导语:在有生的瞬间能遇到你,竟花光所有力气。在这日才发现,曾呼吸过空气。以下小编为大家介绍简单几何体课件文章,欢迎大家阅读参考!
简单几何体课件1
空间几何体习题
一、学习目标
知识与技能:了解柱体,锥体,台体,球体的几何特征,会画三视图、直观图,能求表面积、体积。
过程与方法:通过旋转体的形成,掌握利用轴截面化空间问题为平面问题处理的方法。会画图、识图、用图。
情感态度与价值观:培养动手能力,空间想象能力,由欣赏图形的美到去发现美,创造美。
二、学习重、难点
学习重点:各空间几何体的特征,计算公式,空间图形的画法。
学习难点:空间想象能力的建立,空间图形的识别与应用。
三、使用说明及学法指导:结合空间几何体的定义,观察空间几何体的图形培养空间想象能力,熟记公式,灵活运用.
四、知识链接1.回忆柱体、锥体、台体、球体的几何特征。2.熟记表面积及体积的公式。
五、学习过程
题型一:基本概念问题
A例1:(1)下列说法不正确的是( )
A:圆柱的侧面展开图是一个矩形 B:圆锥的轴截面是一个等腰三角形 C: 直角三角形绕着它的一边旋转一周形成的曲面围成的几何体是圆锥 D:圆台平行于底面的截面是圆面
(2)下列说法正确的是( )A:棱柱的底面一定是平行四边形 B:棱锥的底面一定是三角形C: 棱锥被平面分成的两部分不可能都是棱锥D:棱柱被平面分成的两部分可以都是棱柱
题型二:三视图与直观图的问题
B例2:有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台 B 棱锥 C 棱柱 D 都不对
B例3:一个三角形在其直观图中对应一个边长为1正三角形,原三角形的面积为( )
A. B. C. D.
题型三:有关表面积、体积的运算问题
B例4:已知各顶点都在一个球面上的正四柱高为4,体积为16,则这个球的表面积是 ( )
A B C 24 D 32
C例5:若正方体的棱长为 ,则以该正方体各个面的中心为顶点的凸多面体的体积 ( )
(A) (B) (C) (D)
题型四:有关组合体问题
例6:已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是( )
A. B. C. D.
六、达标训练
1、若一个几何体的三视图都是等腰三角形,则这个几何体可能是( )
A.圆锥 B.正四棱锥 C.正三棱锥 D.正三棱台
2、一个梯形采用斜二测画法作出其直观图,则其直观图的面积是原梯形面积的( )
A. 倍 B. 倍 C. 倍 D. 倍
3、将一圆形纸片沿半径剪开为两个扇形,其圆心角之比为3∶4. 再将它们卷成两个圆锥侧
面,则两圆锥体积之比为( )
A.3∶4 B.9∶16 C.27∶64 D.都不对
4、利用斜二测画法得到的
①三角形的直观图一定是三角形; ②正方形的直观图一定是菱形;
③等腰梯形的.直观图可以是平行四边形; ④菱形的直观图一定是菱形.
