归总问题应用题:
例1.要修一条公路,原计划每天修450米,80天完成。现在要求提前20天完成,平均每天应多修多少米?
分析:要求平均每天多修多少米,必须知道实际每天修多少米,要求实际每天修多少米,又要先求出这条公路的总长和实际修多少天。
解: 450×80÷(80-20)-450
=450×80÷60-450
=36000÷60-450
=600-450
=150(米)
答:平均每天应多修150米.
例2.农具厂生产一批农具,原计划每天生产120件,28天可以完成任务,实际每天多生产了20件,这样可以提前几天完成任务?
分析:要求提前几天完成任务,先要求出实际生产了多少天,要求实际生产了多少天,又要求出这批农具一共有多少件。
解: 28-120×28÷(120+20)
=28-120×28÷140
=28-3360÷140
=28-24
=4(天)
答:可以提前4天完成任务.
例3.面粉厂用汽车装运一批面粉,原计划用每辆装24袋的汽车9辆15次可以运完,现在改用每辆装30袋的`汽车6辆来运,几次可以运完?
分析:要求几次可以运完,先要求出运的这批面粉共有多少袋。
解:24×9×15÷30÷6
=216×15÷30÷6
=3240÷30÷6
=18(次)
答:18次可以运完.
例4.修一条公路,原计划每天工作7.5小时,8个人6天可以修完,实际增加了2个工人,准备4天完成,这样每天要工作几小时?
分析:要求每天工作几小时,先要求出这条公路的总工作量,即由1个工人来做共需要多少小时,再求最后问题。
解:7.5×8×6÷4÷(8+2)
=7.5×8×6÷4÷10
=60×6÷4÷10
=360÷4÷10
=9(小时)
答:每天要工作9小时.
例5.一项工程,预计30人15天可以完成任务。工作4天后,又增加3人。如果每人工作效率相同,这样可以提前几天完成任务?
分析:要求提前几天完成任务,必须知道实际工作的天数。要求实际工作天数,又要先求工作4天后,余下的工作需要几天完成,求余下的工作量应用总工作量(15×30)减去4天的工作量(4×30).
解:15-〔(15×30-4×30)÷(30+3)+4〕
=15-〔(450-120)÷33+4〕
=15-〔330÷33+4〕
=15-〔10+4〕
=15-14
=1(天)
答:可以提前1天完成任务.
例6.一个工地上有120名工人,食堂为这些工人准备了30天的粮食。实际工作5天后,由于工期紧张,又调来30名工人,食堂原来准备的粮食只够吃几天?
分析:先要求出准备的粮食共有多少,也就是1人能吃多少天,再求出5天后余下的粮食够用多少天。
解: (30×120-5×120)÷(120+30)+5
=(3600-600)÷150+5
=3000÷150+5
=20+5
=25(天)
答:食堂原来准备的粮食只够吃25天.
例7. 一项工程原计划8个人每天工作6小时,10天可以完成。现在为了加快工作进度,增加2人,每天工作时间增加2小时,这样可以提前几天完成这项工程?
分析:要求可以提前几天完成,要先求现在这项工程需要多少天。要求现在完成这项工程需要多少天,又要先求这项工程的总工作量是多少。
解:10-6×10×8÷(8+2)÷(6+2)
=10-6×10×8÷10÷8
=10-60×8÷10÷8
=10-480÷10÷8
=10-48÷8
=10-6
=4(天)
答:可以提前4天完成这项工程.
小贴士:
归总问题应用题的特点是先求出总数,再根据应用题的要求,求出每份是多少,或有这样的几份。