无论是在学习还是在工作中,我们很多时候都不得不用到试题,试题可以帮助参考者清楚地认识自己的知识掌握程度。一份什么样的试题才能称之为好试题呢?以下是小编为大家整理的关于小学生奥数小升初入学模拟试题以及答案,欢迎大家借鉴与参考,希望对大家有所帮助。
小学生奥数小升初入学模拟试题以及答案 1
一 在〇内填上“>” “<”或“=”。
2.3×9.6○=3.2×6.9 999999÷7○=142857 (30÷0.75)×(0.75÷30)=○1
6×7×8×9+2○>3025 4×24×25+1○=49×49 101×1.01〇=101+1.01
123×456〇<1234×56 666×668〇<667×667 123+285+658○=255+123+688
2000/2001-1999/2000+1998/1999-1997/1998+…+2/3-1/2〇>1/2-1/3+1/4-1/5+…+1/2000 -1/2001
二 填空
①2002年2月3日迎春杯决赛这一天是星期日,在这一年各月的3日中,星期日、一、二 、三、四、五、六都有,其中最多的是星期(日 ),共有( 3 )天。
②从小到大排列的9个连续自然数,其中排在第三位的数比这9个数总和的1/8少6,
9个数的和是( 288 )。
③商场出售某种儿童玩具,第一天定价每件50元,由于定价过高,一件也未卖出。第二天根据市场情况,每件定价下调不足10元,结果一天全部售出,共收货款2226元,每件玩具降价(8 )元。
④将1,2,3,……,2000,2001,2002这2002个数从小到大排成一列。算出前999个数的平均数及后面1003个数的平均数,这两个平均数的差是( 1001 )。
⑤玛丽和老师做猜数游戏。玛丽在计算器上任意输入一个三位数,老师让她乘27,得数再乘37,把结果的末三位数告诉老师。老师立即猜出玛丽在计算器上输入的三位数是几。现在玛丽告诉老师的末三位数是142。玛丽在计算器上输入的三位数是( 868 )。
⑥一个长方形的周长是2002米,宽是长的5/8。长、宽各增加1米,得到的大长方形面积比原来长方形面积增加了( 1002 )平方米。
⑦在上升的电梯中称重,显示的重量比实际体重增加1/6;在下降的电梯中称重,显示的重量比实际体重减少1/7。小明在上升的电梯中与小刚在下降的电梯中称得的体重相同,且是不足50的整千克数。小明的体重( 36 )千克,小刚的体重( 49 )千克。
⑧从1、2、3、4、5、6、7、8、9、10这十个数中选四个不同的数a、b、c、d,其中a
⑨有若干个小朋友,每人手中都有一根长74厘米的铁丝,他们每人用手中的铁丝制作一个等腰三角形框架(全部用上,无接头,边长是整厘米数),结果每人制作的等腰三角形框架都不相同。请问最多有( 12 )个小朋友。
⑩有若干根长度相同的火柴,把这些火柴摆成下面的图形。照这样摆下去,第77个图形共用( 12088 )根火柴?第n个图形共用火柴根数的计算公式为:2n2+3n-1
三 选择,将正确答案的序号填在( )内。
①从A 站到B站,甲车要行10小时,乙车要行8小时,甲车的速度比乙车慢( )。
A 25% B 20% C 80%
答:B
②图书馆有一些学生在看书,其中男生人数是女生的7/8,后来女生走了1/4,男生走了4人,剩下的男、女生人数相等。求原来男生有多少人?下面正确列式是( )。
A 4÷[7/8-(1-1/4)]×7/8 B 4÷(1/4-1/8)×7/8 C 4×4÷(1-1/8×4)×7/8
答:ABC
③用同一种型号的铁丝制铁丝网,制成下左图1 所示的铁丝网约重60克,制成图2 所示的铁丝网约重( )克。
A 120 B 150 C 180 D 210
答:D
④下中图所示的加法算式中,每个字母代表一个数字,不同的字母代表不同的数字,
那么K与J的积是( )。
A 8 B 12 C 15 D 18
答:BC
⑤下面的立体图形是由若干个同样的正方体积木堆积成的。在这些正方体积木中恰好有4个面和其它积木相接的有( )块。
A 4 B 5 C 6 D 12
答:B
⑥小明用一张梯形纸做折纸游戏。先上下对折,使两底重合,可得图1,并测出未重叠部分的两个三角形面积和是20平方厘米。然后再将图1中两个小三角形部分向内翻折,得到图2。经测算,图2的面积相当于图1的5/6。这张梯形纸的面积是( )平方厘米。
A 50 B 60 C 100 D 120
答:C
⑦小明把一个正方体木块的六个面都均分成9个小正方形,他想用红、黄、蓝三种颜色染这些小正方形,有公共边的两个小正方形染不同颜色。染完后红色小正方形可能有( )个。
A 22 B 20 C 12 D 18
答:D
