三角形内角和教学设计最新

2023-05-26 教学设计

  作为一位兢兢业业的人民教师,常常要写一份优秀的教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。那么写教学设计需要注意哪些问题呢?以下是小编帮大家整理的三角形内角和教学设计最新,欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计最新1

  教学内容:

  北师版小学数学四年级下册《探索与发现(一)—三角形内角和》

  教材分析:

  《三角形内角和》是北师大版小学数学四年级下册第二单元第三节的内容,是在学生认识了直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形的特点的基础上进一步探究三角形有关性质中的三个内角和的性质,是“空间与图形”领域的重要内容之一。教材在呈现教学内容时,不但重视知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间。三角形的内角和的性质没有直接给出,而是提供了丰富多彩的动手实践的素材,让学生通过探索、实验、讨论、交流而获得,从而让学生在动手操作,积极探索的活动过程中掌握知识,积累数学经验,同时发展空间观念和推理能力,不断提高自己的思维水平。

  学情分析:

  本节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的,学生已经具备一定的关于三角形的认识的直接经验,也已具备了一些相应的三角形知识,这为感受、理解、抽象“三角形的内角和”的性质,打下了坚实的基础。同时,通过近四年的数学学习,学生已初步掌握了一些学习数学的基本方法,具备了一定的动手操作、观察比较和合作交流的能力。能在小组长带领下,围绕数学问题开展初步的讨论活动,能比较清楚的表达自己的意见,认真倾听他人的发言,具备了初步的数学交流能力。

  教学目标:

  1、让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现“三角形内角和等于1800,”,并能应用规律解决一些实际问题。

  2、在探索过程中培养学生的动手实践能力、协作能力及创新意识和探究精神,发展学生的空间思维能力,同时使学生养成独立思考的习惯。

  3、在活动中,让学生体验主动探究数学规律的乐趣,体验学数学的价值,激发学生学习数学的热情。

  教学重点:

  让学生经历“猜想、验证、归纳、应用”等知识形成的全过程,探索并发现三角形内角和等于1800,,并能应用规律解决一些实际问题。

  教学难点:

  掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。

  教学用具:

  表格、课件。

  学具准备:

  各种三角形、剪刀、量角器。

  一、创设情境 揭示课题。

  1、复习

  提问:前面我们已经学习了三角形的一些知识,谁能介绍一下呢?

  生回忆三角形的特征,三角形分类,三角形具有稳定性等内容。

  2、引入

  三角形具有稳定形,三角形家族是一个团结的家族,但今天家族内部却发生了激励的争论。

  播放课件,提问:它们在争论什么?

  什么是三角形的内角和?(板书:内角和)

  讲解:三角形内两条边所夹的角就叫做这个三角形的内角。每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。

  二、自主探究,合作交流。

  (一)提出问题:

  1、你认为谁说得对?你是怎么想的?

  2、你有什么办法可以比较一下这两个三角形的内角和呢?

  学生可能会说:用量角器量一量三个内角各是多少度,把它们加起来,再比较。

  (二)探索与发现

  1、初步探索,提出猜想。

  (1)量一量

  ①了解活动要求:(屏幕显示)

  A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。(测量时要认真,力求准确)

  B、把测量结果记录在表格中,并计算三角形内角和。

  C、讨论:从刚才的测量和计算结果中,你发现了什么?

  (引导生回顾活动要求)

  ②、小组合作。

  ③、汇报交流。

  你们测量了几个三角形?它们的内角和分别是多少?从测量和计算结果中你们发现了什么?

  (引导学生发现每个三角形的三个内角和都在1800,左右。)

  (2)提出猜想

  刚才我们通过测量和计算发现了三角形内角和都在180度左右,那你能不能大胆的猜测一下:三角形内角和是否相等?三角形的内角和等于多少度呢?(板书:猜测)

  2、动手操作,验证猜想

  这个猜想是否成立呢?我们要想办法来验证一下。(板书验证)

  引导:1800,跟我们学过的什么角有关?我们课前准备了各种三角形纸片,你能不能利用这些三角形纸片,想办法把三角形的`三个内角转换成一个平角呢?

