反比例函数教学设计

2022-06-01 教学设计

  作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

  反比例函数教学设计1

  教学目标

  (一)教学知识点

  1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  (二)能力训练要求

  结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.

  (三)情感与价值观要求

  结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.

  教学重点

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.

  教学难点

  领会反比例函数的意义,理解反比例函数的概念.

  教学方法

  教师引导学生进行归纳.

  教具准备

  投影片两张

  第一张:(记作5.1A)

  第二张:(记作5.1B)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.

  Ⅱ.新课讲解

  [师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?

  1.复习函数的定义

  [师]大家还记得函数的定义吗?

  [生]记得.

  在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.

  [师]大家能举出实例吗?

  [生]可以.

  例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.

  等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.

  [师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.

  2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.

  [师]请看下面的问题.

  电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表:

  R/Ω20406080100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  请大家交流后回答.

  [生](1)能用含有R的代数式表示I.

  由IR=220,得I= .

  (2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.

  从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.

  (3)变量I是R的函数.

  由IR=220得I= .当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.

  [师]这位同学回答的非常精彩,下面大家再思考一个问题.

  舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.

  [生]根据I= ,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.

  投影片:(5.1A)

  京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.

  [生]由路程等于速度乘以时间可知1262=vt,则有t= .当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.

  [师]从上面的两个例题得出关系式

  I= 和t= .

  它们是函数吗?它们是正比例函数吗?是一次函数吗?

  [生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.

  [师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?

  [生]可以.由I= 与t= 可知关系式为y= (k为常数且k≠0).

  [师]很好.

  一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k≠0)的形式,那么称y是x的反比例函数.

  从y= 中可知x作为分母,所以x不能为零.

  3.做一做

  投影片(5.1B)

  1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?

  2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?

  3.y是x的反比例函数,下表给出了x与y的一些值:

  x-2-1

  13

  y

  2-1

  (1)写出这个反比例函数的表达式;

  (2)根据函数表达式完成上表.

  [生]由面积等于长乘以宽可得xy=20.则有y= .变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.

  [生]根据人均占有耕地面积等于总耕地面积除以总人数得m= .给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.

  [师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.

  [生]设反比例函数的表达式为

  y= .

  (1)当x=-1时,y=2;

  ∴k=-2.

  ∴表达式为y=- .

  (2)当x=-2时,y=1.

  当x=- 时,y=4;

  当x= 时,y=-4;

  当x=1时,y=-2.

  当x=3时,y=- ;

  当y= 时,x=-3;

  当y=-1时,x=2.

  因此表格中从左到右应填

  -3,1,4,-4,-2,2,- .

  Ⅲ.课堂练习

  随堂练习(P131)

  Ⅳ.课时小结

  本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y= (k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.

  Ⅴ.课后作业

  习题5.1

  Ⅵ.活动与探究

  已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?

  分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.

  解:由题意可知y-1= =k(x+2).

  当x=1时,y=4.

  所以3k=4-1,

  k=1.

  即表达式为y-1=x+2,

  y=x+3.

  由上可知y是x的一次函数.

  板书设计

  反比例函数教学设计2

  一、教学目标

  1.利用反比例函数的知识分析、解决实际问题

  2.渗透数形结合思想,提高学生用函数观点解决问题的能力

  二、重点、难点

  1.重点:利用反比例函数的知识分析、解决实际问题

  2.难点:分析实际问题中的数量关系,正确写出函数解析式

  三、例题的意图分析

  教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。

  教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。

  补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题

  四、课堂引入

  寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?

  五、例习题分析

  例1.见教材第57页

  分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反

  例2.见教材第58页

  分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?

  例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)

  (1)写出这个函数的解析式;

  (2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?

  (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?

  分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米

  六、随堂练习

  1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为

  2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式

  3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度

  答案:=,当V=2时,=7.15

  反比例函数教学设计3

  教学目标:

  1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  2、能根据实际问题中的条件确定反比例函数的解析式。

  3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

  教学重点、难点:

  重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题

  难点:根据实际问题中的条件确定反比例函数的解析式

  教学过程:

  一、情景创设:

  为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题:

  (1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.

  (2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;

  (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

  二、新授:

  例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。

  (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?

  (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系?

  (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

  例2某自来水公司计划新建一个容积为 的.长方形蓄水池。

  (1)蓄水池的底部S 与其深度 有怎样的函数关系?

  (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米?

  (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)

  三、课堂练习

  1、一定质量的氧气,它的密度 (g/3)是它的体积V( 3) 的反比例函数, 当V=103时,=1.43g/3. (1)求与V的函数关系式;(2)求当V=23时求氧气的密度.

  2、某地上年度电价为0.8元&nt;/&nt;度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.

  (1)求与x之间的函数关系式;

  (2)若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%? [收益=(实际电价-成本价)×(用电量)]

  3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围.

  四、小结

  五、作业

  30.3——1、2、3

  反比例函数教学设计4

  一、教学目标

  1.使学生理解并掌握反比例函数的概念

  2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式

  3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想

  二、重、难点

  1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式

  2.难点:理解反比例函数的概念

  3.难点的突破方法:

  (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解

  (2)注意引导学生对反比例函数概念的理解,看形式 ,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。

  (3) (k0)还可以写成 (k0)或xy=k(k0)的形式

  三、例题的意图分析

  教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。

  教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。

  补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。

  反比例函数教学设计5

  教学目标:

  经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。

  教学程序:

  一、导入:

  1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

  2 、U=IR,当U=220V时,

  (1)你能用含 R的代数式 表示I吗?

  (2)利用写出的关系式完成下表:

  R(Ω) 20 40 60 80 100

  I(A)

  当R越来越大时,I怎样 变化?

  当R越来越小呢?

  ( 3)变量I是R的函数吗?为什么?

  答:① I = UR

  ② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。

  ③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。

  二、新授:

  1、反比例函数的概念

  一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。

  反比例函数的自变量x 不能为零。

  2、做一做

  一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?

  解:y=20x ,是反比例函数。

  三、课堂练习:

  P133,12

  四、作业:

  P133,习题5.1 1、2题

  反比例函数教学设计6

  教学目标:

  使学生对反比例函数和反比 例函数的图象意义加深理解。

  教学重点:

  反比例函数 的应用

  教学程序:

  一、新授:

  1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么?

  答:P=600s (s0),P 是S的反比例函数。

  (2)、当木板面积为0.2 m2时,压强是多少?

  答:P=3000Pa

  (3)、如果要求压强不超过6000Pa,木板的面积至少 要多少?

  答:至少0.lm2。

  (4)、在直角坐标系中,作出相应的函数 图象。

  (5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。

  二、做一做

  1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。

  (2)蓄电池的电压是多少?你以写出这一函数的表达式吗?

  电压U=36V , I=60k

  2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?

  R() 3 4 5 6 7 8 9 10

  I(A )

  3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )

  (1)分别写出这两个函 数的表达式;

  (2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;

  随堂练习:

  P145~146 1、2、3、4、5

  作业:P146 习题5.4 1、2

【反比例函数教学设计(通用6篇)】相关文章:

反比例函数实际应用教学设计(精选7篇)05-20

初中数学反比例函数说课稿(通用5篇)05-28

反比例教学反思(通用5篇)05-31

对数函数教学设计(精选5篇)05-20

一次函数的教学设计课件02-17

二次函数教学设计(精选8篇)05-27

《集合与函数》课件设计05-08

《对数函数》课件设计05-08

《对数函数》教学反思04-19

《对数函数》教学反思05-16