以上结论正确的是( )
A.①② B. ① C.③④ D. ①②③④
5、有一个几何体的三视图如下图所示,这个几何体应是一个( )
A 棱台 B 棱锥 C 棱柱 D 都不对
6、如果一个几何体的三视图如图所示,主视图与左视图是边长为2的正三角形、俯视图轮廓为正方形,(单位长度:cm),则此几何体的侧面积是( )
A. cm B. cm2
C. 12 cm D. 14 cm2
7、若圆锥的表面积为 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为
8、将圆心角为 ,面积为 的扇形,作为圆锥的侧面,求圆锥的表面积和体积
9、 如图,在四边形 中, , , , , ,求四边形 绕 旋转一周所成几何体的表面积及体积
10、(如图)在底半径为2母线长为4的 圆锥中内接一个高为 的圆柱,求圆柱的表面积
七、小结与反思
简单几何体课件2
单元教材分析:
“观察”是人们认识客观世界和身边事物最基本的方法之一,大量的信息通过人的视觉窗口进入大脑,几何体的形状教学反思。观察能力是人的基本能力,观察能力强的人善于找到并表达物体的特征,而观察能力弱的人往往抓不住物体的主要特点。苏教版小学数学教科书以培养学生的观察能力为目的,编排了一些《观察物体》的单元。第一学段的主要内容是:根据具体事物、照片或直观图辨认从不同角度观察到的简单物体;第二学段的主要内容是:能辨认从不同方位看到的物体的形状和相对位置。四年级学生的年龄虽小,已在日常生活中积累了一些观察物体的方法与经验。本单元教学观察物体,既要利用已有的相关经验,更要教会学生“数学地”看物体,包括通常在哪里看、怎样规范地看、看到的形状如何表达……全单元编排三道例题,具体安排见下表:
例1物体的前面、右面和上面,从前面、右面、上面观察常见物体
例2从前面、右面、上面观察简单的几何体,用图形表示看到的形状
例3观察稍复杂的几何体,并表示看到的形状
小学数学里的“几何体”,主要是指长方体、正方体、圆柱、圆锥以及由若干个大小相同的小正方体拼成的物体。从不同角度观察长方体、正方体、圆柱、圆锥分别安排在认识这些几何体的单元里,而《观察物体》单元着重于若干个相同小正方体拼成的几何体。
教学反思:
一、联系生活经验,辨认长方体、正方体形状的物体的前面、右面和上面,初步体会观察物体的方法与要领。
例1教学长方体形状的物体的前面、右面和上面,以及从这些位置观察物体。这是因为长方体有前与后、左与右、上与下三组相对的面,相对的面形状、大小完全相同,在三组面里各观察一个面,就能了解物体的主要特点。而观察前面、右面、上面比较方便,因此人们往往观察物体的前、右、上三个面。
但在实际教学中,还是要强调前与后、左与右、上与下的一致性与不同之处,特别是到了后面的例3 ,左右两面看到的是不一样的,不能让学生在刚开始就造成一种错误的理解。
从前面、右面、上面观察投票箱,应该分别站在什么位置上?体会“从前面看”要站在投票箱的前面观察;“从右面看”应该站在投票箱的右边观察;“从上面看”应该紧靠着投票箱的前面,低头往下观察。然后要组织学生讨论:怎样表示和交流看到的形状?体会把看到的形状“画出来”,图形能比较方便地表达与交流,教学反思《几何体的形状教学反思》。教材里的“辣椒”“番茄”“蘑菇”三个小卡通就是利用“画图形”的方式表示物体形状的,它们观察投票箱的位置不同,看到的形状就不同,画出来的图形也不同。
介于少数学生的错误现象,在教学中要引导学生反思观察投票箱的活动,提炼其中的观察方法、经验和体会。可以总结出三点:一是观察物体一般从前面、右面和上面看。二是“从前面看”要专注地只观察物体的前面,视线不宜过高或过低,不宜偏左或偏右,一边看要一边思考观察到的形状以及表达的方法。“从右面看”和“从上面看”也有相应的观察要领。三是看到的形状一般用图形表示,如果把画图和适当讲述相结合,交流的效果会比较好些。
二、认识几何体的前面、右面和上面,观察较简单的几何体
界定几何体的前面、右面和上面,要把辨认常见物品面的经验迁移过来。通常,正对着观察者(学生)的那个面是前面,观察者右手边的面是右面。