  (1)、小组合作,讨论验证方法。

  (2)分组汇报,讨论质疑

  学生可能会出现的方法:

  A、撕拼的方法

  把三个角撕下来,拼在一起,3个角拼成了一个平角,所以三角形内角和就是1800,。

  讨论:锐角三角形、直角三角形、钝角三角形是否都能得出相同的结论呢?

  B、折一折的方法

  把三角形的角1折向它的对边,使顶点落在对边上,然后另外两个角相向对折,使它们的顶点与角1的顶点互相重合,也证明了三角形内角和等于1800。

  讨论:锐角三角形、直角三角形、钝角三角形能否得到相同的结论?

  C提问:还有没有其它的方法?

  3、回顾两种方法,归纳总结,得出结论。

  (1)课件演示:两种方法的展示。

  (2)引导学生得出结论。

  孩子们,三角形内角和到底等于多少度呢?”

  学生一定会高兴地喊:“1800!

  (3)总结方法,齐读结论

  我们通过动作操作,折一折,拼一拼,把三角形的三个内角转换成了一个平角,成功的得到了这个结论,让我们为自己的成功鼓掌!齐读结论。(板书:得到结论)

  (4)解释测量误差

  为什么我们刚才通过测量,计算出来的三角形内角和不是1800,呢?

  那是因为我们在测量时,由于测量工具、测量操作等各方面的原因,使我们的测量结果存在一定的误差。实际上,三角形内角和就等于1800

  (三)、回顾问题:

  现在你知道这两个三角形谁说得对了吗?(都不对!)

  为什么?请大家一起,自信肯定的告诉我。

  生:因为三角形内角和等于1800,。(齐读)

  三、巩固深化,加深理解。

  1、试一试:数学书28页第3题

  ∠A=180°— 90°—30°

  2、练一练:数学书29页第一题(生独立解决)

  ∠A=180°— 75°— 28°

  3、小法官:数学书29页第二题

  4、拓展创新

  A D G

  B C E F H R

  ABC的内角和是( )

  DEF的内角和是( )

  GHR的内角和呢?

  小结:三角形的形状和大小虽然不同,但是三角形的内角和都是180度。

  四、回顾课堂,渗透数学方法。

  1、总结:猜想—验证—归纳—应用的数学方法。

  2、介绍:三角形内角和等于180度这个结论的由来;数学领域里还未被证明的其它猜想,如哥德巴赫猜想、霍启猜想、庞加莱猜想等。

  3、课堂延伸活动:探索——多边形内角和

  板书设计:

  三角形内角和等于1800。

  猜想 验证 得出结论 应用

三角形内角和教学设计最新2

教学目标:

  1、知识目标:通过测量、拼、折叠等方法探索和发现三角形的内角和等于180°;已知三角形两个角的度数,会求出第三个角的度数。

  2、能力目标:通过讨论争辩、操作、推理等培养学生的思维能力和解决问题的能力;培养学生的空间观念,使学生的创新能力得到发展;使学生初步掌握由特殊到一般的逻辑思辨方法和先猜想后验证的研究问题的方法。

  3、情感目标:培养学生的合作精神和探索精神;培养学生运用数学的意识。

  教学重、难点:

  掌握三角形的内角和是180°。验证三角形的内角和是180°。

  学生分析:

  在上学期学生已经掌握了角的分类及度量问题。在本课之前,学生又研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  教学流程:

  一、创设情境,激发兴趣

  (课件出示:两个三角形争论,大的.对小的说,我的内角和比你大。)

  (学生小声议论着,争论着。)

  师:同学们,你们能不能帮助大三角形和小三角形解决这个问题啊?

  生:可以把这两个三角形的内角比一比。

  生:它们不是一个角在比较,可怎么比呀?

  生:我们先画出一个大三角形,再画一个小三角形。分别量一量这两个三角形三个内角的度数,这样就知道谁的内角和大,谁的内角和小啦。

  师:那好,我们今天就来研究“三角形的内角和”。(板书课题。)

  【设计意图:通过多媒体出示,引起学生兴趣,使学生想探索大、小三角形的内角和到底谁大?】

  二、动手操作,探索新知

  1、初步感知。

  师让学生分别画出不同形状的三角形。学生用量角器测量三角形三个内角的度数,并做着记录,并统一填表格。(表格略。)

  生汇报测量的结果:内角和约等于180°。

  师启发学生发现三角形的内角和180°。(师板书:三角形的内角和是180°。)

  【设计意图:通过这种方法可以得出准确的结论,也容易被学生理解和接受。可能出现问题:用测量的方法得到的结果不是刚好180°。使学生明白是因为测量存在误差的缘故。】

  2、用拼角法验证。

  师:刚才同学们发现,三角形的内角和约等于180°,那么到底是不是这样呢?

