高考数学复习题整理

2021-06-13 试题

  高考数学复习法整理

  【摘要】高三的同学们在空余的时间可以看一下高考备考的知识,掌握一些高考的备考知识对大家也是有帮助的。小编为大家整理了高考数学复习法,希望大家喜欢。

  “不但要会埋头拉车,还要会抬头看路”是我对高考数学复习的一贯见解。高考是一场成王败寇的残酷竞争,它是公平的也是不公平的,说高考公平是因为所有人都将面对同样的时间、知识、试卷;说高考不公平是因为对每个人来说信息并不对称——对高考分析透彻的人自然拥有更高的复习效率必然会取得更出色的成绩。

  这里我强调的并不是高中的基础知识掌握程度而是复习的效率问题,谁的基础知识更牢固谁将取得更好的高考成绩这是一个铁的事实,但它是建立在“所有人的复习效率都是相同的”这个假设之下的,所以大家经常可以看到有些高考考生学的呕心沥血却永远只是中游水平,而另一些高考生拥有大量的休闲活动却仍然能名列前茅。

  造成这种现象的原因很多人会归结为“智商”和“运气”,我也不否认这两方面的因素,但最主要的原因还是效率问题:两个高考生同样学了一个小时的数学,一个人领悟了一个高考非常容易考到的重点内容,而另一个人啃下了一个非常难于理解的但是高考从来没有考过的难点内容,那么这样日积月累下来第一个人对高考真题考点的掌握就会远高于后者。这就是我说的“不但要会埋头拉车,还要会抬头看路”的意思,“拉车”就是指认真的复习,而“看路”则是指认清高考考察的重点,把握住高考复习的方向。“拉车”基本上是每个高三学生都能够作到的,但是“看路”就不尽然了,起早贪黑却劳而无功的高考生都是没有解决好复习方向的问题,没有看好“路”。

  现在这个阶段是高三文科刚开始复习而理科将近结课的阶段,属于高考复习的初期,这一阶段给大家的建议是:

  第一:先看一下近三、五年的高考真题,并不要去做这些高考真题,而是要从中分析出那些是真正的高考考点,从而为整个一年的高考复习定下一个正确的基调。

  无法分清考点的轻重是最常见的问题,比如高考中《函数》与《导数》两部分的关系就是一个非常容易使人混乱的地方。《函数》是高一的重点章节,学校会反复强调它的重要性,说它在高考中占多少多少比例等等,而《导数》则只是高三中的一个辅助章节尤其是文科,它的章节比重很小,学校强调的也不够。这就给大家一个错觉就是函数比导数重要,但是事实上在真正的高考中它们两者的位置恰恰相反,函数的考查只有3至4道小题而且都位于试卷前几道题十分简单,其它问题虽然大量使用函数思想但是对同学们解题没有实质上的影响。反观导数它在高考中直接占有一道大题特别是07年的文科试题,它取代了《数列》的地位成为了倒数第二位的14分难题,同时只要遇到“函数单调性”“极值”“最值”“值域相关问题”“切线问题”等都要使用导数知识进行解决。当然函数的单调、极值等可以用《函数》知识处理但比起导数来说这是十分烦琐的。

  所以说导数的地位要远比函数来的重要,这一问题往往是影响大家高考复习效率的一个关键问题,发现它并不需要“智商”和“运气”,只要看一遍近几年高考真题即可,这就是我第一条建议的重点所在。

  第二:分析自己的实力特征,果断对知识点进行取舍。高考是选拔性的考试,并不要求我们在某个单科中考出满分,只要高考总成绩能够胜出就可以,所以我们一定要根据自己的真实水平对整个高考复习作一个规划。07年天津市理科状元的数学成绩只有138分,并不是传奇的150,他其他的高考科目也都是很高但远没达到最高,这就说明了我们要合理分配自己的精力使自己的能力得以最大的发挥。这一点就是要告戒大家千万不能偏科,我们身边经常有一些高考考生他们某几门学科成绩十分优异(高于状元),但总成绩只能达到中游或中上的水平,他们最大的问题就是时间分配,如果他们节省出一部分花在强势学科上的时间转移到弱势学科上,他们必将取得更好的成绩。

