公司调度、站长。调度员则根据汇报的情况判断分析,做出事故处理决定,下达命令。值班人员的汇报必须做到及时、全面、准确。误报和漏报,会对处理事故造成不良后果。紧急情况可先处理后汇报。如果事故时变电站与调度联系中断,则值班人员按规程规定处理事故,通讯恢复后应立即将事故情况和处理过程详细汇报。并应做好事做记录。

  四。实习总结

  通过这一次的实习,我了解了变电所电气设备的构成、了解配电装置的布置形式及特点,并了解安全净距的意义。了解控制屏、保护屏的布置情况及主控室的总体布置情。在变电站工作,安全是最重要的一件事,所以我们牢记“安全第一、预防为主”的实习方针,加强《安规》学习,提高安全意识,更是我们的必修课。“变电站安全无小事”已在每个同学的心中打上深深的烙印。在这次实习中,我收益颇多,这些都是无形资产,将伴随我一生。这次参观可以看到变电站的管理可以说是军事化的管理模式。临走前,我看着一根根的输电线把电能输送到千家万户,给我们带来了光明,给我们带来了征服大自然的力量。此外,我们和站长的谈话中也学到了一些在社会上为人处世和工作的经验,让我知道怎样在平凡之中创造出不平凡。

  电站实习报告 篇3

  引言:

  20xx年三月,武汉大学动力与机械学院水动系组织学生赴隔河岩水电站进行毕业实习。此次实习共历时一周,内容丰富,包括专业学习,设备参观,与工程技术人员交流等多项活动。此报告主要通过实习经历讲述该水电站基本概况,水电站辅助设备(油气水系统),水电站计算机监控系统和水电站继电保护系统,最后论述此次实习的收获和感想。

  一、隔河岩水电站基本概况

  隔河岩水电站位于中国湖北长阳县长江支流的清江干流上,下距清江河口62km,距长阳县城9km,混凝土重力拱坝,最大坝高151m。水库总库容34亿立方米。水电站装机容量120万kW,保证出力18、7万kW。年发电量30、4亿kW?h。工程主要是发电,兼有防洪、航运等效益。水库留有5亿立方米的防洪库容,既可以削减清江下游洪峰,也可错开与长江洪峰的遭遇,减少荆江分洪工程的使用机会和推迟分

  洪时间。1987年1月开工,1993年6月第一台机组发电,1995年竣工。

  上游电站进水口隔河岩水电站坝址处两岸山顶高程在500m左右,枯水期河面宽xx0~120m,河谷下部50~60m岸坡陡立,河谷上部右陡左缓,为不对称峡谷。大坝基础为寒武系石龙洞灰岩,岩层走向与河流近乎正交,倾向上游,倾角25°~30°、岩层总厚142~175m;两岸坝肩上部为平善坝组灰岩、页岩互层。地震基本烈度为6度,设计烈度7度。

  坝址以上流域面积14430km2,多年平均流量403立方米/s,平均年径流量127亿立方米。实测最大洪峰流量18900立方米/s,最枯流量29立方米/s。多年平均含沙量为0、744kg/立方米,年输沙量1020万t。工程按千年一遇洪水22800立方米/s设计,相应库水位202、77m,按万年一遇洪水27800立方米/s校核,相应库水位204、59m,相应库容37、7亿立方米。正常蓄水位200m,相应库容34亿立方米。死水位160m,兴利库容22亿立方米。淹没耕地xx38hm2,移民26086人。

  清江是长江出三峡后接纳的第一条较大支流,全长423km,流域面积17000km2,基本上为山区。流域内气候温和,雨量丰沛,平均年雨量约1400mm,平均流量440m3/s。开发清江,可获得丰富的电能,还可减轻长江防洪负担,改善鄂西南山区水运交通,对湖北省及鄂西南少数民族地区的发展具有重要意义。

  二、隔河岩电站辅助设备

  水电站辅助设备主要包括:水轮机进水阀、油系统、气系统、技术供、排水系统构成。

  水轮机的主阀:水轮机蜗壳前设置的阀门通称为“水轮机的进水阀”,或称“主阀”。其主要作用为①截断水流,检修机组,正常停机。②事故紧急截断水流,实行紧急停机。③减少停机后的漏水量,关闭进口主阀。

  1、油系统

  油系统:水电站各机组的用油由管路联成的一个油的互通、循环的网络,即为“油系统”,包括:油管、储油、油分析及用油设备。油的种类主要有透平油和绝缘油两种。

  透平油的作用包括:

  (1)润滑作用:透平油可在轴承间或滑动部分形成油膜,以润滑油的液体摩擦代替固体干摩擦,从而减少设备的发热与磨损,保证设备的安全运行。

  (2)散热作用:机组转动部件因摩擦所消耗的功转变为热量,会使油和设备的温度升高,润滑油在对流作用下,可将这部分热量传导给冷却水。

  (3)液压操作:水电厂的调速系统、主阀以及油、气、水系统管路上的液压阀等,都需要用高压油来操作,透平油则可用作传递能量的工作介质。

  绝缘油的作用包括:

  (1)绝缘作用:由于绝缘油的绝缘强度比空气大得多,用油作绝缘介质可提高电器设备运行的可靠性,并且缩小设备的尺寸。

  (2)散热作用:变压器的运行时,其线圈通过强大的电流,会产生大量的热量。变压器内不断循环着的绝缘油可不断地将线圈内的热量吸收,并在循环过程中进行冷却,保证变压器的安全运行。

  (3)消弧作用:当油开关切断电力负荷时,在动、静触头间产生温度很高的电弧。油开关内的绝缘油在电弧的作用下即产生大量的氢气体吹向电弧,将电弧快速冷却熄灭。

  透平油和绝缘油的性质完全不同,因此水电站都有两套独立的供油系统。隔河岩水电站每台机组轴承及油压装置总用油量为12、2m3、为设备供、排油及进行油处理,设置了透平油系统。