  生:我们手里有一些三角形,可以动手拼一拼。

  生:还可以剪一剪。

  师:那同学们就开始吧!

  (学生动手进行拼、剪、折等方法,检验三角形内角和的度数。)

  生:锐角三角形的内角可以拼成一个平角。因为平角是180°,所以锐角三角形的三个内角和是180°。

  生:我把一个直角三角形的三个内角剪下来,拼成了一个平角,所以直角三角形的三个内角和也是180°。

  生:钝角三角形的内角和也是180°。

  (师板书:三角形的内角和是180°。)

  【设计意图:使学生明确,因为全面研究了直角三角形、锐角三角形和钝角三角形这三类三角形的内角和,所以可以得出“三角形的内角和等于180°”这一结论。通过这些过程使学生明白:探究问题有不同的方法、途径,并且方法之间可以互为验证,达到结论的统一,从而使学生明白获得探究问题的方法比获得结论更为重要。】

  三、巩固新知,拓展应用

  1.出示题目:在三角形中,已知∠1=78°,∠2=44°,求∠3=的度数。

  2.已知∠1、∠2、∠3是三角形的三个内角,猜一猜下面的三角形各是什么三角形?(图略,分别是锐角、直角、钝角三角形。)学生猜后,教师抽去遮盖的纸,进行验证。

  通过以上的练习使学生对三角形内角和的应用有个初步认识,并积累解决问题的经验。

  3.师:(出示一个大三角形)它的内角和是多少度?

  生:180 °。

  师:(出示一个很小的三角形)它的内角和是多少度?

  生:180 °。

  师:(把大三角形平均分成两份。指均分后的一个小三角形)它的内角和是多少度?(生有的答90°,有的答180°。)

  师:哪个对?为什么?

  生:180°对,因为它还是一个三角形。

  师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?(这时学生的答案又出现了180°和360°两种。)师:究竟谁对呢?(学生脸上露出疑问。经过一番激烈的讨论探究后,学生开始举手回答。)

  生:180°。因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。

  生:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,比原来两个三角形少180°,所以大三角形的内角和还是180°,不是360°。

  师:你真聪明。(课件演示。)

  四、小结

  师:同学们,你们今天学了“三角形的内角和是180°”的新知识,现在能来帮助大、小三角形进行评判了吧?(生答能。)

  师:说一说本节课的收获。这节课你掌握了哪些知识?学会了哪些研究问题的方法?

  五、探究性作业

  求下面几个多边形的内角和。(图形略。)

  【设计意图:通过这样的练习,培养学生思维的灵活性、多样性,使不同层次的学生得到不同的发展,体现教学的层次性。】

三角形内角和教学设计最新3

  学情分析:

  学生已经掌握了角的概念、角的分类和角的度量等知识。在本课之前,学生又掌握了三角形的稳定性研究了三角形的分类。这些都为进一步研究三角形内角和作了知识储备和心理准备,为本课内容的教学作了铺垫。三角形的内角和是三角形的一个重要性质。它有助于理解三角形的三个内角之间的关系,是进一步学习、研究几何问题的基础。

  教学目标:

  1、知识与技能:通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

  2、过程与方法:通过量一量、剪一剪、拼一拼,培养学生的合作能力、动手实践能力,并运用新知识解决问题的能力。

  3、情感态度:使学生体验数学学习成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  探索发现和验证三角形的内角和是180度。

  教学难点:

  对不同探究方法的指导和学生对规律的灵活应用。

  教具准备:

  教师准备:多媒体课件、不同类形大小不一的三角形若干个、记录表

  学生准备:量角器、直尺、剪刀

  教学过程:

  一、激趣导入

  多媒体展示三角形

  出示谜语:形状似座山,稳定性能坚

  三竿首尾连,学问不简单?????(打一图形名称)

  (预设:三角形)

  师:谁能介绍介绍三角形?