  第三:正确对待模拟考试与模拟题。如果已经看过高考真题的同学很容易发现高考真题与模拟题有着天壤之别,大多数模拟题尤其是出自低级别地方的,根本无法达到高考真题的水平,做它们是无法真实反映大家在高考中的表现的。所以大家在现阶段应该首先看“题”是否值得作再看作的是否好,这才是正确的方法。

  【总结】高考数学复习法就为大家介绍到这儿了,在高三阶段,大家也应该要多了解一些高考备考知识,为高考而做准备。

  浏览了本文的同学也浏览了:

  高中数学学习:学好高中立体几何的方法

  【摘要】您好,这里是高中数学学习栏目,数学是培养逻辑思维能力,分析能力的重要学科,所以小编在此为您编辑了此文:“高中数学学习:学好高中立体几何的方法”以方便您的学习,希望能给您带来帮助。

  本文题目:高中数学学习:学好高中立体几何的方法

  立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。 一 培养空间想象力 为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方

  立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。

  一 培养空间想象力

  为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

  二 立足课本,夯实基础

  直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

  (1) 培养空间想象力。

  (2) 得出一些解题方面的启示。

  (3) 深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

  在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

  三 总结规律,规范训练

  立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。

  还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的.规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

  四 逐渐提高逻辑论证能力

  高一数学奇偶性训练题

  1.下列命题中,真命题是( )

  A.函数y=1x是奇函数,且在定义域内为减函数

  B.函数y=x3(x-1)0是奇函数,且在定义域内为增函数

  C.函数y=x2是偶函数,且在(-3,0)上为减函数

  D.函数y=ax2+c(ac≠0)是偶函数,且在(0,2)上为增函数

  解析:选C.选项A中,y=1x在定义域内不具有单调性;B中,函数的定义域不关于原点对称;D中,当a<0时,y=ax2+c(ac≠0)在(0,2)上为减函数,故选C.

  2.奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)的值为( )

  A.10 B.-10

  C.-15 D.15

  解析:选C.f(x)在[3,6]上为增函数,f(x)max=f(6)=8,f(x)min=f(3)=-1.∴2f(-6)+f(-3)=-2f(6)-f(3)=-2×8+1=-15.

  3.f(x)=x3+1x的图象关于( )

  A.原点对称 B.y轴对称

  C.y=x对称 D.y=-x对称

  解析:选A.x≠0,f(-x)=(-x)3+1-x=-f(x),f(x)为奇函数,关于原点对称.

  4.如果定义在区间[3-a,5]上的函数f(x)为奇函数,那么a=________.

  解析:∵f(x)是[3-a,5]上的奇函数,

  ∴区间[3-a,5]关于原点对称,

  ∴3-a=-5,a=8.

  答案:8

  1.函数f(x)=x的奇偶性为( )

  A.奇函数 B.偶函数

  C.既是奇函数又是偶函数 D.非奇非偶函数

  解析:选D.定义域为{xx≥0},不关于原点对称.

  2.下列函数为偶函数的是( )

  A.f(x)=x+x B.f(x)=x2+1x

  C.f(x)=x2+x D.f(x)=xx2

  解析:选D.只有D符合偶函数定义.

  3.设f(x)是R上的任意函数,则下列叙述正确的是( )

  A.f(x)f(-x)是奇函数

  B.f(x)f(-x)是奇函数

  C.f(x)-f(-x)是偶函数

  D.f(x)+f(-x)是偶函数

  解析:选D.设F(x)=f(x)f(-x)

  则F(-x)=F(x)为偶函数.

  设G(x)=f(x)f(-x),

  则G(-x)=f(-x)f(x).

  ∴G(x)与G(-x)关系不定.

  设M(x)=f(x)-f(-x),

  ∴M(-x)=f(-x)-f(x)=-M(x)为奇函数.

  设N(x)=f(x)+f(-x),则N(-x)=f(-x)+f(x).

  N(x)为偶函数.

