在日复一日的学习、工作生活中,我们经常跟试题打交道,借助试题可以更好地检查参考者的学习能力和其它能力。大家知道什么样的试题才是规范的吗?下面是小编收集整理的五年级下册应用题加答案,仅供参考,欢迎大家阅读。
五年级下册应用题加答案 1
1、某厂有一批煤,原计划每天烧5吨,可以烧45天。实际每天少烧0.5吨,这批煤可以烧多少天?
2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的`跳绳。照这样计算,剩下的塑料绳还可以做多少根?
3、修一条水渠,原计划每天修0.48千米,30天修完。实际每天多修0.02千米,实际修了多少天?
4、王老师看一本书,如果每天看32页,15天看完。现在每天看40页,可以提前几天看完?
5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)
6、石河农场先派8台收割机参加收割晚稻,前2天收割19.2公顷,后来增加到13台收割机,用同样的速度又割4天,他们一共割多少公顷?
7、甲乙两地相距600千米,一列客车和一列货车同时从甲开往乙,客车比货车早到4小时,客车到乙地时,货车行了400千米。客车行完全程要用多长时间?
8、列出综合算式,并直接写出得数
(1)公园里有15条游船,每天收入600元。
①现在增加了12条游船,每天一共收入多少元?
②现在有40条游船,每天比原来多收入多少元?
③现在增加了10条船,每天比原来增加收入多少元?
④现在每天收入1000元,公园增加了多少条游船?
(2)小明从家去学校,每分走60米,12分可以走到。
①如果要提前2分钟走到,每分要走多少米?
②如果每分走75米,可以提前几分走到?
答案:
1、5×45÷(5-0.5)=50(天)
2、(150-7.5)÷(7.5÷3)=57(根)
3、0.48×30÷(0.48+0.02)=28.8(天)
4、15-32×15÷40=3(天)
5、260÷4×2.4+260=416(千米) 260÷4×(4+2.4)=416(千米)
6、19.2÷2÷8×4×13+19.2=81.6(公顷)
7、 600÷[(600-400)÷4]-4=8(小时) 或 4÷(600÷400-1)=8(小时)
8、(1) 600÷15×(15+12)=1080(元) 600÷15×40-600=1000(元)
600÷15×10=400(元) 1000÷(600÷15)-15=10(条)
(2) 60×12÷(12-2)=72(米) 12-60×12÷75=2.4(分)
五年级下册应用题加答案 2
有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。
解:
7x18-6x19=126-114=12
6x19-5x20=114-100=14
去掉的.两个数是12和14它们的乘积是12x14=168
有七个排成一列的数,它们的`平均数是30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。
解:
28×3+33×5-30×7=39。
有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数?
解:
设第二组有x个数,则63+11x=8×(9+x),解得x=3。
五年级下册应用题加答案 3
1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元
2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克
3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米
4、小军和张强付同样多的钱买了同一种铅笔,小军要了13支,张强要了7支,小军又给张强0.6元钱。每支铅笔多少钱
5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河 的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米(交换乘客的时间略去不计)
6、学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组
7、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨
8、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米
9、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元
10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米
参考答案
1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的`(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。解:45 5×3=45 15=60(千克)答:3箱梨重60千克。
3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4、想:根据两人付同样多的钱买同一种铅笔和小军要了13支,张强要了7支,可知每人应该得(13 7)÷2支,而小军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。解:0.6÷[13-(137)÷2]=0.6÷[13-20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。解:下午2点是14时往返用的时间:14-8=6(时)两地间路程:(40 45)×6÷2=85×6÷2=255(千米)答:两地相距255千米。
6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。解:第一组追赶第二组的路程:3.5-(4.5- 3.5)=3.5-1=2.5(千米)第一组追赶第二组所用时间:2.5÷(4.5-3.5)=2.5÷1=2.5(小时)答:第一组2.5小时能追上第二小组。
7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4 1)倍,由此便可求出甲、乙两仓存粮吨数。解:乙仓存粮:(32.5×2 5)÷(4 1)=(65 5)÷5=70÷5=14(吨)甲仓存粮:14×4-5=56-5=51(吨)答:甲仓存粮51吨,乙仓存粮14吨。
8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4 5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。解:乙每天修的米数:(400-10×4)÷(4 5)=(400-40)÷9=360÷9=40(米)甲乙两队每天共修的米数:40×2 10=80 10=90(米)答:两队每天修90米。
9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6 5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。解:每把椅子的价钱:(455-30×6)÷(6+5)=(455- 180)÷11=275÷11=25(元)每张桌子的价钱:25+30=55(元)答:每张桌子55元,每把椅子25元。
10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。解:(765)×[40÷(75-65)]=140×[40÷10]=140×4=560(千米)答:甲乙两地相距 560千米。
- 相关推荐
【五年级下册应用题加答案】相关文章:
方程解应用题加答案07-03
四年级应用题加答案08-19
行程应用题及答案07-23
相遇的应用题及答案04-27
税率应用题及答案03-25
五年级上应用题及答案10-26
五年级应用题带答案07-18
归总问题应用题及答案11-09
比例分配应用题及答案04-01
行程类的应用题及答案06-27