教学目标:
1.掌握梯形中位线的概念和梯形中位线定理
2.能够应用梯形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力和分析能力
3.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力
一、情景创设
怎样将一张梯形硬纸片剪成两部分,使分成的两部分能拼成一个三角形?
操作:
(1)剪一个梯形,记为梯形ABCD;
(2)分别取AB、CD的中点M、N,连接MN;
(3)沿AN将梯形剪成两部分,并将△ADN绕点N按顺时针方向旋转180到△ECN的位置,得△ABE,如右图。
讨论:在上图中,MN与BE有怎样的位置关系和数量关系?为什么?
二、合作交流
1.梯形中位线定义:
2.现在我们来研究梯形中位线有什么性质.
如右图所示:MN是梯形 ABCD的中位线,引导学生回答下列问题:
MN与梯形的两底边AD、BC有怎样的位置关系和数量关系?为什么?
梯形中位线定理:
定理符号语言表达:∵
3.归纳总结出梯形的又一个面积公式:
S 梯= (a+b)h 设中位线长为l ,则l = (a+b), S=l*h
三、例题解析
例1.如图,梯子各横木条互相平行,且A1A2=A2A3=A3A4=A4A5,B1B2=B2B3=B3B4=B4B5。已知横木条A1B1=48cm,A2B2=44cm,求横木条A3B3、A4B4、A5B5的长
练习:
①一个梯形的`上底长4 cm,下底长6 cm,则其中位线长为 ;
②一个梯形的上底长10 cm,中位线长16 cm,则其下底长为 ;
③已知梯形的中位线长为6 cm,高为8 cm,则该梯形的面积为________ ;
④已知等腰梯形的周长为80 cm,中位线与腰长相等,则它的中位线长 .
例2:已知:如图在梯形ABCD中,AD∥BC,
AB=AD+BC,P为CD的中点,求证:AP:
已知横木条A1B1=48cm,A2B2=44cm,求横木条A3B3、A4B4、A5B5的长
练习:
①一个梯形的上底长4 cm,下底长6 cm,则其中位线长为 ;
②一个梯形的上底长10 cm,中位线长16 cm,则其下底长为 ;
③已知梯形的中位线长为6 cm,高为8 cm,则该梯形的面积为________ ;
④已知等腰梯形的周长为80 cm,中位线与腰长相等,则它的中位线长 .
例2:已知:如图在梯形ABCD中,AD∥BC,
AB=AD+BC,P为CD的中点,求证:APBP
四、拓展练习
1.已知,在梯形ABCD中,AD∥BC,对角线ACBD,且AC =12,BD=9,则此梯形的中位线长是 ( )
A.10B.C. D.12
2.已知,等腰梯形ABCD中,两条对角线AC、BD互相垂直,中位线EF长为8cm,求它的高CH.
【三角形中位线优秀课件】相关文章:
三角形中位线说课稿11-02
变化中的三角形导学案课件05-13
教学优秀课件04-04
全等三角形的教学课件参考04-12
青花教学优秀课件04-06
《排序》优秀教案课件05-16
初中政治优秀课件05-15
小学英语优秀课件08-18
木兰诗优秀课件11-27
化石吟优秀课件09-06