  透平油罐室及油处理室布置在主厂房安I段▽87、1m高程。透平油罐室的总面积约126m2,分为两间,一间布置有两只10m3屋内式净油罐,另一间布置有两只10m3屋内式运行油罐和一只10m3的新油罐。净油罐和运行油罐的容量均按一台机组用油量的xx0%选择。选用1只10m3的新油罐用于接受新油,容积不够时与运行油罐配合使用。透平油罐室地下设有总容积为xx8m3的事故油池。位于两个油罐室之间的油处理室,面积约67m2,内设3台2CY—3、3/3、3—1型(Q=3、3m3/h,H=0、32MPa)齿轮油泵。齿轮油泵的容量按保证在4h内充满1台机组的用油设备选择。其中1台作为固定供油泵,通过横贯全厂的Dg100mm的供油干管向机组和油压装置输送净油。另2台油泵则通过Dg100mm的排油干管向运行油罐排油,还可在油处理室内作其他机动用。油处理室内海设有3台ZY—100型(Q=100L/min,H=0~0、3MPa)压力滤油机。该滤油机是按一台机组所有透平油完成两次过滤需8h配备的。为烘干滤纸,还设有专门的烘箱室,布置有2台烘箱。此外,为能方便地向各机组添油,设有1台0、5m3的移动式油车。以上设备除1台油泵,2台滤油机固接在油处理室的管道上外,其他设备都可灵活地移动使用。

  在安I段上游侧▽100、1m进厂大门旁边,设有活接头及专用管路,用于接受新油,新油可从油槽车通过管路自流至新油罐。

  为满足消防需要,油罐设有固定灭火喷雾头,油罐室、油处理室、烘箱室等采用防火隔墙,各有独立的防火门,并设有单独的排烟设施和防火通风窗,油罐室门口设有20cm高的挡油槛。

  隔河岩水电站设有4台主变压器及1组电抗器(目前预留位置),1#、2#主变电压等级为220KV,每台用油量约73t,3#、4#主变电压等级为500KV,每台用油量约85t。4台主变均布置在▽100、1m高程上游副厂房主变层内。电抗器用油量约52、5t,布置在▽100、1m高程上游侧平台上。为给电气设备充、排油,进行油处理,设置了绝缘油系统。

  绝缘油罐及油处理室布置在距主厂房安装场外约40m的空地上。油罐露天布置,占地面积为240m2,系统设有四只60m3的储油罐,两只为净油罐,两只为运行油罐。两种油罐容积均按一台最大变压器用油量的xx0%选择。油处理室面积为156m2,设有3台2CY—18/3、6—1型(Q=18m3/h,H=0、36MPa)齿轮油泵,可通过Dg100mm的供、排油干管在主厂房安I段上游侧对主变进行充油、排油。油泵的容量按能在6h内充满一台最大变压器的油选取。两台LY—100型(Q≥100L/min,H=0~0、3MPa)压力滤油机,1台ZJY—100型(Q=100~160L/min)真空净油机,1台GZJ—6BT型(Q=100L/min)高真空净油机,可对油罐的油进行过滤处理,也可对各变压设备进行现地油处理。所有油净化设备,考虑到重复滤油可同时进行,容量均按在24h内过滤完一台最大变压器的油量选取。以上设备,除2台油泵,1台压力滤油机固接在油处理室的管路上外,其他设备可灵活地移动使用。为便于设备添油,配有0、5m3移动式油车一台。油处理室内有烘箱室,设有2台烘箱用于烘干滤纸。

  油罐区地下设有一个事故油池,容积为240m3、4台主变,每2台之间设一个事故油池,容积为215m3、当主变或电抗器起火,必要时可将变压器或电抗器本体的贮油排入事故油池,以减小火灾危害。但电抗器下贮油池的雨水不允许排入事故油池。

  2、水系统水系统:水电站除主机外的用水管路联成的一个供水、排水的各自互通的网络,即为“水系统”,包括:供水、排水的管路设备等。

  1)供水分类:自流、水泵、混合供水方式

  ①技术供水:主机正常、安全运行所需的用水②消防供水:厂房设备、变压器等③生活用水:

  技术供水的主要作用是对运行设各进行冷却、润滑(如果采用橡胶轴瓦或尼龙轴瓦的水导轴承)与水压操作(如射流泵,高水头电站的主阀等)。

  消防供水主要用于主厂房、发电机、油处理室及变压器等处的灭火。

  2)排水:①厂房内设备渗漏水:②设备检修排水:③厂区生活排水

  机组技术供水系统主要满足发电机上导轴承、空气冷却器、推力和下导联合轴承的冷却用水和水轮机导轴承冷却及主轴水封的用水。冷却水设计进水温度为27℃。制造厂对1#、2#机要求的总水量为443、7m3/h,3#、4#机要求的总水量720、9m3/h。

  本电站机组工作水头范围为80、7~121、5m,水量利用率达92、3%,采用自流供水方式为主供水方式,从位于隔河岩电站厂房侧边坡▽130m平台的西寺坪一级电站尾水池取水,经一根φ600mm的钢管引水至厂房▽80m滤水器室,再由总管引支管分别供给四台机组冷却用水。由于本电站取消下游副厂房,技术供水室布置在上游副厂房内,机组段宽为24m,单机要求的水泵供水管路较长,为减小水力损失,提高运行可靠性和自动化程度,采用下游取水单机单元水泵加压供水方案为后备供水方式。由于泵房位于压力钢管的两侧▽75、04m高程处,布置上不便于将各机组的取水管连通,故每台机组设置2根Dg350mm下游取水管,分别从▽73、3m和▽74、2m两取水口取水,以防杂物堵塞。

