一元二次方程的应用题(1)
一、增长率问题
例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率。
解 设这两个月的平均增长率是x。,则根据题意,得200(1-20%)(1+x)2=193.6,
即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去)。
答 这两个月的平均增长率是10%。
说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n。对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n。
二、商品定价
例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?
解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,
解这个方程,得a1=25,a2=31。
因为21×(1+20%)=25.2,所以a2=31不合题意,舍去。
所以350-10a=350-10×25=100(件)。
答 需要进货100件,每件商品应定价25元。
说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点。
三、储蓄问题
例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率。(假设不计利息税)
解 设第一次存款时的年利率为x。
则根据题意,得[1000(1+x)-500](1+0.9x)=530。整理,得90x2+145x-3=0。
解这个方程,得x1≈0.0204=2.04%,x2≈-1.63。由于存款利率不能为负数,所以将x2≈-1.63舍去。
答 第一次存款的年利率约是2.04%。
说明 这里是按教育储蓄求解的,应注意不计利息税。
四、趣味问题
例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?
解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m。
则根据题意,得 (x+0.1+x+1。4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0。
解这个方程,得x1=-1.8(舍去),x2=1。
所以x+1。4+0.1=1+1.4+0.1=2.5。
答 渠道的上口宽2.5m,渠深1m。
说明 求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解。
五、古诗问题
例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)。
大江东去浪淘尽,千古风流数人物;
而立之年督东吴,早逝英年两位数;
十位恰小个位三,个位平方与寿符;
哪位学子算得快,多少年华属周瑜?
解 设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3。
则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6。
当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;
当x=6时,周瑜年龄为36岁,完全符合题意。
答 周瑜去世的年龄为36岁。
说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味。
六、象棋比赛
例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分。如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985。经核实,有一位同学统计无误。试计算这次比赛共有多少个选手参加。
解 设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为 n(n-1)局。由于每局共计2分,所以全部选手得分总共为n(n-1)分。显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去)。
答 参加比赛的选手共有45人。
说明 类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解。
七、情景对话
例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了对话中收费标准。
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元。请问该单位这次共有多少员工去天水湾风景区旅游?
解 设该单位这次共有x名员工去天水湾风景区旅游。因为1000×25=25000<27000,所以员工人数一定超过25人。
则根据题意,得[1000-20(x-25)]x=27000。
整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30。
当x=45时,1000-20(x-25)=600<700,故舍去x1;
当x2=30时,1000-20(x-25)=900>700,符合题意。
答:该单位这次共有30名员工去天水湾风景区旅游。
说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论。
一元二次方程的应用题(2)
1、某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米。设这两年该房屋开发公司开发建设住宅面积的年平均增长率为x ,则可列方程为________________;
2、宏欣机械厂生产某种型号的鼓风机,一月至六月份的产量如下:
(1)求上半年鼓风机月产量和平均数、中位数;
(2)由于改进了生产技术,计划八月份生产鼓风机72台,与上半年月产量平均数相比,七、八月鼓风机生产量平均每月的增长率是多少?
3、美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加
(1)根据提供的信息,回答下列问题:2001年底的绿地面积为 _______公顷,比2000年底增加了_______公顷;在1999年,2000年,2001年这三年中, 绿地面积增加最多的是 _______ 年;
(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.
专题:行程问题:
1、甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。甲沿直航线航行180海里到达厦门;乙沿原来航线绕道香港后来厦门,共航行了720海里,结果乙比甲晚20小时到达厦门。已知乙速比甲速每小时快6海里,求甲客轮的速度(其中两客轮速度都大于16海里/小时)?
2、为了开阔学生视野,某校组织学生从学校出发,步行6千米到科技展览馆参观。返回时比去时每小题少走1千米,结果返回时比去时多用了半小时。求学生返回时步行的速度
3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时。请你用学过的数学知识说明在这条铁路现有的`条件下列车还可以再次提速。
专题:经济问题:
1、某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价.
2、黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件。要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?
3、某书店老板去批发市场购买某种图书,第一次购用100元,按该书定价2。8元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高0。5元,用去了150元,所购数量比第一次多10本.当这批书售出时,出现滞销,便以定价的5折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?,若赚钱,赚多少?
专题:工程问题:
1、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天。为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?
2、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.
(1)求甲、乙两工程队单独完成此项工程所需的天数.
(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?
3、一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料显示:若两队合作6天可完成,共需工程费10200元;若甲单独完成,甲队比乙队少用5天,但甲队的工程费每天比乙队多300元。
(1)甲单独完成需要几天?
(2)工程指挥部决定从两个队中?一个队单独完成此工程,若从节省资金的角度考虑,应选哪个工程队?为什么?
【一元二次方程的应用题】相关文章:
一元二次方程应用题教案设计06-12
一元二次方程应用题教案设计08-26
关于初中奥数的一元二次方程应用题及解析06-12
一元二次方程教案07-30
《一元二次方程》教学反思06-07
《一元二次方程》的教学反思06-27
《一元二次方程》教案及反思06-20
一元二次方程的教学反思06-29
一元二次方程的概念说课稿05-17