二次函数说课课件

2021-06-10 课件

  二次函数(quadratic function)的基本表示形式为y=ax+bx+c(a≠0)。二次函数最高次必须为二次, 二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。下面是小编为你带来的二次函数说课课件 ,欢迎阅读。

  教学目标:

  1.使学生掌握用描点法画出函数y=ax2+bx+c的图 象。

  2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

  3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

  重点难点:

  重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。

  难点:理解二次函数y=ax2 +b x+c(a≠0)的 性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)是教学的难点。

  教学过程:

  一、提出问题

  1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?

  2.函数 y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?

  (函数y=-4(x-2)2+1的图象可以看成是将函数y= -4x2的图象向右平移2个单位再向上平移1个单位得到的)

  3.函数y=-4(x-2)2+1具有哪些性质?

  (当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增 大而减小;当x=2时,函数取得最大值,最大值y=1)

  4.不画出图象,你能直接说出函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标吗?

  5.你能画出函数y=-12x2+x-52的图象,并说明这个函数具有哪些性质吗?

  二、解决问题

  由以上第4个问题的解决 ,我们已经知道函数y=-12x2+x-52的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-12x2+x-52的图象,进而观察得到这个函数的性质。

  解:(1)列表:在x的取值范围内列出函数对应值表;

  x…-2-101234…

  y…-612

  -4-212

  -2-212

  -4-612

  …

  (2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。

  (3)连线:用光滑的曲线顺次连接各点,得到函数y=-12x2+x-52的图象。

  说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。

  (2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题 ,选取适当的长度单位,使画出的图象美观。

  让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;

  当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;

  当x=1时,函数取得最大值,最大值y=-2

  三、做一做

  1.请你按照上面的方法,画出函数y=12x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?

  教学要点

  (1)在学生画函数图象的同时,教师巡视、指导;

  (2)叫一位或两位同学板演,学生自纠,教 师点评。

  2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?

  教学要点

  (1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的.开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?

  以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?

  教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;

  y=ax2 +bx+c=a(x2+bax)+c =a[x2+bax+(b2a)2-(b2a)2]+c =a[x2+bax+(b2a)2]+c-b24a

  =a(x+b2a)2+4ac-b24a

  当a>0时,开口向上,当a<0时,开口向下。

  对称轴是x=-b/2a,顶点坐标是(-b2a,4ac-b24a)

  四、课堂练习:

  练习第1、2、3题。

  五、小结: 通过本节课的学习,你学到了什么知识?有何体会?

  六、作业:

  1.填空:

  (1)抛物线y=x2-2x+2的顶点坐标是_______;

  (2)抛物线y=2x2-2x-52的开口_______,对称轴是_______;

  (3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;

  (4)抛物线y=-12x2+2x+4的对称轴是_______;

  (5)二次函数y=ax2+4x+a的最大值是3,则a=_______.

  2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。

  3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。

  (1 )y=3x2+2x;(2)y=-x 2-2x

  ( 3)y=-2x2+8x-8(4)y=12x2-4x+3

  4.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质

【二次函数说课课件】相关文章:

二次函数课件说课03-18

二次函数说课稿02-17

二次函数说课稿11-02

认识分数说课课件06-11

幂函数说课课件03-21

变量与函数说课稿课件03-23

认识小数说课稿课件03-23

小数的近似数说课课件03-20

平均数说课课件03-20