  每台机组设有2台离心式水泵,一台工作,一台备用。1#、2#机水泵型号为为250s—39,Q=485m3/h,H=39m3#、4#机水泵型号为300s—58B,Q=685m3/h,H=43m。两台泵经并联后接有2台电动旋转式滤水器,1台工作,1台备用。两台滤水器可根据其堵塞情况自动切换。在滤水器出口干管上接有2组共4个电动操作切换阀,可满足机组供水的正反向运行,防止管路堵塞。主轴密封供水主要采用全厂公用清洁水源,水压0、6—0、7MPa。同时在滤水器后取水作为备用水源,通过主水源上的电接点压力表控制备用水源上的电磁阀,当主水源消失后,电磁阀动作可立即自动投入备用水源。

  发电机空气冷却器供排水环管布置在机墩围墙内,机组空冷器、推力、上导、下导冷却支路进出水管装有水压、水温监测仪表,另外在空冷器、上导、推力支路还分别装有能双向示流的流量表(3#、4#机待定),这样可根据流量表读数通过各并联支路进出管上的阀门调节其实际流量和压力。

  各并联冷却水支路内的冷却水通过冷却器热交换后在机墩外汇入Dg300mm的干管,并通过Dg350mm排水总管在高程▽77、6m处排至下游。

  2根取水总管进口和1根排水总管出口均设有拦污栅,栅后设有吹扫气管,吹扫气管路接口设在▽100、1m调和尾水平台阀门坑内。

  隔河岩水电站排水系统包括机组检修排水系统和厂房渗漏排水系统,两系统分开设置。

  机组检修排水比较单元直接排水和廊道集中排水两种方式,由于廊道集中排水方式具有排水时间短,布置、维护、运行较方便,经济合理等优点,因此,机组检修排水采用廊道集中排水方式。排水廊道宽2、0m,高2、5m,底部高程▽55、2m,贯通全厂并引至安II段检修集水井,集水井平面尺寸为5、6m×3、6m,井底高程▽50、2m。

  水泵类型的选择,比较了卧式离心泵与立式深井泵两类,由于立式深井泵没有防潮防淹的'问题,优点非常明显,所以,检修排水泵选用立式深井泵。

  排水泵生产率按排空1台机排水容各,同时排除1台机上、下游闸门漏水量、加上其他3台机尾水6个盘形排水阀漏水量计算,排水时宜取4~6h,且当选用两台泵时,每台泵的生产率应大于漏水量。排水泵扬程按1台机大修,3台机满发时的下游尾水位▽79、8m计算。1台机的排空容各约4100m3,上、下游闸门漏水量及6个盘形排水阀总漏水量共约800m3/h。按上述选型原则,比较了2台20J20xx×2型深井泵和3台18J700×2深井泵方案,3台泵方案在布置上较困难,造价比2台泵方案略高,且每台泵的生产率700m3/h小于闸、阀门总漏水量800m3/h,故选用2台20J1000×2型深井泵(Q=1000m3/h,H=46m)方案,经两根Dg350mm排水管分别排至下游▽77、8m和▽78、6m高程。经计算,1台机检修排水,其全部排空时间约为3h。排闸门、阀门漏水只需1台泵断续工作。万一在万年一遇洪水时需进行事故检修,此时相应下游尾水位为▽100m,排空时间给需9h。

  检修排水泵在排流道积水时,可手动可自动控制泵的启停。排闸门及盘形排水阀漏水时,排水泵处于自动工作状态,按整定水位自动投切。

  厂房渗漏排水量,参照国内同类型电站实测资料分析后,按100m3/h计算。排水泵选立式深井泵。集水井平面尺寸4×3、6m,井底高程▽51、3m,其有效容各为75m3、按水泵连续工作20min选择其生产率,按4台机满发时的下游水位▽80、2m计算水泵扬程。经比较2台350JC/K340—14×3型深井泵(1台工作,1台备用)和3台12J160×4型深井泵(2台工作,1台备用)方案,两方案均满足设计要求,但3台方案布置间距很小,水泵运行工况差。故选用了2台350KC/k340—14×3型深井泵(Q=340m3/h,H=42m)方案,经两根Dg250mm排水管分别排至下游▽77、8和▽78、6高程。工作泵为断续工作,排水时间为17min,停泵时间为45min,万年一遇洪水时由于下游水位高,工作泵排水时间需28min。

  渗漏排水泵按自动操作方式设计,由液位信号器根据集水井的水位变化来控制水泵的启停及报警。

  检修排水泵和渗漏排水泵均布置在安II段▽80、0高程的排水泵房内。检修集水井设有楼梯,直达排水廊道,排水廊道另一端设有安全出口直达尾水平台。为防止厂房被淹,检修集水井所有孔口均设密封盖密封。

  由于排水廊道中水流速度较小,泥沙浆在排水廊道和集水井中深淀淤积,为排除这部分沉积泥沙,选用1台100NG46(Q=100~190m3/h,H=49~42m)型泥浆泵,需要时安置在▽54、0(或55、3)m平台上进行清淤,并配有压缩空气和清洁水冲扫,以利于泥沙排出。清淤工作一般宜安排在非汛期进行。

  3、气系统

  水电站各设备用气的管路联成的一个供气的网络,即为“气系统”,包括:供气的管路及设备等。供气部位:高压气(25-40kg/cm)、低压气(7kg/cm)①调速控制用气;稳定调速系统油压用气。②主轴密封用气;③刹车制动用气;④风动工具用气,吹扫用气;⑤调相充气压水;⑥配电装置供气:

  清江隔河岩电站压缩空气系统分厂内高压气系统和厂内低压气系统两部分。供气对象为厂内调速器及油压装置,机组制动、检修密封以及工业用气等主要用户。机组不作调相运行。高压配电装置采用SF6全封闭组合电器,不要求供压缩空气。1、2号机组及1~4号机调速器及油压装置均由加拿大工厂负责供货,3、4号机由哈尔滨电机厂负责供货。本电站的高、低压空压机位于主厂房安Ⅱ段▽80、0m高程处,中间用隔墙隔开,总面积约24m×12m。

  1)厂内低压气系统

  供气对象为机组制动用气、检修密封用气和工业用气。压力等级为0、8MPa。为保证供气的可靠性及充分发挥设备的作用,将制动用气与工业用气联合设置,按两台机组同时制动和一台机组检修的用气量来选择空压机。正常情况下,每台机组每次机械制动操作所需压缩空气量为0、24m3(制动闸活塞行程容积)。机械制动前后贮气罐内允许压力降为0、12MPa,按贮气罐恢复气压时间为10min来计算机组制动空压机的生产率。工业用气主要作为吹扫、清污、除锈和机组检修用的风动工具的气源,按同时使用4台风砂轮计算,每台风砂轮的耗气量为1、7m3/min。经计算,厂内低压气系统选用3L—10/8水冷型空压机两台,1台工作,1台备用。对气系统的监控有手动和自动两种方式。为确保制动用气,专设V=3m3、P=0、8MPa制动贮气罐两个,并配置专用管道。从制动贮气罐出口引Dg40mm供气干管纵贯全厂,经此干管引出Dg25mm的支管至每台机组制动柜。机组检修密封用气耗气量很小,也从制动供气干管上引取。另设有V=1、5m3、P=0、8MPa贮气罐一个,供工业用气之用,设一根Dg65mm工业供气干管纵贯全厂。从该干管上引支管为安Ⅰ、安Ⅱ、水轮机层、排水廊道、渗漏集水井、水轮机机坑▽76、80m高程廊道、尾水管锥管进人门▽69、28m高程廊道提供气源。

  1、2号发电机电气制动开关的操作气源,由型号为W-0、35/1、6的两台国产空压机来实现。其压力为1、4MPa至1、6MPa,空压机布置在主机段▽80、0m高程上游副厂房内。3、4号机电气制动开关操作方式为电动机传动。

  为满足机组尾水闸门、进水口工作闸门的检修和其它用户临时供气要求,设有一台YV—3/8型移动式空压机。

  2)厂内高压气系统

  主要供给调速器油压装置用气。压力油罐总容积为4、0m3,要求气压P=6、27MPa(64kgf/cm2)。为保证用气质量,降低压缩空气的相对湿度,采用P=6、9Mpa的空压机,将空气加压至6、9MPa后送贮气罐,供压力油罐使用。经计算,选用3S50-10型空压机两台,其中1台工作,1台备用。贮气罐两个,V=1m3,设计压力P=10、5MPa。全厂设一根6、3MPa的供气干管(Dg32mm),然后从该干管引支管供给每台机组的压力油罐。

  高、低压空压机的启动和停机均能实现自动控制,高、低压空压机及贮气罐均设有安全阀和压力过高、过低信号装置。

  二水电站计算机监控系统

  1、主计算机

  配置2台COMPAQASDS10服务器作为主机,用于管理电厂运行,报表打印以及高级应用功能。两台工作站采用主机一热备用机的工作方式,当工作主机故障时,热备用机可自动升为主机工作,以提高系统的可靠性。

  配置2台COMPAQXP1000工作站作为操作员工作站,运行人员可完成实时的监视与控制。

  配置2台COMPAQPW500au工作站作为通讯处理机,一台负责与厂外计算机系统的通讯,另一台负责与厂区其它计算机系统的通讯。

  配置1台HP微机作为电话语音报警计算机,提供在厂区的电话语音报警,并支持语音查询报警。

  配置1台HP微机作为历史数据库工作站,用于历史数据的记录、管理等。配置1套GPS卫星时钟系统,用于监控系统的时钟同步。配置两台打印设备。用于生产管理报表打印和记录打印等。

  2、操作控制台

  三个操作台中,1、2号控制台给操作运行人员使用,第3个操作台用于开发和培训。

  3、模拟盘及驱动器

  模拟盘为国内设备,拟采用拼块结构。由于操作台屏幕显示功能很强,四台CRT显示器保证了很高的可靠性,模拟盘上的返回信号则可大量简化,设计上考虑保留主要的设备状态信息和测量信息供运行人员进行宏观监视。设备状态信号包括机组状态指示,进出线断路器和隔离开关、6KV厂用进线及母联开关的状态指示。测量信号包括发电机和线路的有功功率及无功功率;母线电压及频率;系统时钟。上述信息的模拟结线布置在模拟盘中部,模拟盘其余部分将考虑布置其他梯级水电站电气模拟图,布置图见14C55-M503、

  模拟盘上状态指示采用24VDC等级发光二极管灯组,测量表采用4-20mA直流电流表,频率表除4-20Ma模拟信号外,还设有数字表显示,其数字表输入可从PT供给信号。

  模拟盘的数字和模拟信息将由计算机系统的专用驱动器提供。

  4、通信控制单元

  根据中南电力设计院所提清江隔河岩水电站接入系统设计要求及能源部电力规划设计管理局的电规规(1991)15号文审查意见,隔河岩电厂计算机系统使用两路速率为1200bps通道分别与华中网调和湖北省调传送远动信息,考虑到水电站投产时尚不能满足向调度端发送远动信息,在水电站装设一台μ4F远动终端。