⑧玛丽参加一次数学竞赛,共有12道题。记分标准是:做对第K题记K分,做错第K题扣K分(K=1,2,3…12)。玛丽做了全部题目,得60分。知道玛丽做错了3道题,那么错题号可能为( )。
A.⑨ ② ① B.⑥ ② ① C.⑤ ③ ① D.④ ③ ②
答:BCD
⑨生产63个零件,若由师傅独做可比规定时间提前5小时完成;若由徒弟独做超过规定时间7小时才能完成。师徒二人先合作3小时,再由徒弟独做恰好在规定时间内完成。请问:规定完成任务的时间是( )小时。
A 9 B 14 C 21
答:B
四 将下题左面的长方形沿网格线分割成两块,再用这两块拼成右面的正方形。在长方形中画出分法,在正方形中画出拼法。(10 分)
答:
五 简答下面各题。(30分)
1 玛丽和老师做游戏,两人轮流在下面的.正方形网格中任意一格内填数,所填的数只能是1、3、4、5、6、7、8、9、10这9个数。每个数只能用一次。全部填完后,一、三两行数的和为玛丽的得分,一、三两列数的和为老师的得分,得分高的人获胜。玛丽首先填数,要想一定取胜的话,最初要在哪一方格中填哪个数?请说明理由。
1、答:应先在D或F处放入1,因为A、C、H、K四个地方是玛丽和老师公有的,要想获胜就要在剩下的4个方格内让自己多,使别人少。
2玛丽有四块完全相同的白色长方形纸板(长和宽都是整厘米数),还有一块面积是A平方厘米的黑色正方形纸板,A是一个三位数。玛丽用这四块白色长方形纸板和那块黑色的正方形纸板拼一个面积是B平方厘米的大正方形(右上图), B也是一个三位数。已知A与B是互为反序的数。那么,白色长方形纸板的长和宽各是多少厘米?
答:长是22厘米,宽是9厘米
小学生奥数小升初入学模拟试题以及答案 2
1. 已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?
2. 2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克?
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米?
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱?
5. 甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。甲车每小时行40千米,乙车每小时行 45千米,两地相距多少千米?(交换乘客的时间略去不计)
6. 学校组织两个课外兴趣小组去郊外活动。第一小组每小时走4.5千米,第二小组每小时行3.5千米。两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。多长时间能追上第二小组?
7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?
8. 8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米?
9. 学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?
10. 一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?
11. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?
12. 五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队?
13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克?
14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元?
15. 学校组织外出参观,参加的师生一共360人。一辆大客车比一辆卡车多载10人,6辆大客车和8辆卡车载的人数相等。都乘卡车需要几辆?都乘大客车需要几辆?
16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米?
17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双?
18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋?
19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元?
20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?