  4.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx( )

  A.是奇函数

  B.是偶函数

  C.既是奇函数又是偶函数

  D.是非奇非偶函数

  解析:选A.g(x)=x(ax2+bx+c)=xf(x),g(-x)=-xf(-x)=-xf(x)=-g(x),所以g(x)=ax3+bx2+cx是奇函数;因为g(x)-g(-x)=2ax3+2cx不恒等于0,所以g(-x)=g(x)不恒成立.故g(x)不是偶函数.

  5.奇函数y=f(x)(x∈R)的图象必过点( )

  A.(a,f(-a)) B.(-a,f(a))

  C.(-a,-f(a)) D.(a,f(1a))

  解析:选C.∵f(x)是奇函数,

  ∴f(-a)=-f(a),

  即自变量取-a时,函数值为-f(a),

  故图象必过点(-a,-f(a)).

  6.f(x)为偶函数,且当x≥0时,f(x)≥2,则当x≤0时( )

  A.f(x)≤2 B.f(x)≥2

  C.f(x)≤-2 D.f(x)∈R

  解析:选B.可画f(x)的大致图象易知当x≤0时,有f(x)≥2.故选B.

  7.若函数f(x)=(x+1)(x-a)为偶函数,则a=________.

  解析:f(x)=x2+(1-a)x-a为偶函数,

  ∴1-a=0,a=1.

  答案:1

  8.下列四个结论:①偶函数的图象一定与纵轴相交;②奇函数的图象一定通过原点;③f(x)=0(x∈R)既是奇函数,又是偶函数;④偶函数的图象关于y轴对称.其中正确的命题是________.

  解析:偶函数的图象关于y轴对称,不一定与y轴相交,①错,④对;奇函数当x=0无意义时,其图象不过原点,②错,③对.

  答案:③④

  9.①f(x)=x2(x2+2);②f(x)=xx;

  ③f(x)=3x+x;④f(x)=1-x2x.

  以上函数中的奇函数是________.

  解析:(1)∵x∈R,∴-x∈R,

  又∵f(-x)=(-x)2[(-x)2+2]=x2(x2+2)=f(x),

  ∴f(x)为偶函数.

  (2)∵x∈R,∴-x∈R,

  又∵f(-x)=-x-x=-xx=-f(x),

  ∴f(x)为奇函数.

  (3)∵定义域为[0,+∞),不关于原点对称,

  ∴f(x)为非奇非偶函数.

  (4)f(x)的定义域为[-1,0)∪(0,1]

  即有-1≤x≤1且x&ne,高中化学;0,则-1≤-x≤1且-x≠0,

  又∵f(-x)=1--x2-x=-1-x2x=-f(x).

  ∴f(x)为奇函数.

  答案:②④

  10.判断下列函数的奇偶性:

  (1)f(x)=(x-1) 1+x1-x;(2)f(x)=x2+x x<0-x2+x x>0.

  解:(1)由1+x1-x≥0,得定义域为[-1,1),关于原点不对称,∴f(x)为非奇非偶函数.

  (2)当x<0时,-x>0,则f(-x)=-(-x)2-x=-(-x2+x)=-f(x),

  当x>0时,-x<0,则f(-x)=(-x)2-x=-(-x2+x)=-f(x),

  综上所述,对任意的x∈(-∞,0)∪(0,+∞),都有f(-x)=-f(x),

  ∴f(x)为奇函数.

  11.判断函数f(x)=1-x2x+2-2的奇偶性.

  解:由1-x2≥0得-1≤x≤1.

  由x+2-2≠0得x≠0且x≠-4.

  ∴定义域为[-1,0)∪(0,1],关于原点对称.

  ∵x∈[-1,0)∪(0,1]时,x+2>0,

  ∴f(x)=1-x2x+2-2=1-x2x,

  ∴f(-x)=1--x2-x=-1-x2x=-f(x),

  ∴f(x)=1-x2x+2-2是奇函数.

  12.若函数f(x)的定义域是R,且对任意x,y∈R,都有f(x+y)=f(x)+f(y)成立.试判断f(x)的奇偶性.