  本系统的两个通信控制单元中,一个通信控制单元即前置处理机FEP设有四路全双工异步通信通道,两路一发两收到华中网调和湖北省调,另两路备用,另一个通信控制单元LTU与μ4F远动终端连接。

  本计算机系统向网调传送信息采用问答式规约,这一项软件开发工作由国内承担,同时华中网调应将一台OM-DC模件接入其计算机系统以实现系统时钟同步校准。

  5、不间断电源

  主控级设备由两组不间断电源供电,每一组电源的输入由厂用380V三相交流电源和xx0V直流电源供电,每组不间断电源设备包括输入开关、负荷开关、滤波器、隔离二极管和变换器。不间断电源输出为单相220V、50HZ交流。

  正常情况下两组不间断电源分担全部负荷,当一组不间断电源故障时,则全部负荷由另一组不间断电源承担,负荷切换手动完成。

  (三)两地控制级

  1、机组现地控制单元

  每台机组设一现地控制单元,其包括数据采集、顺控、电量测量、非电量测量和后备手动五个部分。

  数据采集和顺控两部分各由一个微处理器模件子系统组成,详见14C55-G001、

  为了提高可靠性,事故停机、电度累计和部分轴温度在机组两个微处理器模件子系统中进行冗余处理,时不时利用顺控子系统对轴承温度进行采集和处理,这样可以充分保障子系统的实时性。

  为了保证控制的安全可靠,对水机保护考虑了后备结线。其由轴承温度报警和转速过高报警点构成,它的控制输出不经过机组的微处理器子系统,仅同微处理器子系统的相应输出接点并联。后备保护结线详见14C55-G005、

  后备手动控制部分是利用手动按钮和开关同自动部分输出接点并联,信号指示灯同自动部分输入接点并联,同时利用布置在近旁的电调盘、励磁盘可以实现机组的开、停、并网和负荷调整单步控制。

  每台机设有单独的手动同期、自动准同期和无压检查装置、同期检查闭锁装置。机组控制自动部分和手动部分均可利用这套装置进行并网控制。同期系统图详见14C55-G004、

  为了加强现地控制功能及同期能力,可以在现地独立完成手动同期和自动化同期的操作,并在现地控制盘上设有单元模拟接线。

  机组控制处理器子系统设有远方/现地切换开关。开关在远方位置时主控级进行远方控制;开关在现地位置时,主控级不能进行远方控制,在单元控制室可利用便携式人机接口设备实现现地监控及诊断,此时远方仍可以进行监视和诊断。

  在后备控制盘上设有手动/自动切换开关进行操作电源切换,开关在自动位置时则正电源接入自动部分输出继电器接点回路,开关处在手动位置时则正电源只接入手动控制按钮或开关回路。对某一种控制方式,只有对应的一种控制输出。

  机组电量测量配置详见图14C55-P005、

  2、开关站现地控制单元

  开关站现地控制单元包括数据采集,断路器及隔离开关控制,电气测量几个部分。

  数据采集和控制分别由两个微处理器模件子系统构成,线路电度累加在两个子系统中同时处理,以保证足够的可靠性。

  对于500KV母线和线路设有现地手动操作,可以进行倒闸操作和并网操作。两回线路开关和母联开关为同期点,同期方式有自动准同期和手动准同期两种。

  对控制微处理器模件子系统设有远方/现地切换开关,另外还设有现地手动/自动切换开关,这两个切换开关的作用类似于机组部分所述。

  220KV线路和500KV线路测量变送器表计和手动操作开关布置在保护室的现地控制盘上。

  3、公用设备现地控制单元

  公用设备现地控制单元包括厂用电控制子系统和厂内排水及空压机控制子系统。

  (1)厂用电控制单元由一套微处理器模件子系统构成,实现数据采集和自动控制功能,对于简单备用电源自动切换保留常规自动装置外,对于复杂的自动切换,如3-4段切换,则采用计算机控制。考虑信号通道的连接方便,将进水闸门和上下游水位信号划入厂用电控制单元中。

  (2)厂内排水及空压机控制单元由一套微处理器模件子系统和常规控制柜构成。

  ①低压气系统的控制和监视

  低压气系统(0、8Mpa)由三台低压空压机、两个贮气罐及其它辅助设备组成。三台低压空压机的工作方式为一台工作,两台备用。对气系统的监控有手动和自动两种方式。自动监控采用LCU7控制,手动、自动相互切换,当LCU7退出运行时,切换到手动控制方式。对故障采用PLC监控。

  ②高压气系统的控制和监视

  高压气系统由两台高压空压机(6、9Mpa)、两个10、5Mpa贮气罐及其它辅助设备组成,两台高压空压机的工作方式为一台工作,一台备用。工作管道压力为6、27Mpa。对气系统的监控有手动和自动两种控制方式。自动监控采用PLC控制,手动、自动相互切换,当PLC退出运行时,切换到手动控制方式,手动控制在高压空压机机旁盘上操作,PLC则装在低压空压机机旁盘内。对故障采用PLC监控。

  ③渗漏排水系统

  厂房渗漏排水系统由两台排水泵等设备组成,启动频繁,约每45分钟启动一次,排水时间约为每45分钟启动一次,排水时间约为17分钟,电动机采用Y/Δ接线启动方式运行。对该系统的监控有手动、自动两种方式。自动监控采用PLC控制,手动、自动相互切换,当计算机退出运行时,切换到手动控制方式,手动操作在泵旁控制台上操作。

  三、水电站继电保护系统

  1、系统继电保护

  隔河岩电站接入电网,采用500KV和220KV两级电压,其主结线为两台机(1#、2#机)接入220KV,采用发电机变压器线路单元制结线,分别向长阳变输电;两台机(3#、4#机)接入500KV双母线,一回线路为隔河岩电波至葛洲坝换流站,另一线路备用。据此,隔侧高压线路保护配置按照能源部电力规划设计管理局的电规规(1991)15号文,“关于发送清江隔河岩水电站接入系统二次部分修改与补充设计审查意见的通知”进行配置。