答案:
1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。
解:一把椅子的价钱:
288÷(10-1)=32(元)
一张桌子的价钱:
32×10=320(元)
答:一张桌子320元,一把椅子32元。
2、想:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
解:45+5×3
=45+15
=60(千克)
答:3箱梨重60千克。
3、想:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。即可求甲比乙每小时快多少千米。
解:4×2÷4
=8÷4
=2(千米)
答:甲每小时比乙快2千米。
4、想:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
解:0.6÷[13-(13+7)÷2]
=0.6÷[13-20÷2]
=0.6÷3
=0.2(元)
答:每支铅笔0.2元。
5、想:根据已知两车上午8时从两站出发,下午2点返回原车站,可求出两车所行驶的时间。根据两车的速度和行驶的时间可求两车行驶的总路程。
解:下午2点是14时。
往返用的时间:14-8=6(时)
两地间路程:(40+45)×6÷2
=85×6÷2
=255(千米)
答:两地相距255千米。
6、想:第一小组停下来参观果园时间,第二小组多行了[3.5-(4.5-3.5)] 千米,也就是第一组要追赶的路程。又知第一组每小时比第二组快( 4.5-3.5)千米,由此便可求出追赶的时间。
解:第一组追赶第二组的路程:
3.5-(4.5- 3.5)=3.5-1=2.5(千米)
第一组追赶第二组所用时间:
2.5÷(4.5-3.5)=2.5÷1=2.5(小时)
答:第一组2.5小时能追上第二小组。
7、想:根据甲仓的存粮吨数比乙仓的4倍少5吨,可知甲仓的'存粮如果增加5吨,它的存粮吨数就是乙仓的4倍,那样总存粮数也要增加5吨。若把乙仓存粮吨数看作1倍,总存粮吨数就是(4+1)倍,由此便可求出甲、乙两仓存粮吨数。
解:乙仓存粮:
(32.5×2+5)÷(4+1)
=(65+5)÷5
=70÷5
=14(吨)
甲仓存粮:
14×4-5
=56-5
=51(吨)
答:甲仓存粮51吨,乙仓存粮14吨。
8、想:根据甲队每天比乙队多修10米,可以这样考虑:如果把甲队修的4天看作和乙队4天修的同样多,那么总长度就减少4个10米,这时的长度相当于乙(4+5)天修的。由此可求出乙队每天修的米数,进而再求两队每天共修的米数。
解:乙每天修的米数:
(400-10×4)÷(4+5)
=(400-40)÷9
=360÷9
=40(米)
甲乙两队每天共修的米数:
40×2+10=80+10=90(米)
答:两队每天修90米。
9、想:已知每张桌子比每把椅子贵30元,如果桌子的单价与椅子同样多,那么总价就应减少30×6元,这时的总价相当于(6+5)把椅子的价钱,由此可求每把椅子的单价,再求每张桌子的单价。
解:每把椅子的价钱:
(455-30×6)÷(6+5)
=(455- 180)÷11
=275÷11
=25(元)
每张桌子的价钱:
25+30=55(元)
答:每张桌子55元,每把椅子25元。
10、想:根据已知的两车的速度可求速度差,根据两车的速度差及快车比慢车多行的路程,可求出两车行驶的时间,进而求出甲乙两地的路程。
解:(7+65)×[40÷(75- 65)]
=140×[40÷10]
=140×4
=560(千米)
答:甲乙两地相距 560千米。
11、想:根据已知托运玻璃250箱,每箱运费20元,可求出应付运费总钱数。根据每损坏一箱,不但不付运费还要赔偿100元的条件可知,应付的钱数和实际付的钱数的差里有几个(100+20)元,就是损坏几箱。
解:(20×250-4400)÷(10+20)
=600÷120
=5(箱)
答:损坏了5箱。
12、想:因第一中队早出发2小时比第二中队先行4×2千米,而每小时第二中队比第一中队多行(12-4)千米,由此即可求第二中队追上第一中队的时间。
解:4×2÷(12-4)
=4×2÷8
=1(时)
答:第二中队1小时能追上第一中队。