  (生1:三角形有三条边、三个顶点、三个角。

  生2:三角形按角分类,分为钝角三角形、锐角三角形、直角三角形。)

  师:你喜欢哪种三角形?(钝角三角形、锐角三角形、直角三角形)

  师:同学们会画三角形吗?请你在练习本上画一个你喜欢的三角形。

  师:钝角、直角、锐角三角形三兄弟吵起来了?我们快去看一看。

  师:今天我们就来研究一下三角形的内角和。

  二、学习目标

  1、通过动手操作,使学生理解并掌握三角形内角和是180度的结论。

  2、能运用三角形的内角和是180度这一规律,求三角形中未知角的度数。

  3、培养动手动脑及分析推理能力。

  三、自主学习(展示量角法)

  1.理解三角形的内角、内角和

  (1)板书展示三角形

  师:要想知道什么是三角形的内角和,我们得先知道什么是三角形的内角?(三角形里面的三个角都是三角形的内角。)

  师:你能过来指指吗?同意吗?内角有几个?

  师:为了研究方便,我们把三角形的三个内角分别标上∠1、∠2、∠3。

  师:你能像老师一样把你的三角形标上∠1、∠2、∠3吗?

  (2)三角形的内角和

  师:什么是三角形的内角和?

  (三角形三个角的度数的和,就是三角形的内角和,即:∠1+∠2+∠3)

  师:就是把∠1+∠2+∠3加起来。

  师:根据我们以前的经验,我们怎么知道∠1、∠2、∠3的度数呢?(预设:用量角器量)

  师:请同学们拿出量角器,量一量你画的三角形的三个内角,并算出他们的和。(4分钟)

  学生测量(1分40)汇报结果(5人)。

  教师填写测量汇报单。

  师:观察汇报的结果,你有什么发现?(所有三角形内角和度数不一样、三角形内角和都在180度左右)

  四、合作探究

  师:这是同学们亲自测量发现的,没有得到统一的结果,这个办法不能使人信服,有没有别的方法验证?老师给每个小组都提供了很多个三角形,现在请你们以小组为单位,拿出三角形来研究研究三角形的内角和到底是多少度。?(8分钟)(剪拼法)

  1、操作验证探索三角形内角和的规律(6分钟)

  (1)操作验证:小组合作

  拿出装有学具的信封[信封里面有老师为学生事先准备的各种类型的三角形若干个(小组之间的三角形大小都不同)];拿出自备的直尺?剪刀

  (老师要给学生充裕的`时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。)

  2、学生汇报

  (1)转化法:

  生:两个同样的直角三角形可以拼成一个长方形,长方形每个直角都是90度,内角和就是360度,所以三角形的内角和就是360度的一半180度。

  师:他们用长方形的内角和来研究今天所学的知识,得到三角形的内角和是180度。

  (2)折拼法

  生:把三角形三个内角分别向下边折叠,拼成了一个平角,平角是180度,所以三角形的内角和是180度。

  师:他们是用折拼法验证三角形的内角和是180度(动手能力真强)

  (3)剪拼法

  生:把三角形三个内角撕下来,拼成一个平角,平角是180,所以三角形的内角和是180度。(师:提问怎样能很快的找到三个角?把他们做上标记。)

  标记上之后再拼一拼,可见标记的方法很科学。(20分钟)

  3、教师演示

  师:我们再来感受一下怎么验证三角形的内角和的?

  师:这是什么三角形?把他折一折。

  师:这是什么三角形?我们也可以把他折一折。你有什么发现?(折完以后都有一个平角,平角是180度,所以三角形的内角和是180度)

  师分别通过剪拼法验证直角三角形、钝角三角形、锐角三角形内角和。

  师:注意观察。

  师:演示完毕有什么发现?(预设这些三角形剪接后都拼成了平角)平角是180度,所以三角形的内角和是180度。

  师:刚刚我们研究了什么三角形。他们的内角和都是180度,那我们研究的这些三角形能不能代表所有的三角形,能。(因为三角形按角分类只能分成这三种。)(22分钟)

  4、演示任意一个三角形的内角和都是180度。

  出示一些三角形,让学生指出内角和。

  师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。)(板书三角形的内角和是180度。)

  师:那我们再看看刚刚汇报的结果。为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)

  师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。现在确定这个结论了吗?(25分钟)

  师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。早在300多年前就有一位法国著名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°

  师:你们能用今天的发现做一些练习吗?