  解:在f(x+y)=f(x)+f(y)中,令x=y=0,

  得f(0+0)=f(0)+f(0),

  ∴f(0)=0.

  再令y=-x,则f(x-x)=f(x)+f(-x),

  即f(x)+f(-x)=0,

  ∴f(-x)=-f(x),故f(x)为奇函数.

  高中数学公式大全汇总

  【摘要】“高中数学公式大全汇总”下面是编者为大家整理的高中数学公式汇总,希望对大家的学习有所帮助:

  乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式 a+b≤a+b a-b≤a+b a≤b<=>-b≤a≤b

  a-b≥a-b -a≤a≤a

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

  圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

  抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

  直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h

  正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'

  圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2

  圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l

  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

  锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h

  斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长

  柱体体积公式 V=s*h 圆柱体 V=pi*r2h

  以上是小编为大家整理的“高中数学公式大全汇总”全部内容,更多相关内容请点击:

  > >

  跨入新高中 你准备好了吗

  对于即将步入生活的来讲,对升已经不再有新鲜感了。因为生经过了紧张的和激烈的之后,对紧张的生活节奏适应起来不会有太大的困难。

  但是,上了高中要面对,自然学生的学习压力会比初中大得多。而且高中的学习和初中有很多不同之处,如果说初中主要是的阶段,高中则是运用和思考的阶段,学生一?没有适应过来就会觉得压力大、跟不上。新生在经过这一段?间的调整之后,接下来就应该了解一下高中的体系,调整。

  初习方式以模仿和记忆为主,而高中则是以理解和应用为主,要求学生要有更强的分析、概括、综合、实践的,将基本概念、原理消化吸收,变成自己的东西。高一新生在假期里,可提前了解高中?容和教学情?,及?调整学习方法,开学后就能很快适应高中教学。

  另外,中考过后孩子确实需要轻松,但也应该适?把注意力集中到学习上?。另外,学生也可以在假期轻松之余总结初中学习的经验教训,如果认识正在上高中的哥哥姐姐,不妨也听听他们的建议,向他们讨教一些高中的学习方法进行经验总结,结合自己的实际情?,慢慢找到适合自己的学习方法。

  对初中学过的知识,不要以为上了高中就用不着了,考过之后就忘得一干二净。初中阶段记忆下来的概念、公式、定理等等,到了高中就要学会运用了。

  五招度过“更学期”

  如何使高一新生平稳度过“更学期”,尽快步入生活呢?这里给即将上高一的学生献上几个“锦囊”。

  自主学习

  较之初中阶段,高中阶段学习负担及压力明显加重,不能再依赖初中?期“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定,养成自主学习的好习惯。

  行之有效的学习方法

  及高一新生要根据自己的条件,及高中阶段学科知识交叉多、综合性强,以及考查的知识和触点广的特点,找寻一套行之有效的学习方法。

  作好吃苦准备

  步入高一,要面对更概括、更抽象、更难于理解的课程学习,面对更激烈、更紧张的竞争环境,面对更长的在校时间和更远的往返路程,都要求新高一的同学要树立起一种学习意识、高考意识,做好承受压力、经受挫折、忍耐寂寞的准备。

  尽快适应新的环境

  进入高中,人际环境较以前更复杂,尚未成年的孩子们难免产生种种心理困惑和矛盾?突。家长要打好预防针,帮孩子作好充分思想准备,孩子要以自信、宽容的心态,尽快融入集体,适应新同学。认识自我准确定位

  刚刚进入高中的孩子正处在青春发育期,自我意识很强,往往过分关注?人对自己的评价,又常常把自己置于和?人比较的地位。这样虽然有利于激发上进心,但也很容易因其某些方面不如他人而产生自卑。

  进入高中后,很多新生有这样的心理落差,比自己成绩优秀的大有人在,很少有人注意到自己的存在,心理因此失衡,这是正常心理,但是尽快快进入学习状态。记住 高中地理,进入高中,大家站在同一起跑线上,有3年的?间足以不断提高成?。因此,家长要使孩子明白强中自有强中手的道理,要帮助孩子客观分析自己的长处和短处,给予自己正确评价,并激励孩子不断向目标努力。