13、想:由已知条件可知道,前后烧煤总数量相差(1500+1000)千克,是由每天相差(1500-1000)千克造成的,由此可求出原计划烧的天数,进而再求出这堆煤的数量。
解:原计划烧煤天数:
(1500+1000)÷(1500-1000)
=2500÷500
=5(天)
这堆煤的重量:
1500×(5-1)
=1500×4
=6000(千克)
答:这堆煤有6000千克。
14、想:小红打算买的铅笔和本子总数与实际买的铅笔和本子总数量是相等的,找回0.45 元,说明(8-5)支铅笔当作(8-5)本练习本计算,相差0.45元。由此可求练习本的单价比铅笔贵的钱数。从总钱数里去掉8个练习本比8支铅笔贵的钱 数,剩余的则是(5+8)支铅笔的钱数。进而可求出每支铅笔的价钱。
解:每本练习本比每支铅笔贵的钱数:
0.45÷(8-5)=0.45÷3=0.15(元)
8个练习本比8支铅笔贵的钱数:
0.15×8=1.2(元)
每支铅笔的价钱:
(3.8-1.2)÷(5+8)=2.6÷13=0.2(元)
也可以用方程解:
设一枝铅笔X元,则一本练习本为 元。
8X+5× =3.8-0.45
64X+19-25X=30.4-3.6
39X=7.8
X=0.2
答:每支铅笔0.2元。
15、想:根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。
解:卡车的数量:
360÷[10×6÷(8-6)]
=360÷[10×6÷2]
=360÷30
=12(辆)
客车的数量:
360÷[10×6÷(8-6)+10]
=360÷[30+10]
=360÷40
=9(辆)
答:可用卡车12辆,客车9辆。
16、想:根据计划每天修720米,这样实际提前的长度是(720×3-1200)米。根据每天多修80米可求已修的天数,进而求公路的全长。
解:已修的天数:
(720×3-1200)÷80
=960÷80
=12(天)
公路全长:
(720+80)×12+1200
=800×12+1200
=9600+1200
=10800(米)
答:这条公路全长10800米。
17、想:根据已知条件,可求12个纸箱转化成木箱的个数,先求出每个木箱装多少双,再求每个纸箱装多少双。
解:12个纸箱相当木箱的个数:
2×(12÷3)=2×4=8(个)
一个木箱装鞋的双数:
1800÷(8+4)=18000÷12=150(双)
一个纸箱装鞋的双数:
150×2÷3=100(双)
答:每个纸箱可装鞋100双,每个木箱可装鞋
150双
18、想:由已知条件可知道,每天用去30袋水泥,同时用去30×2袋沙子,才能同时用完。但现在每天只用去40袋沙子,少用(30×2-40)袋,这样才累计出120袋沙子。因此看120袋里有多少个少用的沙子袋数,便可求出用的天数。进而可求出沙子和水泥的总袋数。
解:水泥用完的天数:
120÷(30×2-40)=120÷20=6(天)
水泥的总袋数:
30×6=180(袋)
沙子的总袋数:
180×2=360(袋)
答:运进水泥180袋,沙子360袋。
19、想:根据每个保温瓶的价钱是每个茶杯的4倍,可把5个保温瓶的价钱转化为20个茶杯的价钱。这样就可把5个保温瓶和10个茶杯共用的90元钱,看作30个茶杯共用的钱数。
解:每个茶杯的价钱:
90÷(4×5+10)=3(元)
每个保温瓶的价钱:
3×4=12(元)
答:每个保温瓶12元,每个茶杯3元。
20、想:已知一个加数个位上是0,去掉0,就与第二个加数相同,可知第一个加数是第二个加数的10倍,那么两个加数的和572,就是第二个加数的(10+1)倍。
解:第一个加数:
572÷(10+1)=52
第二个加数:
52×10=520
答:这两个加数分别是52和520。
- 相关推荐
【小学生奥数小升初入学模拟试题以及答案】相关文章:
小升初奥数经典试题附答案06-18
关于小升初奥数试题和答案03-21
小升初数学奥数试题10-10
小学奥数小升初模拟题及参考答案03-13
长沙小升初奥数试题难度概念11-19
小升初英语精选模拟试题及答案06-10
小升初语文模拟试题及答案02-23
小升初数学模拟的试题及答案06-08
小升初数学全真模拟试题及答案06-08
小升初语文模拟试题含答案06-24