  五、测评反馈

  1、判断。

  (1)直角三角形的两个锐角的和是90°。

  (2)一个等腰三角形的底角可能是钝角。

  (3)三角形的内角和都是180°,与三角形的大小无关。

  4、剪一剪。

  把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?

  六、课后作业

  69页第1题、第3题。

  七、板书设计

三角形内角和教学设计最新4

  一、教材分析

  “三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

  二、教学目标

  1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

  2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

  3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

  三、教学重难点

  教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

  教学难点:采用多种途径验证三角形的内角和是180°。

  四、学情分析

  通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

  五、教学法分析

  本节课采用自主探索、合作交流的教学方法,学生自主参与知识的.构建。领悟转化思想在解决问题中的应用。

  六、课前准备

  1、教师准备:多媒体课件、三角形教具。

  2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

  七、教学过程

  (一)创设情境,激趣导入

  导入:“同学们,有三位老朋友已经恭候我们多时了。“(出示三角形动画课件),让学生依次说出各是什么三角形。

  课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。请学生画一个三角形,要求:有两个直角。为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。板书课题。

  (二)自主探究、合作交流

  1、探索特殊三角形内角和

  拿出自己的一副三角板,同桌之间互相说一说各个角的度数。

  三角形内角和是多少度呢?指名汇报。90°+30°+60°=180°

  90°+45°+45°=180°

  从刚才两个三角形内角和的计算中,你发现了什么?

  2、探索一般三角形的内角和

  一般三角形的内角和是多少度?猜一猜。你们能想办法证明吗?接下来,我们采用小组合作的方式进行探究,看看哪个组的方法多而且富有新意。

  3、汇报交流

  请小组代表汇报方法。

  1)量:你测量的三个内角分别是多少度?和呢?(有不同意见)

  没有统一的结果,有没有其他方法?

  2)剪―拼:把三角形的三个内角剪下来拼在一起,成为一个平角,利用平角是180°这一特点,得出结论。(学生尝试验证)

  3)折拼:学生边演示边汇报。把三角形的三个内角都向内折,把这三个内角拼组成一个平角。所以得出三角形的内角和是180°。(学生尝试验证)

  4)教师课件验证结果。

  请看屏幕,老师也来验证一下,是不是和你们的结果一样?播放课件。我们可以得到一个怎样的结论?

  学生回答后教师板书:三角形的内角和是180°

  为什么有的小组用测量的方法不能得到180°?(误差)

  4、验证深化

  质疑:大小不同的三角形,它们的内角和会是一样吗?(一样)

  谁能说一说不能画出有两个直角的三角形的原因?

  (三)应用规律,解决问题:

  揭示规律后,学生要掌握知识,就要通过解答实际问题。

  1、为了让学生积极参与,我设计了闯关的活动来激励学生的兴趣。闯关成功会获得小奖章。

  第一关:基础练习,要求学生利用“三角形内角和是180°”这一规律在三角形内已知两个角,求第三个角(课件出示)

  第二关,提高练习,①已知等腰三角形的底角,求顶角。

  ②求等边三角形每个角的度数是多少。直角三角形已知一个锐角,求另一个。

  让学生灵活应用隐含条件来解决问题,进一步提高能力。

  2、小组合作练习,完成相应做一做。

  (四)课堂总结,效果检测。

  一节成功的好课要有一个好的开头,更要有一个完美的结尾,数学是使人变聪明的学科,通过这节课的学习,你收获了什么?学生们畅所欲言。接下来老师要检查大家的学习效果,学生完成答题卡,组长评判,集体汇报。

  (五)作业课下继续探究三角形,看你有什么新发现。

  八、板书设计

  通过这样的设计,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,使学生在自主中学习,在探究中发现,在发现中成长。以上便是我对《三角形的内角和》这一堂课的说课,谢谢大家!

【三角形内角和教学设计最新】相关文章:

最新《三角形内角和》的教学设计范文05-10

三角形内角和教学设计03-09

《三角形的内角和》教学设计03-14

《三角形内角和》的教学设计05-10

《三角形的内角和》教学设计08-19

《三角形内角和》的教学设计05-11

《三角形内角和》教学设计04-07

《三角形的内角和》教学设计05-08

三角形内角和教学设计02-13