  1)隔侧220KV线路保护

  目前设计中,配置PJC-2型调频距离重合闸屏、WXH-xx型多CPU微机保护屏共二块。同时考虑至发电机、变压器保护动作而220KV断路器拒动时,通过远方信号跳闸装置使线路对侧断路器跳闸。为此应在该220KV线路两侧配置远方跳闸装置屏,隔侧选用带监控系统的PYT-1型远动跳闸屏一块,为隔侧两回220KV线路共用。由于微机保护在系统故障时已能通过打印机打印出多种信息,例如故障类型、短路点距离、故障时刻(年、月、日、时、分、秒)各元件的动作情况和时间顺序以及故障前后一段时间的各相电压和电流的采样值(相当于故障录波),故目前考虑220KV线路不再设置专用故障录波屏。

  2)隔侧550KV线路保护

  对隔河岩—换流站的500KV线路保护配置如下:第一套主保护兼后备保护:RAZFE型高频距离保护;第二套主保护兼后备保护:LZ-96型高频距离保护;另有RAEPA型接地继电器作为独立的后备保护,对主保护高频通道、远方跳闸通道、系统自动安全装置通道均采用双通道方式,本侧线路断路器拒动时,通过保护屏内的远方跳闸继电器同PLC接口、以双通道串联(与门)方式跳对侧断路器,两侧均采用相同方式。自动重合闸按断路器配置,为RAAAM型1相/3相、同期/无压检定重合闸。

  3)220KV、500KV断路器失灵保护

  按断路器配置ABB公司RAICA型断路器失灵保护装置,每块屏设置3套断路器失灵保护,6个高压断路器共设置2块断路器失灵保护屏。另外,500KV母联断路器失灵保护功能已由母线保护装置完成。

  4)500KV双母线保护

  配置ABB公司RADSS型高速母线差动保护装置。其故障检测时间1-3毫秒,跳闸出口时间8-13毫秒,其高度可靠性已为国内外运行所证实。对每回线路设置一个跳闸单元(TU),其跳闸回路已考虑了断路器保护接点接入。

  5)500KV线路故障探测器

  选用ABB公司RANZA型故障探测器,它装于保护屏内由RAZFE保护装置启动。它能正确地测量线路故障距离,故障点距离计算是由故障探测器内部的微处理机来承担。故障前与故障时的电流电压值都储存在故障探测器内的记忆元件中,在线路断路器跳闸以后进行计算,故障点的距离以百分数型式显示于显示器上。当线路跳闸时,可打印出故障前和故障过程中电流和电压的幅值和相角。

  6)500KV系统故障录波屏

  选用美国DFR16/32型故障录波屏一块,其容量为:16个模拟量,32个开关量,模拟量考虑出线A、B、C三相电压、零序电压,开关量由保护跳闸接点启动。

  2、发电机保护

  采用集成电路保护,具体配置如下:

  1)发电机差动:保护动作于停机及灭磁。

  2)定子接地保护:由基波零序电压和三次谐波电压合起来构成100%定子接地保护、保护动作后延时动作于停机及灭磁。为可靠起见,另配一套90%定子接地保护。3)失磁保护:保护延时动作于解列及灭磁。4)匝间保护:拟采用反映负序功率增量的新原理保护方式,保护动作后瞬时作用于停机及灭磁。5)负序过流:保护分两部分,定时限动作于信号,反时限动作于解列。6)过电压保护:保护延时动作于解列及灭磁。7)过负荷保护:作为发电机异常运行保护、延时动作于信号,反时限动作于解列。8)励磁回路保护:国外励磁屏上已配备转子一点接地及转子过负荷。

  3、升压变压器保护

  对于电气量的保护均采用集成电路的保护装置。

  1)变压器差动:保护瞬时动作于停机及灭磁。

  2)瓦斯保护:重瓦斯动作于停机及灭磁,轻瓦斯发信号。

  3)主变温度:变压器温度达到100℃时发信号,达到120℃时动作于停机及灭磁。

  4)冷却器全停:经一定延时后动作于解列。

  5)主变零序电流保护:作为变压器高压绕组和母线的后备保护,延时动作于解列及灭磁。

  6)过激磁保护:由两部分构成,定时限动作于信号,反时限动作于解列及灭磁。

  7)主变压力释放:动作于发信。此外,根据双重化的原则,还配有发变组差动和阻抗保护作为发变组的第二套主、后备保护,分别动作于停机、灭磁和解列灭磁。

  8)非全相运行保护:经一定时延后动作于解列。

  4、厂用变保护

  电流速断:装于A、C两相,动作于停机及灭磁。

  电流速断:装于A、C两相,第一时限动作于跳厂用变低压侧断路器,第二时限动作于解列及灭磁。

  四、实习收获

  本次实习虽然只经历短短的一周,但收获还是不少。通过此次实习,让我们对水电站环境和基本设备运行有了更好的了解。

  1、亲身感受水电站工作环境。优美的环境,寂静的生活,对水电站工作人员来说,能够坚守自己的岗位,需要一定的奉献精神和职业操守。通过与工程技术人员交流,我们不仅了解了水电站运行专业技能,而且熟悉水电站工作人员的生活面貌。

  2、自动化运行。水电站都有自动控制系统,计算机监控系统,自动保护系统,自动化程度基本可以达到“无人”值班。通过现场参观学习,结合自己所学的课本知识有了更深的认识。特别是水电站的辅助设备(油、气、水系统),学的时候感觉十分陌生,但一到水电站见到处处可见的油、气、水系统时,一切都感觉十分熟悉起来。

