1.如图5-2-15,若∠1=∠2,则______∥______,理由是____________;
图5-2-15
若∠2=∠3,则______∥______,理由是_______________;且l1、l2、l3满足位置关系__________,理由是_________.
解析:图中∠1与∠2是内错角,∠2与∠3是同位角,根据平行线判定方法可以作出判断.
答案:l1l2内错角相等,两直线平行l2l3同位角相等,两直线平行l1∥l2∥l3平行于同一直线的两直线互相平行
2.如图5-2-16,填上一个合适条件_________,可得BC//DE.
图5-2-16
解析:这是一道开放题,即给出题目结论,要求寻找使结论成立的条件.本题要使BC∥DE,应从角去识别,具体有三种方法,作为填空题,只填一种即可.
答案:∠ADE=∠ABC(或∠CDE=∠DCB或∠DEC+∠BCE=180°)
3.如图5-2-17,直线a、b被皮直线c所截,现给了四个条件:(1)∠1=∠5,(2)∠1=∠7(3)∠2+∠3=180°(4)∠6=∠8,其中能判定a∥b的条件序号是()
A.(1)(2)B.(3)C.(4)D.(3)(4)
图5-2-17
解析:根据平行线判定方法:因为∠1与∠5是同位角,故(1)成立;(2)中有∠7=∠5,所以∠7=∠1,可得∠1=∠5,故也成立.
答案:A
4.如图5-2-18,已知直线AB、CD被直线EF所截,且∠AGE=46°,∠EHD=134°,那么AB∥CD吗?试说明理由.
图5-2-18
解析:结合图形,利用对顶角相等或邻补角知识把∠AGE与∠EHD转化为同旁内角或同位角.
答案:解法一:因为∠BGH=∠AGE=46°(对顶角相等),
∠EHD=134°,
所以∠BGH+∠EHD=180°.
所以AB∥CD(同旁内角互补,两直线平行).
解法二:因为∠CHE=180°-∠EHD=46°(邻补角定义),
而∠AGE=46°,
所以∠CHE=∠AGE.
所以AB∥CD(同位角相等,两直线平行).
5.不能判定两直线平行的条件是()
A.同位角相等B.内错角相等
C.同旁内角相等D.都和第三条直线平行
解析:判定两直线平行,我们学习了两种方法:①平行公理的推论,②平行线的判定公理和两个平行线的判定定理.在解答本题时要注意紧扣这四个判定方法.
答案:C
6.如图5-2-19,已知∠1=∠2,BD平分∠ABC,可得到哪两条直线平行?如果要得到另外两条直线平行,则应将上述两个条件之一作如何改变?
图5-2-19
解析:因为BD平分∠ABC,所以∠1=∠DBC,又因为∠1=∠2,所以∠2=∠DBC,
所以AD∥BC(内错角相等,两直线平行).若要AB∥DC,则需∠1=∠BDC,而∠1=∠2,故应有∠2=∠BDC,故将“BD平分∠ABC”改为“DB平分∠ADC”即可.
答案:AD∥BC;将“BD平分∠ABC”改为“DB平分∠ADC”即可.
综合应用
7.已知(如图5-2-20),∠B=∠C,∠DAC=∠B+∠C,AE平分∠DAC,
求证:AE∥BC.
图5-2-20
解析:要证AE∥BC,只要证∠1=∠B或∠2=∠C即可.
答案:∵AE平分∠DAC(已知),
∴∠1=∠2,∠DAC=2∠1(角平分线定义).
又∵∠DAC=∠B+∠C,∠B=∠C(已知),
∴∠1=∠B
∴AE∥BC(同位角相等,两直线平行).
8.已知(如图5-2-21)直线a∥c,∠1+∠2=180°,求证:b∥c.
图5-2-21
解析:本题的'解法比较多,根据本题的图形结构特征,我们选择利用平行公理的推论(平行线的传递性)比较简单.
答案:∵∠1+∠3=180°(邻补角定义),
∠1+∠2=180°(已知),
∴∠2=∠3(同角的补角相等),
∴a∥b(同位角相等,两直线平行).
又∵a∥c(已知),
∴b∥c(如果两条直线都和第三条直线平行,那么这两条直线也互相平行).
9.看图填空.①如图5-2-22,同位角有______对,内错角有______对,同旁内角有________对.
图5-2-22图5-2-23图5-2-24图5-2-25
②如图5-2-23,同位角有______对,内错角有______对,同旁内角有______对.
③如图5-2-24,同位角有______对,内错角有______对,同旁内角有______对.
④如图5-2-25,同位角有______对,内错角有______对,同旁内角有______对.
解析:可在每个图形中找“F、Z、U”图形,再确定它们的对数或根据定义找,但要注意图形中的线段、射线和直线.
解:①422②429③466④025
10.王老师在广场上练习驾驶汽车,他第一次向左拐65°后,第二次要怎样拐才能使行驶路线与原来平行?
解析:可先在其行驶路线图上(如图所示)作原行驶路线的平行线,根据平行线判定方法可得结论.要注意的是,要根据前后两次行驶方向的夹角来确定度数.
答案:向右拐65°或向左拐115°
11.(山东潍坊模拟)如图5-2-26,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB.要使DF∥BC,只需再有下列条件中的什么即可()
A.∠1=∠2B.∠1=∠DFE
C.∠1=∠AFDD.∠2=∠AFD
解析:要判定DF∥BC,根据本题图形结构特点,应选择运用平行线的判定公理或两个判定定理,因此应通过∠1和它的同位角相等、∠1和它的同旁内角互补或者∠2和它的内错角相等得出DF∥BC.由EF∥AB可知∠1=∠2,所以当∠1=∠DFE时
∠2=∠DFE,可得DF∥BC.
答案:B
12.(2010黑龙江伊春模拟)如图5-2-27,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为__________.
解析:由AB∥CD可知∠CFE=∠B=68°,∠CFE是∠DFE的一个外角,∠CFE=∠D+∠E,可进一步求得∠D的度数.
答案:48°
【七年级数学平行线达标测试题及答案参考】相关文章:
从问题到方程达标测试题及答案参考05-17
初中数学:平行线测试题及答案06-12
数学测试题及答案参考05-03
平行线的测试题及答案06-29
Myday达标测试题及答案03-19
电阻达标测试题及答案05-16
方程达标测试题及答案05-22
从三个方向看达标测试题及答案参考05-21
电功率和安全用电达标测试题及答案参考06-05