  如何提高解数学题的速度

  一套试卷有二十几道题,有的题目还有多问。平均到每道题不够5分钟,时间确实是争分夺秒。

  拒统计,高考试卷通常控制在2000个印刷符号左右,若以每分钟300个符号的速度审题,约需8分钟,考虑到有的题要读二遍以上,约需21-23分钟;书写解答主要是六道大题,约3、4个符号,有28分钟可以完成。这样,一共需要了40分钟,还剩下80分钟用于思考、草算、文字组织和复查检验。几乎是百米赛跑般的紧张。

  1、平时的高考复习,必须要有速度训练。为了给高档题留下较多的思考时间,选择、填空题应在1、2分钟内解决。时间太长,即使做对了也是“潜在丢分”,因为120分钟对150分,前面占用时间多了,到最后几题就没有时间做,因此,要提高解题的策略,防止“小题大做”

  2、在细心的基础上提高速度。高考数学的题目难度适中,一般地不会有太难的题。这就要求考生在另一方面下功夫,那就是仔细。高考数学考满分的并不罕见,但令人吃惊的,这些满分的同学并不是平时那些被认为是智力上出类拔萃的同学,而都是基本功扎实、认真仔细的同学。其实,细心本身就是一种能力,它需要长时间的培养,在复习阶段绝不要忘记培养自己仔细的习惯。具体作法是,认真对待每一道题、每一次小考、每一次模拟考试,决不容许自己由不认真而犯下任何错误。一旦出错,要总结经验,避免再犯。在认真的基础上就要讲求速度,高考题量比较大,覆盖面宽,没有速度是不行的,有人曾说,如果给我一天时间,那么高考数学卷我一定会拿满分。其实,速度本身就是高考考核项目之一,在每一次作业、小考、模拟考试中有意识加快解题速度对后面提高答题速度有很大帮助。查错勘误。平时收集好自己做过的作业、试卷等,复习过程中时常拿出来看,找到出错的地方,分析原因,吸取教训。时间允许的话,可以制订“错题集锦”,把学习中出现的错误随时登记注册,写明“病情”,查清“病因”,开好“处方”。这样经常查错勘误,警钟长鸣,才能吸取教训,刻骨铭心,粗枝大叶的毛病也会逐渐改掉。

  3、要进一步,就是要不断积累各种行之有效的解题方法及策略,学会从不同角度去观察问题,去分析问题,进而解决问题。这样在临战时就能入木三分,准确、迅速地把握住问题的实质,从而选择恰当的方法和策略。

  简易逻辑重难点分析

  (1)逻辑连结词“或”的理解是难点,“或”有三层含义,以“p或q”为例:一是p成立且q不成立,二是p不成立但q成立,三是p成立且q也成立。

  (2)对命题的否定只是否定命题的结论,而否命题:既否定题设,又否定结论。

  (3)复合命题真假的判定:p, q只要有一个真,则p或q为真,可简称为“一真必真”;同样p且q是:“一假必假”。

  (4)等价命题:原命题与它的逆否命题等价,当一个命题真假不易判断时,可转而判断它的逆否命题。

  (5)反证法的运用有两个难点:何时使用反证法和如何得到矛盾。

  (6)对于“若p则q”形式的命题,如果已知p q 高二,那么p是q的充分条件,q是p的必要条件。

  如果既有pq,又有q p,则记作p q,就说p是q的充要条件,也可以说q是p的充要条件,或者说p和q互为充要条件。

  若pq,但q p,则p是q的充分不必要条件,q是p的必要不充分条件。

  在判断充分条件与必要条件时,首先要分清哪是条件,哪是结论;然后用条件推结论,再用结论推条件,最后进行判断。

【高考数学复习题整理】相关文章:

小学数学第三单元的整理和复习题06-15

高考数学复习知识点整理02-17

高考数学遗漏知识点整理02-22

简便计算复习题整理06-18

高考数学知识点总结整理01-24

高考数学知识点公式整理02-17

高考数学公式及知识点整理02-17

湖南文科数学高考知识点整理02-17

高考数学要考的知识点整理02-17