  3、结合自身,设定发展目标。通过对专业知识的学习和工程技术人员的交流,并结合自身特点,发展自己成为一名合格的工程技术人员还有很长的路要走。不仅仅在于水电站专业知识的学习,还有工作基本素养的形成。老师教导我们,应该从技术路线做起,从基层做起,一步一个脚印,打好基础,才能在水电行业立于不败之地。

  4、水电发展前景良好。水电属于清洁能源,在我们这个能源大国,积极发展水电才能有效提高绿色GDP。虽然现在处于枯水季节,隔河岩水电站通过调整水库容量,依然可以保持水电站的正常运行。另一方面,也为当地提供优质水源做出的重要的贡献。

  实习不仅是对专业知识的加深学习,也是对自己所学程度的检验。此次实习,检验出了众多的不足,譬如专业知识掌握不牢固、基本工作素养欠缺等问题。我想,实习是结束了,但我们对水电知识的学习远没有结束。过不了几个月,我们就要走向自己的工作岗位,那时,更需要我们摆正学习的心态,从实处做起,牢固的把握基本知识,正确掌握前进方向,早日做一名合格的水电站技术工程师。

  电站实习报告 篇4

  一时间:

  二地点:

  三实习单位:

  四实习内容

  (一)了解电力系统整体概况

  28日上午,我们全体学生集合在一起,许老师向大家大致讲解了整个发电系统的情况,认识和了解了发电过程。

  我国的发电厂主要有火力发电厂、水力发电厂和核能发电厂。

  (1)火电厂的电能生产过程

  我国火电厂使用的能源主要是煤,且主力发电厂为凝气式发电厂。整个生产过程可分为三个系统:燃料的化学能在锅炉燃烧中转变为热能,加热锅炉中的水使之变为蒸汽,即燃烧系统。主要有运煤、风烟、灰渣等组成。汽水系统主要有锅炉、汽轮机、凝汽器、除氧器、加热器等设备及管道构成。将热能转变为机械能。电气系统由发电机、励磁装置、厂用电系统和升压变电站组成。

  (2)水力发电厂

  水力发电厂又称为水电站。把水的位能和动能转换成为电能的工厂。生产过程为:从河流较高处或水库内引水。利用水的压力或流速冲动水轮机旋转,将水能转变为机械能,然后由水轮机带动发电机旋转,将机械能转换成电能。

  (3)核能发电厂

  核能发电厂简称核电厂,利用反应堆中核燃料裂变链式反应所产生的热能再按火电厂的发电方式,将热能转换为机械能,在转换成电能。

  我国还有其他发电厂如风电厂。地热发电厂。潮汐发电厂等。

  (二)高压走廊

  28日下午,我们集体参观了从校西门到龙源湖之间的高压走廊,主线路为10KV输电线路,共有两条即李万左线和李万右线。我们学校用电也由它供给。这条线路外非*线,因为典雅较110KV线路低,线路离地较近,以防伤人或车,故未用*线。

  通过今天的学习,我了解到以下知识:

  1.送电线路主要设备

  送电线路用绝缘子以及相应金属导线及架空地线悬架设在杆塔上,连接发电厂和变电站,以实现输送电能。

  a导线:目前常采用钢芯铝绞线或钢芯铝合金绞线为提高线路的输送能力常采用每相四根或两根导线组成的*导线型式。

  b架空地线主要用于防雷,也可以降低不对称短路时的工频过电压,减少潜供电流。兼有通信功能的采用光缆复合架空地线。

  c绝缘子:将导线绝缘地固定和悬吊在杆塔上的物件。常用的有盘形瓷质绝缘子、盘形玻璃绝缘子、棒形悬式复合绝缘子。

  d干架:支撑架空线路导线和架空地线。本次实习所接触的杆距为50m

  高压输电线采用*线输电。如果输送的'是交流电,一般采用空芯输线。高压输电线上最上面有两根电线为避雷线,输送的三相电采用*式。线路与干架连接部分有绝缘子,以固定线路,防止因经常抖动将电线扭断。在输电线路上有许多铁环,用于挂线。通信线路经常借用输电线路铺设的杆架,以节省基础投资。二者并列运行,以将互相之间的干扰降至最小。输电线路遇到难以清除的障碍物时采用地下电缆。

  (三)配电装置

  12月30日,我们参观了校屋内配电装置与校中央空调。

  我们学校的电从李万10KV左右供电线引进,经断路器,隔离开关。变压器和高压开关柜组成。下面对各板块进行分析:

  配电装置是根据电气主接线的连接方式,由开关电器、保护和测量电器,母线和必要的辅助设备组建而成的总体装置。其作用是在正常运行情况下,用来接受和分配电能,而在系统发生故障时,迅速切断故障部分,维持系统正常运行。

  首先看到的是两台电力变压器,采用落地布置,安装在变压器基础上。变压器基础一般制成双梁形并辅以铁轨,轨距等于变压器的滚动中心局。主变压器与建筑物的距离不小于1.25m,且距变压器5m以内的建筑物,在变压器总高度以下及外廊两侧各3m的范围内,不应有门窗和通风孔。

  进入配电室后,我校的高压开关柜采用手车式。它采用单母线接线,由手车室,继电气仪表室。母线室、出线室组成。断路器及操动机构均装在小车上,断路器手车正面上部为推进机构。当手车在工作位置时,断路器通过隔离插头与母线和出线相通,继电器仪表室。测量仪表。信号继电器和继电保护用压板装在该小室的仪表门上,小室内有继电器、端子排、熔断器和电能表、母线室位于开关柜的后上部,室内装有母线和静隔离触头。出线室位于柜后部下方,室内装有出线侧静电隔离触头,电流互感器。引出电缆和接地开关等。