例2用4个同样的小正方体拼出一个长方体形状的几何体。从前面看,能看到4个小正方形拼成的大正方形;从右面看,能看到2个小正方形,一个在上,一个在下;从上面看,能看到2个小正方形,一个在左,一个在右。教材给出了这样的三个图形,让学生指出哪一个图形是前面看到的,哪一个图形是右面看到的,哪一个图形是上面看到的。教学这道例题值得反思的有以下两点:
第一,先用4个同样的正方体照样子摆出一个长方体,再从不同位置仔细观察。顾名思义,“观察物体”是用眼睛去看物体。如果不摆出物体,只是看教科书画的立体图形,就不是真实地观察物体。学生不可能真实经历从前面看、从右面看、从上面看的活动,也不可能真实体验几何体各个面的形状,更不可能获得观察物体的知识技能。另外,学生动手摆出几何体,能通过触觉感知其形状特点,这是对观察物体的视觉信息的有力支持和必要补充,学生能降低空间想象的难度。为此,应对教学提出使用学具的要求,应该提前作好准备。但学校没有相应的众多学具,学生准备的也不充分。学生的动手操作所带来的对视觉信息的补充和支撑不够,空间想象能力弱的学生得不到很好的空间观的培养。
第二,要边看边说,分别说出从前面看到什么形状,从右面看到什么形状,从上面看到什么形状。这是三维立体向两维平面转化的思维活动,是发展空间观念的重要活动。教学要注意的是,学生把几何体的前面、右面、上面的形状表达出来,有一个语言转换的过程。他们动手摆、用眼看,信息都汇集到大脑里,形成关于几何体各个面形状的内部语言。把几何体各个面的形状说出来或者画出来,与同伴交流使用的是外部语言。每一名学生都要进行内部语言到外部语言的转换,有些学生说出各个面的形状有困难,往往是语言转换不充分所造成的。教材充分考虑到学生语言转换的困难,在例题和练习里设计了表达几何体各个面形状的两级台阶。例题在已经给出的三个图形里,指出哪个图形是前面看到的、哪个图形是右面看到的、哪个图形是上面看到的。只要把头脑里的几何体的三个面的图形表象与教材给出的三个图形比照,用连线的方式把自己头脑里的表象外显。这一级台阶比较容易。练习里要求在教材提供的方格纸上画出从前面、右面、上面看到的图形,把头脑里的表象通过画图表现出来。要从每个面看到的是什么图形,各个图形由几个小正方形拼成,这些小正方形怎样排列……一边思考一边画图。显然,这一级台阶相对难些。
三、观察结构稍复杂的几何体,进一步积累观察物体的经验
例3仍然是由4个同样的小正方体拼成的几何体,但不是长方体或正方体,而是一个稍复杂的几何体,体会它右面和上面的视图比较困难。例题把4个小正方体摆成两列,从前面看这个几何体,能看到4个小正方形排成两列,左边3个、右边1个。从右面看,能看到3个小正方形由上到下排成一列。从上面看,能看到2个小正方形,一左一右排成一行。学生的难点在于从右面看,要把几何体中不在同一平面上的三个小正方形,表示在同一个平面图形里。从上面看,要把几何体中不在同一平面上的两个小正方形,表示在同一个平面图形里。这是因为前视图只表示几何体的长和高,不表示其宽;右视图只表示几何体的宽和高,不表示其长;上视图只表示几何体的长和宽,不表示其高。如何突破教学难点?
第一,加强观察。一定要为学生创造观察几何体的条件,绝不能以观察例题里的立体图形来代替观察物体。必须让学生仔细地、充分地观察,一边看一边体会:从几何体的右面,看到3个小正方形,它们竖着排成一列;从几何体的上面,看到2个小正方形,它们横着排成一行。逐步接受这两个位置上的视图。
第二,把观察一个物体的三幅视图适当联系起来,共同反映几何体的结构与形状特点。从前面看到的图形,主要表示几何体前面的信息,也蕴含从右面看、从上面看的部分信
【简单几何体课件】相关文章:
简单的小数加减法-教学课件09-12
《学会制作简单的小木凳》课件设计05-09
简单的组合数学课件设计05-08
简单的小数加减法小学数学课件05-03
《咏柳》课件05-02
春晓课件05-03
《将心比心》课件05-14
荷花课件10-26
乡愁课件11-26