  低压配电屏,齐框架用角钢和薄钢板焊成,屏面有门,维护方面,在上部屏门上装有测量仪表,中部面板上设有闸刀开关的操作手柄和控制按钮等,下部屏门内有继电器、二次端子和电能表。母线布置在屏顶,并设有防护罩,其他电器元件都装在屏后,屏间装有隔板,可限制故障范围。

  母线及构架,屋外配电装置的母线有软母线和硬母线两种,软母线为钢芯铝绞线。软母管线和*导线。高压断路器在配电装置所占的位置。断路器的排列方式必须根据主接线、场地地形条件、总体布置和出线方向等多种因素合理选择。断路器有低式和高式两种布置。避雷器也有高低两种布置。隔离开关和互感器均采用高式布置。电缆沟能满足使电缆所走的道路最短。总之,配电装置应满足保证可靠运行、便于操作、巡视和检修、保证工作人员的安全,力求提高经济性,具有扩建的可能等要求。

  随后,我们又参观了我校的中央空调室。该空调主要有一台主机通过风火冷热水管接多个末端的方式控制。它的主要部件为压缩机。它通过改变气体的容积来完成气体的压缩和输送过程,制冷系统主要分压缩机。冷凝器。蒸发器。压缩机将冷冻剂压缩成高压饱和气体,这种气态冷冻剂再经过冷凝器冷凝。通过节流装置后,通入到蒸发器中,将所需要冷却的媒介冷却换热。而蒸发器蛇形管内的冷冻剂换热后变成低压蒸汽回到压缩机,再次被压缩,这样循环利用就完成制冷系统。制热系统也大致是这个原理,只是方式相反。我校的中央空调主要供给校图书馆、行政楼和部分教授楼使用。其供给系统感觉不够完善。尤其是夏季在图书馆五、六层感觉不到冷气。据师傅说是因为动力系统出现故障。

  (四)于村变电站

  12月31日上午,我们在指导老师的带领下步行来到了焦作市于村变电站。刚进站门,只见很多杆架以及许多复杂的配电装置。由于参观人数较多,我们先在变电站旁边的电压走廊参观。该电压走廊有低压供电线路和高压供电装置。专供电工培训使用,因此只有模型,不供电。高压线路共有七根线,最上端两条为避雷装置线。有一条零线。三相供电线路。低压线路有四条,采用了三相四线制。变压器上有黄红绿三个绝缘子。高压侧的绝缘子比较高、低压侧有四个绝缘子,其中有三个为供电专用,剩下一个为零线使用。低压侧由于电流较大,其供电线较高压侧细。参观完线路后,在师傅的带领下正式进入了变电站。由于所有供电线路都正在使用,我们只是观看下,有疑惑想师傅请教。

  我们先了解了变电站的变压器,它在电网中高、低压为110/10KV,是中性点接地的自耦变压器,高压侧采用星形连接,低压侧采用角形连接。由于变压器在运行过程中发热较多,其热量主要来自油浸式,其工作过程为热量由绕组和铁心表面,热量由铁芯和绕组表面以对流方式传到变压器油中,约为绕组对空气温升20~30%,绕组和铁心附近的热油经对流把热量传到油箱或散热器的内表面,油箱或散热器内表面热量经传导散到外表面。热量由油箱壁经对流和辐射散到周围空气中,这部分比重较大。

  接着我们参观了变电站的接线部分。高压断路器和隔离开关,它是变电站电气主系统的重要开关电器,高压断路器主要功能是正常运行倒换运行方式,把设备或线路接入电网或退出运行,起着控制作用,当设备或线路发生故障时,能快速切除故障回路,保证无故障部分正常运行,起着保护作用。高压断路器是开关电器是中最为完善的一种设备,其特点是能断开电器负荷电流和短路电流,而高压隔离开关的主要功能是保证高压电器及装置在检修工作时的安全,不能用玉切断、投入负荷电流,仅可允许用于不产生强大电弧的某些切换操作。

  电磁式电流互感器的工作原理和变压器相似,其特点有一次绕组串联在电路中,并且匝数较少,故一次绕组的电流安全取决于被测电路的负荷电流,而与二次电流无关,电流互感器的二次绕组所接仪表的电流线圈阻抗很小,所以正常情况下,电流互感器在近于短路状态下运行。电磁式互感器的工作原理和变压器相同,其特点是容量小,类似一台小容量变压器。二次测仪表和继电器的电压线圈阻抗大,互感器在近于空载状态下运行,总之互感器是二次设备获取电气一次回路信息的传感器。

  下面谈下对变电站的整体认识,变电站是电力系统的重要环节,伴随着科学技术的发展,变电站实现了自动化,采用数据采集与监控,警报处理与电压/无功综合控制等自动化手段,减少了人工干预,提高运行和维护的效率。但变电站的保护也需要提升,它的主要保护系统有防雷保护和信息系统的过电压保护。于村变电站共有四个大型避雷针。变电所内装设避雷器,主要是限制雷电波入侵时的过电压,在变电所内架设避雷线,又称为进线保护。

  于村变电所建设时间较晚,它有两台大型变压器,为防止以后用电量增加,在设计之初又建设了备用变电器安装台,人工主要是必要时检修电路,因为变电所的供电系统实现了自动控制。通过师傅的讲解,我对变电所内的各装置有了较多了解。认识了变电所各设备的作用。

【电站实习报告】相关文章:

电站实习报告04-10

电站实习报告15篇03-11

变电站实习报告01-08

水电站的实习报告03-07

电站实习报告13篇02-14

变电站实习报告02-08

水电站实习报告12-27

水电站实习报告03-07

变电站的实习报告04-10

变电站的实习报告范文01-13